
Contribution to an Advanced Clinical Aided Tool 

Dedicated to Explore ASPECTS Score of 

Ischemic Stroke  
 

Haifa Touati 1,*, Areej Alasiry 2, Abdulmajid Al-Junaid 3, Lamia Sellami 1, Yesmine Ben Hamida 4,  

Ahmed Ben Hamida 2, and Khaireddine Ben Mahfoudh 5 

1 Advanced Technologies for Medicine and Signals Lab, Advanced Technologies for Medicine and Signals, National 

Engineering School of Sfax, Sfax University, Tunisia 
2 Department of Information System, College of Computer Science, King Khalid University, Saoudia Arabia 

3 Department of Computer Engineering, College of Computer Science, King Khalid University, Saoudia Arabia  
4 Department of Neurologie, Centre Hospitalier Universitaire Hospital of Sfax, University of Sfax, Tunisia 
5 Department of Radiology, Centre Hospitalier Universitaire Hospital of Sfax, University of Sfax, Tunisia 

Email: haifatouati4@gmail.com (H.T.); areej.alasiry@kku.edu.sa (A.A.); aalgunaid@kku.edu.sa (A.A.-J.); 

lsellami@yahoo.com (L.S.); yassmine.benhmida2@gmail.com (Y.B.H.); ahmed.benhamidag@gmail.com (A.B.H.); 

bmkher@yahoo.fr (K.B.M.) 

*Corresponding author 

 

 

 
Abstract—The Alberta Stroke Program Early CT Score 

(ASPECTS) is a simple and reliable systematic method used 

to quantify and explore acute ischemic stroke. It was initially 

developed to standardize the assessment of the early ischemic 

changes’ extent within the Middle Cerebral Artery (MCA). 

The ASPECTS assessment has been increasingly 

incorporated into treatment decision-making and has been 

used in several randomized clinical trials for endovascular 

treatment decision-making. The e-ASPECTS software is a 

tool for the automated use of ASPECTS. The purpose of this 

paper is twofold: The first objective is to present an advanced 

clinical that streamlines the extraction of ASPECTS regions 

of interest. This tool aids neuro-physicians by automating the 

segmentation Department process through preprocessing 

steps involving skull bone stripping, edge detection, and 

thresholding. The second objective is to propose an 

automated semi-quantitative method using Non-Contrast 

Computed Tomography (NCCT), enabling neuro-physicians 

to accurately diagnose and evaluate acute ischemic stroke. 

This comprehensive approach improves the exploration, 

diagnosis, and evaluation of acute ischemic stroke, bolstering 

clinical decision-making and treatment strategies. 

Experimental results were promising and depicted an 

interesting accuracy level ranging from 0.81 (internal 

capsule) to 0.98 (caudate), with a greater agreement for 

cortical areas. The proposed automated ASPECTS method 

presents an independent predictor for clinical practice and 

ischemic core judgment and treatment selection.  

 

Keywords—acute ischemic stroke, Non-Contrast Computed 

Tomography (NCCT) image, Alberta Stroke Program Early 
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I. INTRODUCTION 

Stroke remains a predominant contributor to global 

mortality and disability rates. Each year, approximately 

800,000 individuals are afflicted by stroke, equating to 

almost one occurrence every four seconds [1]. Swift 

treatment initiation from symptom onset correlates 

significantly with improved patient outcomes [2]. 

Consequently, Computed Tomography (CT), renowned 

for its speed and widespread accessibility, has emerged as 

the primary imaging modality for assessing patients with 

acute Ischemic Stroke (AIS) [3, 4].  

The Alberta Stroke Program Early CT Score 

(ASPECTS), formulated in 2000, partitions the middle 

cerebral artery territory into ten pre-defined anatomical 

zones to evaluate strokes, as introduced by Barber et al. [5]. 

A topographic scoring system divides the middle cerebral 

artery territory into 10 regions within two prespecified 

levels, i.e., the ganglionic level and the supra ganglionic 

level (Fig. 1). However, scanning to identify early signs of 

ischemia by human ASPECTS have considerable 

interrater variability, which is, among other factors, 

influenced by rater experience [6]. Consequently, such 

scoring variability has a disadvantage of negatively 

affecting the ischemic core judgement and treatment 

selection. Therefore, an automated ASPECTS score 

calculation method is needed to assist neuro-physicians in 

exploring and quantifying early ischemic brain damage.  

In the last ten years, the application of Artificial 

Intelligence (AI) techniques has significantly influenced 

the field of stroke image analysis by automating the 

diagnostic process, enhancing diagnostic accuracy, and 

improving prognosis predictions [7]. Automated lesion 
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identification or segmentation is a crucial component of 

precision medicine, and recent machine learning 

techniques have shown promising results in automatic 

diagnosis. Substantial headway has been achieved in 

lesion segmentation for Acute Ischemic Stroke (AIS) 

employing techniques such as Diffusion-Weighted 

Imaging (DWI) [8]. Furthermore, there has been the 

development of automatic ASPECT scoring systems 

tailored for the AIS region and comparisons were made 

between the human scorers and e-ASPECTS [9, 10] 

Noteworthy achievements also encompass the detection of 

the hyperdense middle cerebral artery sign through CT 

scans [11], the automated quantification of cerebral 

edema [12], and even the prediction of lesion final 

shapes [13]. 

 

 

Fig. 1. Regions of ganglionic level and supra ganglionic level of 

ASPECTS score. 

Considering these advancements, automatic diagnosis 

and ASPECT scoring of AIS using Non-Contrast CT 

(NCCT) would be a valuable tool in an era where faster 

thrombolysis is recommended. However, there is currently 

no proposed AI model for automatic ASPECT scoring 

based on NCCT. 

Recently, Deep Learning (DL) methods have been 

introduced for detecting Early Ischemic Changes (EIC) 

and interpreting ASPECTS with promising results [14, 15]. 

However, there are limited well-established DL 

approaches for NCCT ASPECTS scoring, and most of the 

existing studies are single-centered, with a focus only on 

evaluating model efficiency rather than its performance in 

clinical emergency situations. Hence, further investigation 

is required to determine the DL model’s performance in 

clinical scenarios. Our research was therefore inspired 

from ASPECTS territories and so to reinforce 

investigation of this pathology.  

The study is structured into two primary segments. The 

first segment introduces an advanced approach that 

facilitates the extraction of all ASPECTS regions. This 

innovative approach holds the potential to offer neuro-

physicians a clearer visual understanding of stroke-related 

areas, encompassing both normal and abnormal ASPECTS 

regions. The conventional clinical method involves 

manually demarcating ASPECTS regions using Digital 

Imaging and Communications in Medicine (DICOM) 

visualization software such as Radiant [16]. This process 

allows specialists to meticulously scrutinize ASPECTS 

regions on both hemispheres, enabling them to gauge the 

extent of damage and identify lesions [17]. However, this 

visually reliant approach is time-intensive and reliant on 

the operator’s skillset [18]. 

In contrast, our study presents a novel approach that 

obviates the need for viewer software, streamlining the 

visualization of regions of interest while mitigating time 

constraints and imprecisions associated with manual 

assessment. Our method directly facilitates brain image 

exploration through the automated segmentation of 

ASPECTS regions. Furthermore, this tool plays a pivotal 

role in the advancement of automated ASPECTS score 

estimation. It tackles the automated segmentation phase, 

extracting the seven ASPECTS regions at the ganglionic 

level and the three ASPECTS regions at the supra-

ganglionic level (Fig. 1). This automated approach not 

only enhances precision and efficiency but also contributes 

to the overall objective of developing a reliable method for 

ASPECTS scoring. 

The study’s distinctive contributions can be 

encapsulated as follows: 
- Automated ASPECTS Segmentation: The study 

pioneers a clinically validated approach for the 
automated segmentation of ASPECTS regions. This 
innovation automates a process that was 
traditionally executed manually, thereby 
streamlining and enhancing the accuracy of 
ASPECTS assessment. 

- Uncovering Subtleties in CT Images: The 
methodology employed uncovers intricacies within 
CT stroke images that may not be discernible to the 
human eye. By elucidating these subtleties, the 
approach provides a more comprehensive 
understanding of stroke-related areas, aiding neuro-
physicians in making informed and rapid treatment 
decisions. 

- Enhanced Stroke Exploration: The introduced 
approach empowers neuro-physicians to efficiently 
detect lesions and promptly make well-informed 
treatment choices. This real-time capability holds 
the potential to significantly improve patient 
outcomes. 

- Precision-Focused Clinical Support Tool: The 
proposed tool is meticulously designed to elevate 
stroke exploration outcomes. By providing neuro-
physicians with a robust and automated means of 
delineating ASPECTS Regions of Interest (ROIs), 
it aids in decision-making and enhances the 
precision of diagnoses. 

- Automated ASPECTS Score Development: The 
study takes a significant step toward the 
development of an automated ASPECTS scoring 
system. This system leverages the physician’s 
approach of contrasting dissimilarities between 
brain hemispheres to detect abnormalities. This 
novel tool has the potential to revolutionize early 
ischemic stroke detection, enhancing clinical 
efficiency and accuracy. 

- Efficient Stroke Detection: The automated 
ASPECTS score system represents a pivotal 
advancement in early is chemic stroke detection. 
By automating a process that typically involves 
subjective comparison, the system offers a highly 
efficient means of assessing stroke severity and 
guiding appropriate treatments. 
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In the subsequent phase of the study, an automated 

ASPECTS score system is introduced. This system is 

rooted in the principle applied by physicians to identify 

abnormality through contrasting the differences between 

the brain’s left and right hemispheres. The potential of this 

automated ASPECTS score system lies in its ability to 

facilitate early ischemic stroke detection, thereby 

significantly elevating clinical efficiency and diagnostic 

accuracy. 

The paper is organized as follows: In Section II, we 

present the segmentation of ASPECTS ROIs. Section III 

presents proposed methodology for the automated 

ASPECTS score. Results are reported in Section IV. We 

further discuss some key issues in Section V and finally 

draw conclusions in Section VI. 

II. ASPECTS REGIONS OF INTEREST (ROI) 

In the initial phase of this research, we introduced a 

semi-automated methodology designed to segment and 

extract all ASPECTS regions. This innovative approach 

serves a dual purpose. Firstly, it offers neuro-radiologists 

a comprehensive reference for visualizing all stroke-

related areas, encompassing both normal and abnormal 

ASPECTS regions. Secondly, it plays a pivotal role in 

supporting medical assistance systems within the realm of 

radiology by facilitating the extraction of ASPECTS 

Regions of Interest (ROIs) from CT brain images. 

 

 

A. Proposed Methodology  

As depicted in Fig. 2, the proposed approach is 

composed of five steps:  

• Importing CT image, 

• Skull stripping,  

• Edge detection process,  

• Threshold segmentation of ASPECT regions, and 
finally results in both hemispheres.  

The workflow can be broken down into several key 

steps. First, we began by importing the ischemic stroke 

image into our system. Following this, a critical step 

involved the removal of non-brain structures, effectively 

extracting the brain tissues. This preparatory stage 

significantly facilitated the subsequent segmentation 

process. 

In the third step, we employed an edge detection method 

to create a mask that would guide our segmentation 

process. This mask was instrumental in identifying the 

precise boundaries of the areas of interest. With the mask 

in place, we proceeded to the fourth step, which involved 

the application of a thresholding process. This step allowed 

us to delineate the ten distinct regions of ASPECTS within 

the image. 

Finally, after completing the segmentation process, we 

obtained the results, which included the ASPECTS regions 

in both hemispheres. This outcome represented a 

comprehensive breakdown of the ischemic stroke image, 

aiding in the assessment and diagnosis of the condition. 

 

 

 

Fig. 2. The proposed approach. 

• Skull stripping 

The skull stripping procedure, an essential component 

of our algorithm, was effectively deployed to eliminate 

non-brain structures. This encompassed the removal of 

skull, bone, and eye structures. This preprocessing step 

was of paramount importance as it contributed to the 

accuracy of stroke region detection within the brain [19]. 

By ridding the image of extraneous tissues, we 

significantly enhanced the precision of our subsequent 

segmentation results. 

To focus exclusively on cerebral tissues, we harnessed 

the power of Deep Learning (DL) in conjunction with a 

UNet architecture. This approach has demonstrated 

effectiveness in similar applications, and we found it to be 

particularly suited for our objectives. Our initial efforts 

involved processing the multiple slices of CT scans drawn 

from a diverse patient database. This approach offered 

notable advantages, as DL models tend to thrive with 

substantial input data. Each scan provided multiple slices 

for analysis, contributing to the overall accuracy and 

effectiveness of our tissue extraction process [20]. The 

UNet architecture, originally developed by Olaf 

Ronneberger, Philipp Fischer, and Thomas Brock in 2015, 

was initially created for cell segmentation in microscopic 

images. Since then, it has gained widespread recognition 

and is frequently employed to tackle image segmentation 

challenges [20]. The UNet architecture consists of two 

fundamental components: the encoder (responsible for 

narrowing) and the decoder (responsible for widening), 

which combine to form a U-shaped structure. The 

encoder’s primary objective is to transform the input 

image into a format conducive to segmentation. It 

accomplishes this through a series of mathematical 

operations, typically leveraging convolutional neural 

networks. 

In our proposed architecture, illustrated in Fig. 3, the 

encoding path comprises four distinct blocks. Each block 

features convolutional layers, with these layers typically 

being 2D convolutional layers. These 2D convolutional 

layers are crucial components that perform mathematical 

convolutions, a process that describes how one function is 

altered by another. The first convolutional layer 

encompasses 256 feature maps, the second comprises 128 

feature maps, the third involves 64 feature maps, and the 

final one integrates 32 feature maps. It’s important to note 

that all of these convolutional layers employ kernels with 

a size of 3×3. 

Furthermore, we incorporated a ReLU Activation layer 

into the architecture. The Rectified Linear Unit (ReLU) 

Activation function is a key component in neural networks, 

CT  

image 

 skull 

stripping 

Threshold segmentation 

of ASPECT regions 
Results edge 

detection 
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introducing non-linearity and addressing the vanishing 

gradients issue. This activation function introduces non-

linearity by defining the output of a neuron as a non-linear 

function of its input [21]. In our architecture, and in 

modern neural networks in general, we employ the rectifier 

function, which is analogous to a single-half-period 

rectifier in electrical engineering. ReLU defines neurons 

using the following Eq. (1) [22]: 

f(x) = max(0,x)                            (1) 

This activation function plays a pivotal role in 

enhancing the expressiveness of neural networks, making 

them well-suited for a wide range of tasks, including image 

segmentation and feature extraction. Following the 

encoding phase, we incorporated a crucial operation: max 

pooling, utilizing a 2×2 kernel. Max pooling is a method 

employed to extract the most significant features within 

the data. This operation involves selecting the maximum 

value from the feature map based on the filter size and 

stride parameters. 

At the heart of our architecture lies the bottleneck layer, 

often referred to as the “Bridge.” This component plays a 

vital role in reducing the number of parameters in the 

network, mitigating the risk of overfitting. It consists of 2D 

convolutional layers, with each of them featuring 512 

feature maps and 3×3 kernels. This layer marks the point 

in the network where the spatial resolution of the feature 

maps is at its minimum and serves as a bridge connecting 

the encoder and decoder blocks. 

The decoder block, an integral element of the U-Net 

architecture, carries out the reverse process of the encoder. 

This phase encompasses four individual blocks. Before 

each block, there is an up-sampling operation applied to 

the feature maps from the lower levels, followed by a 2D 

convolution layer, a ReLU activation function, and 

concatenation with the corresponding feature maps from 

the encoding path. Each block comprises two 2D 

convolutional layers, each followed by a ReLU activation 

function. Upon reaching the final level of the decoding 

path, we employ a 1×1 convolution and a Sigmoid 

activation layer to transform the multi-channel feature 

maps into the desired output. In this stage, we utilized a 

deep learning approach to eliminate non-cerebral tissues, 

isolating only the brain tissues of interest. 

 

 

Fig. 3. UNET architecture. 

• Thresholding and edge detection technique 

Following the skull stripping phase, a pivotal aspect of 

our proposed approach is the application of the edge 

detection method. Initially, we initiated the process by 

extracting the ASPECTS regions’ mask, guided by a 

template demarcated by a neuro-radiologist. To 

accomplish this, we employed the Simple Chain 

Approximation (SCA) method, as detailed in [23]. 

The Simple Chain Approximation (SCA) method is an 

optimal technique utilized in image processing and 

computer vision. It serves the purpose of detecting object 

boundaries or contours in a simplified, chain-like manner. 

This method relies on a series of line segments, often 

referred to as chains or polygons, to approximate complex 

shapes. SCA proves instrumental in reducing redundancy 

by retaining only the essential points that define the 

contour, rather than storing every single point comprising 

the contour. 

Subsequently, we applied the thresholding technique, as 

described in [24], to extract a binary mask representing the 

ASPECTS regions of interest. In particular, we made use 

of the binary thresholding method to establish a binary 

representation of the image. This thresholding process 

effectively converted a grayscale image into a binary 

image, facilitating the SCA technique’s extraction of 

ASPECTS areas. Furthermore, the thresholding technique 

was instrumental in eliminating irrelevant areas, resulting 

in a binary mask characterized by a black background and 

a white foreground, specifically delineating the ASPECTS 

regions. 

Finally, for each ASPECTS area of interest, we obtained 

the corresponding image by multiplying the binary mask 

with the original image. This process allowed us to 

precisely isolate and visualize the regions of significance 

within the image. 
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B. Reference Standard and Clinical Motivation  

ASPECTS functions as a semi-quantitative scoring 

system, primarily utilized for early ischemic change 

assessment based on Non-Contrast Computed 

Tomography (NCCT) images. ASPECTS serves as a 

robust predictor of functional outcomes [5], enabling swift 

diagnosis of ischemic lesions and aiding in the selection of 

potential candidates for intravenous and intra-arterial 

therapies. Furthermore, it plays a pivotal role in 

forecasting the thrombolytic effect and long-term 

prognosis [4]. 

This topographic scoring system effectively divides the 

Middle Cerebral Artery (MCA) territory into ten 

predefined anatomical areas. Each of these ten areas is 

assigned a value of one point, resulting in a total score of 

10 points. Point subtraction is carried out for each area 

exhibiting early ischemic changes. The final score derived 

from this process serves as a dependable predictor of 

clinical outcomes and aids in the selection of appropriate 

treatment strategies. 

Traditionally, a reference standard for ASPECTS area 

extraction is established through visual assessment by a 

neuro-physician. Although tools like Radiant [16] provide 

efficient DICOM viewing capabilities, they are limited to 

viewing and lack additional functionalities (Fig. 4). 

Moreover, this standard approach is time-consuming and 

reliant on visual inspection [6]. 

 

 

Fig. 4. Radiant slice. 

Hence, our proposed approach has been meticulously 

developed to automate the segmentation of ASPECTS 

regions within the ischemic stroke scoring system. This 

method streamlines the process of brain segmentation in 

CT scan regions, closely mirroring the actions of a human 

expert, while significantly reducing the time and 

variability associated with manual assessment. 

III. AUTOMATED ASPECTS METHOD 

The objective of this part of the study was to develop an 

objective and automated ASPECT Score estimation 

system which will resolve the problem of scoring 

variability issue among medical experts. 

A. Proposed Method  

Illustrated in Fig. 5, our proposed method unfolds 

through a sequence of 5 distinct steps aimed at estimating 

the automated ASPECTS score: 
1. Importing CT Image: The initial step involves the 

importation of the CT image into the system. 
2. Skull Stripping: As elucidated in Section II, this step 

involves skull bone stripping of the CT stroke image, 
which is crucial for accurate and precise detection 
of ASPECTS regions. 

3. Segmentation of each ASPECTS Region of Interest 
(ROI): Following skull stripping, we move on to the 
segmentation of ASPECTS regions in both 
hemispheres. This step involves isolating and 
delineating the areas of interest. (Section II) 

4. GLCM Feature Extraction: Subsequently, the Gray-
Level Co-Occurrence Matrix (GLCM) features of 
each region are extracted. This step serves to detect 
lesions by comparing the GLCM features of each 
ASPECTS ROI with its corresponding contralateral 
region. 

5. Comparison and Score Estimation: This pivotal 
phase involves comparing the extracted features and 
leveraging them to estimate the ASPECTS score. 
Our approach is anchored in the medical principle 
applied by physicians who identify abnormalities by 
contrasting differences between the brain’s left and 
right hemispheres. 

The ASPECTS score, an essential tool in analyzing 

hypoattenuation in different brain areas, does not manifest 

as a sign but rather serves as an analytical instrument. It is 

particularly valuable for assessing subtle changes, such as 

the loss of grey-white matter differentiation, which is 

among the earliest parenchymal changes following 

ischemic onset. Each of the ten affected areas is assigned 

a value based on the degree of hypoattenuation and 

contributes to the decision-making process for patient 

clinical outcomes. To explore these hypoattenuation levels 

effectively, we employ a texture feature extraction method 

within the ROIs of stroke images. This technique plays a 

critical role in unveiling disparities between both 

hemispheres in the CT image and in the detection of 

lesions. 

B. GLCM Features Extraction and Score Calculation 

The exploration of texture features within the regions of 

the CT stroke image in both hemispheres involves the 

extraction of second-order statistical features. To delve 

into the texture features of the stroke ROI, we employed 

the GLCM method [25], which is widely utilized in 

medical images for texture analysis. 

In this context, discrepancies in image pixel intensities 

serve as texture features, and the co-occurrence matrix 

proves to be a robust foundation for such texture analysis. 

This matrix is generated by calculating the pairwise 

statistics of image pixel intensities. The GLCM 

encompasses a range of second-order statistical texture 

features, which we harnessed and extracted using this 

technique. 
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The process of computing a gray-level co-occurrence 

matrix entails identifying the occurrences of pairs of gray 

levels separated by a specified distance ‘d’ in a defined 

direction characterized by a displacement vector (dx, dy) 

[26]. 

 

 
Fig. 5. Flow diagram of the automated ASPECTS score method. 

To formalize the calculation of the GLCM for an image 

‘I’ with dimensions N × M, the following steps are 

undertaken: 

𝐺𝐿𝐶𝑀 𝑑𝑥,𝑑𝑦(𝑖, 𝑗) =

 ∑ ∑ {
1, 𝑠𝑖 𝐼(𝑛,𝑚) = 𝑖 𝑒𝑡 𝐼(𝑛 + 𝑑𝑥,𝑚 + 𝑑𝑦) = 𝑗

0, 𝑠𝑖𝑛𝑜𝑛
𝑀
𝑚=1

𝑁
𝑛=1  (2) 

This method, applied to the CT stroke image regions, 

effectively uncovers and quantifies various texture 

features that play a critical role in the analysis and 

detection of anomalies. 

where i and j are the gray levels of the reference pixel and 

the neighboring pixel respectively, n and m are to the 

coordinates of the pixels in the image I. 

The co-occurrence matrix is characterized by G (i, j | d, 

Θ) where i and j define gray level values at a distance d 

with an angle Θ. Rows and Columns of the GLCM are 

identical. GLCM represents an importing method that 

helps well explore the bringing out of the textural 

differentiation of an image. 

Fig. 6 shows how to calculate GLCM matrix with Ө = 0 

and d = 1. In the output GLCM, Element (4, 1) takes the 

value of 1 because there is only one instance in the image 

where two horizontally adjacent pixels have the values 4 

and 1. Element (2, 3) in the GLCM contains the value 2 

because there are two instances in the image where two 

horizontally adjacent pixels have the values 2 and 3. 

The size of the GLCM matrix is Ng×Ng, where Ng is 

the maximum gray level of the region of interest. 

 
 

 
Fig. 6. Principle of co-occurrence matrix. 

For this study, Energy, contrast, homogeneity, 

correlation, dissimilarity and ASM are calculated for four 

directions (0°, 45°, 90°, 135°) and for a distance of 1 pixel. 

A distance of 1 means that the GLCM is computed for 

pixel pairs that are 1 pixel apart in the specified direction. 

The angle is defined to assess the direction of texture. We 

will focus on and discuss the proposed GLCM features. 

These features are described as follows: 
- Energy: Energy, also known as uniformity or 

angular second moment, measures the sum of 
squared elements in the GLCM. It represents the 
orderliness of the texture, with higher values 
indicating more homogeneity. 

Energy = ∑ ∑ 𝑃𝑖,𝑗
2

𝑗𝑖                            (3) 

- Contrast: This feature quantifies the variation in 
pixel intensity between neighboring pixels in the 
image. It is calculated as the sum of the absolute 
differences in pixel intensities for pairs of pixels at 
a specified offset.  

 Contrast = ∑ ∑ 𝑃𝑖,𝑗 𝑗𝑖 (𝑖 − 𝑗)2              (4) 
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- Homogeneity: Homogeneity quantifies the 
closeness of pixel intensity values in the GLCM. It 
is computed as the inverse of the sum of squared 
differences between pixel pairs 

    Homogeneity=∑ ∑
𝑃𝑖,𝑗

1+ (𝑖−𝑗)2𝑗𝑖                   (5) 

- Correlation: Correlation is a measure of how 
correlated the pixel intensities are between pairs of 
pixels at a specified offset. It provides information 
about the linear dependence between pixel values.                

Correlation=∑ ∑ 𝑃𝑖,𝑗 [
(𝑖−𝜇𝑖)(𝑗−𝜇𝑗)

√(𝜎𝑖
2𝜎𝑗

2)

]𝑗𝑖             (6) 

- Dissimilarity (Entropy): Entropy reflects the 
randomness or disorder in the texture. Higher 
entropy values indicate more complex and less 
uniform textures. 

Dissimilarity=∑ ∑ 𝑃𝑖,𝑗|𝑖 − 𝑗|𝑗𝑖             (7) 

- ASM: measures the uniformity of the distribution 
of gray level in the image 

ASM=∑ ∑ {𝑝(𝑖, 𝑗)}2𝑗𝑖                   (8) 

where 𝑃𝑖,𝑗  : probability of occurrence in the pair 

gray         levels i, j (normalized GLCM), 
The standard deviation of the normalized inputs for 
the reference pixel of value i as follows: 

𝜎𝑖 = ∑ 𝑃𝑖,𝑗(𝑖 − 𝜇𝑖)
2

𝑖                      (9) 

The standard deviation of the normalized inputs for 
the neighboring pixel of value j as follows:  

𝜎𝑗 = ∑ 𝑃𝑖,𝑗(𝑗 − 𝜇𝑗)
2

𝑖                     (10) 

The brain image was partitioned into two equal 

hemispheres, with one hemisphere encompassing the 

abnormal area and the other containing the normal region. 

It’s noteworthy that medical statistics indicate that strokes 

predominantly occur in one hemisphere [27]. Hence, the 

ASPECTS scoring method, which divides CT brain 

images into ten distinct regions, assigns a score of 1 point 

to each of these regions, resulting in a total score of 10 

points. 

Our approach revolves around the extraction and 

comparison of GLCM features from the ROIs of the left 

side with those from the right side, as depicted in Fig. 7. 

Essentially, for each hemisphere of the brain, we calculate 

and store the GLCM features of each ROI in vectors 

denoted as (𝐿𝑛  
⃗⃗⃗⃗⃗⃗ : left side,  𝑅𝑛

⃗⃗ ⃗⃗  :  right side). Subsequently, 

we engage in a bilateral comparison of these features for 

each ASPECTS ROI and its corresponding contralateral 

region. Specifically, for each region, we calculate the 

difference between the vector of the left side (𝐿𝑛  
⃗⃗⃗⃗⃗⃗ ) and the 

vector of the right side (𝑅𝑛  
⃗⃗ ⃗⃗ ⃗⃗  ) to identify the abnormal 

region. 

 

 

 

 

 
 

 

 

 

 

 

 

 
Fig. 7. GLCM feature extraction phase of our proposed method. 

 

Our strategy offers three potential outcomes to 

determine the presence of abnormal regions:  

- If the 𝑑𝑖𝑓 (𝐿𝑛
⃗⃗⃗⃗ − 𝑅𝑛

⃗⃗ ⃗⃗  ) is equal to zero, the region is 
classified as normal and the assigned ASPECTS 
score is equal to 1. 

- If the 𝑑𝑖𝑓 (𝐿𝑛
⃗⃗⃗⃗ − 𝑅𝑛

⃗⃗ ⃗⃗  ) is negative: the presence of a 
lesion in the left hemisphere and the assigned 
ASPECTS score is zero. 

- If the 𝑑𝑖𝑓 (𝐿𝑛
⃗⃗⃗⃗ − 𝑅𝑛

⃗⃗ ⃗⃗  ) is positive: the presence of a 
lesion in the right hemisphere and the ASPECTS 
score assigned is zero. 

Then, for each area with signs of early ischemic change, 

one point is subtracted from that initial score. 

ASPECTS score = 10−∑ (dif (𝐿𝑛−𝑅𝑛 ) ! = 0)10
𝑖=1    (11) 

IV. RESULTS 

A. Data 

The dataset utilized in this experimental study was 

procured from Habib-Bourguiba University Hospital 

(CHU-HB Sfax-Tunisia) and is comprised of 22 CT stroke 

images. This database is focused on cases displaying early 

ischemic brain damage. The patients included in this 

research spanned an age range from 56 to 80 years. 

 

 

GLCM 

Features 

 

 

 Features 

Database 

(𝑳𝒏
⃗⃗⃗⃗  ,𝑹𝒏

⃗⃗⃗⃗  ⃗) 

Energie 

Contrast 

Homogeneity 

Correlation 

Dissimilarity 

ASM 

𝑑𝑖𝑓 (𝑳𝒏
⃗⃗⃗⃗ −𝑹𝒏

⃗⃗⃗⃗  ⃗) 

“Normal” 

Score = 1 

“Lesion” 

Score = 0 

ASPECTS 

Score = 10−∑ 

𝑑𝑖𝑓 (𝐿𝑛
⃗⃗⃗⃗ −𝑅𝑛

⃗⃗ ⃗⃗  ) = 0 

𝑑𝑖𝑓 (𝐿𝑛
⃗⃗⃗⃗ −𝑅𝑛

⃗⃗ ⃗⃗  ) <> 0 
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The images in the dataset were acquired as slabs, and 

the number of axial slices varied, ranging from 2 to 22, 

contingent on the patient. These slices maintained a 

spacing of 5 mm and exhibited dimensions of 512×512. 

The CT scan images in the dataset possessed a resolution 

of 0.5 mm.  

In the preprocessing stage, a ground truth segmentation 

mask was applied to the multiple slices for each patient. 

Furthermore, for scoring assessment, the ASPECTS score 

was determined manually by two neuro-radiologists. In 

cases of disagreement between the two radiologists, a third 

neuro-radiologist was consulted to adjudicate the final 

score. This meticulous approach ensures the accuracy and 

reliability of the ASPECTS score in the dataset, serving as 

a valuable resource for the experimental evaluation of our 

proposed method. 

B. Experimental Results 

The initial segment of this study is dedicated to the 

extraction of ASPECTS areas from CT brain images, 

thereby facilitating the detection of ischemia and 

enhancing the accuracy of stroke diagnoses for subsequent 

treatment decisions. The proposed method primarily 

consists of two key components: preprocessing and the 

segmentation of ASPECTS regions. 

First, employing the UNET approach, we successfully 

isolated only the brain tissues, as demonstrated in Fig. 8. 

This figure illustrates the results of skull stripping for a 

stroke CT scan, including both the original image and the 

skull stripping outcomes. Notably, the Dice Similarity 

Coefficient was approximately 0.49 for this process. Skull 

stripping is a vital step in accurately identifying stroke 

regions within the brain, representing an essential 

preparatory phase for subsequent segmentation. 

Second, the images obtained from the preprocessing 

stage are subjected to decomposition and reconstruction 

using edge detection and thresholding techniques. These 

processes are integral to the extraction of ASPECTS 

regions in both hemispheres. Fig. 9 displays the segmented 

ASPECTS regions’ mask results after the thresholding 

process, which can be applied to segment any CT brain 

stroke image. 

 

    
 

Fig. 8. The preprocessing stage: (a) ganglionic level before preprocessing, (b) supra ganglionic level before preprocessing, (c) ganglionic level after 

preprocessing, (d) supra ganglionic level after preprocessing. 

    
Fig. 9. Mask of ASPECTS regions, (a)&(c) regions of ganglionic level, (b)&(d) regions of supra ganglionic level. 

The segmented stroke ASPECTS ROIs are revealed in 

Fig. 10 for both the Ganglionic level and the supra 

Ganglionic level, depicting the results for a stroke patient. 

In Figs. 11 and 12, each ASPECTS ROI is showcased 

individually for the CT scan example at both the 

Ganglionic and supra Ganglionic levels. This delineation 

ensures the distinction of various ASPECTS regions, 

including Caudate (C), Lentiform (L), Internal Capsule 

(IC), Insula (I), and the various cortex regions {M1, M2, 

M3, M4, M5, M6}. These regions are extracted in both 

hemispheres, left and right. 

The figures underscore that the proposed approach 

enhances diagnosis, offering a clear visualization of the 

regions of interest without the need for viewer software 

like Radiant [16]. This method streamlines brain image 

exploration through ASPECTS region segmentation, 

enabling neuro-physicians to efficiently detect lesions and, 

ultimately, improve stroke treatment outcomes. The results 

affirm that the proposed method holds promise for 

integration into medical aid systems within the field of 

radiology for the extraction of ASPECTS ROIs in CT brain 

images. 

(a) (c) (d) (b) 

(a) (b) (c) (d) 
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Fig. 10. The ASPECTS ROIs: (a)&(b): Original image, (c)&(d) Mask of ASPECT ROIs (Ganglionic level/ supra ganglionic level), (e) result of 

segmentation ASPECTS regions (ganglionic level), (f) result of segmentation ASPECTS regions (supra ganglionic level). 

   
 
 

  
 

Fig. 11. Result of segmentation ASPECTS regions (supra ganglionic level): (a) Original image of supra ganglionic level, (b) Mask, (c) result of M4 

area, (d) result of M5 area, (e) result of M6 area. 

      
 

(a) (b) (c) (d) 

(e) (f) 

(a) 

(e) (d) 

(c) (b) 

(a) (b) (c) 
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Fig. 12. Result of segmentation ASPECTS regions (ganglionic level): (a) Original image of ganglionic level, (b): Mask, (c) result of M1 area, (d) 

result of M2 area, (e) result of M3 area, (f) result of caudate C area, (g) result of insular ribbon I area, (h) result of Internal capsule IC area, (i) result 

of lentiform nucleus L area. 

C. Evaluation 

The famous saying, “Time is brain”, encapsulates the 

critical importance of swift medical attention for 

individuals displaying stroke symptoms. With every 

passing minute during a stroke, approximately 1.9 million 

brain cells are lost. This stark reality underscores the 

urgency of timely care and intervention. 

The first segment of this study is dedicated to the precise 

segmentation of various ASPECTS regions associated 

with strokes. This segmentation process significantly 

enhances the ability of neurologists to detect ischemia and 

make rapid and consistent treatment decisions. 

Table I presents a comparative analysis of the 

computational time required for each scan when assessed 

by two Readers, both neuro-radiologists using DICOM 

viewer, and our proposed automated method. The 

experimental results reveal notable achievements, with our 

automated method delivering a remarkable computational 

time of approximately 2 to 3 min for each scan. In contrast, 

the clinician reader, when employing the DICOM viewer, 

requires significantly longer, ranging between 8 and 14 

min. 

These findings underscore the potential of the model 

developed in this study to provide a swift assessment of the 

ASPECTS score. It may serve as an invaluable ancillary 

tool, aiding physicians in making urgent clinical decisions 

and improving the overall efficiency of stroke diagnosis 

and treatment. 

TABLE I. COMPUTATIONAL TIME FOR EACH SCAN 

Manual method & automatic method Time (minutes) 

Clinician Reader 1 08–11 

Clinician Reader 2 09–14 

Our Automated method 02–03 

In the second part of this framework, an automated 

ASPECTS score was estimated. The idea is to compare the 

characteristics of the corresponding ROIs. Therefore, for 

each area, we calculated the difference between the left 

side GLCM features 𝐿𝑛  
⃗⃗⃗⃗⃗⃗ and the right side GLCM features  

𝑅𝑛
⃗⃗ ⃗⃗   to identify the abnormal region. The results of the 

second stage of our method are compared to the results of 

the manual score of two neuro-radiologists for 22 testing 

images. Table II shows a performance comparison 

between our automated ASPECTS and the manual 

assessment for each region. The performance of our model 

was improved by an accuracy of 0.57 in quantifying the 

total ASPECTS score.  

TABLE II. ACCURACY FOR INDIVIDUAL ASPECTS REGIONS BETWEEN 

MANUAL AND AUTOMATED ASPECTS 

Regions Accuracy 

M1 0.95 

M2 0.90 

M3 0.95 

IC 0.81 

L 0.86 

I 0.96 

C 0.98 

M4 0.95 

M5 0.95 

M6 0.95 

Total ASPECTS 0.57 

 

Table III provides a comparative analysis of the 

performance of each automated ASPECTS area extracted 

from NCCT images. It’s important to note that the limited 

inclusion of only one recent study in this comparison is 

primarily due to the scarcity of works that have tested 

performance on a per-region basis. Furthermore, 

contemporary automated ASPECTS programs 

predominantly rely on deep learning methods that are 

(e) (f) 

(g) 

(e) (d) 

(h) (i) 
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trained on extensive datasets. In contrast, our proposed 

method was evaluated on a relatively small dataset 

comprising 22 patients. 

The study conducted by Neuhaus et al. [10] compared 

the e-ASPECTS program with manual scoring by 

neuroradiologists for all 10 individual ASPECTS regions. 

The level of accuracy in their study ranged from 0.74 

(insula) to 0.94 (M3), while the coefficient for the total 

ASPECTS score was 0.40. 

In contrast, the advanced semi-quantitative method 

proposed in 2023 yielded an intriguing level of accuracy, 

ranging from 0.81 (internal capsule) to 0.98 (capsule), with 

particularly strong agreement for cortical areas. Notably, 

our results demonstrated a higher accuracy in quantifying 

the total ASPECTS score compared to the study by 

Neuhaus et al. [10]. This comparison suggests that our 

proposed approach enhances the efficiency and accuracy 

of early infarct stroke exploration for each ASPECTS area. 

TABLE III. PERFORMANCE COMPARISON FOR EACH ASPECTS ROI 

 Ain Neuhaus et al. 
Our proposed 

method 

M1 0.87 0.95 

M2 0.84 0.90 

M3 0.94 0.95 

IC 0.91 0.81 

L 0.78 0.86 

I 0.74 0.96 

C 0.86 0.98 

M4 0.93 0.95 

M5 0.87 0.95 

M6 0.92 0.95 

Total ASPECTS 0.40 0.57 

V. DISCUSSIONS 

The consideration of time plays a pivotal role in the 

development of medical applications [28], and this 

principle has been carefully integrated into our approach 

for detecting ischemia. In this regard, we meticulously 

selected algorithms that minimize computation time, 

emphasizing efficiency and rapidity [29]. The 

effectiveness of the first part of our study is underscored 

by its capacity to deliver results for multiple patients 

concurrently. When it comes to stroke diagnosis, every 

passing minute is of paramount importance, as delays can 

directly impact brain function. Therefore, our proposed 

approach has the potential to significantly enhance the 

quality of stroke care. Our study enables the achievement 

of our diagnostic goal in just 2 min, a stark contrast to the 

waiting time associated with manual assessment, which 

can span between 8 min and 14 min. These results have the 

potential to save patients’ lives and preserve more neurons. 

Furthermore, our program contributes to the advancement 

of automatic e-ASPECTS software by automating the 

segmentation of the seven ASPECTS regions at the 

ganglionic level and three ASPECTS regions at the supra 

ganglionic level. 

Since its inception in 2000, the Alberta Stroke Program 

Early Computed Tomography Score (ASPECTS) has 

played a crucial role in clinical applications, serving to 

evaluate the extent of early ischemic changes, identify 

eligible patients, assess treatment efficacy, and predict 

prognosis [5]. ASPECTS surpasses the 1/3 MCA method, 

which was previously the standard for quantifying early 

ischemic changes on NCCT scans [30]. Specifically, 

patients with low ASPECTS scores (0–5) are less likely to 

receive mechanical thrombectomy as it is not the 

recommended treatment [31]. Conversely, higher 

ASPECTS scores are linked to successful recanalization 

and improved prognosis [32, 33]. 

The automated ASPECTS scoring system we have 

developed applies the clinically validated Alberta Stroke 

Program Early CT score (ASPECTS) method, thereby 

enabling the automated assessment and quantification of 

early ischemic brain damage on CT scans of acute stroke 

patients. The second part of our framework introduced an 

automated system capable of estimating the ASPECT 

Score, which holds the potential to reduce scoring 

variability and assist physicians in identifying and 

quantifying early ischemic brain damage. 

This study has effectively automated the manual 

approach used by physicians to detect abnormalities by 

assessing the dissimilarities between the left and right 

brain hemispheres. Furthermore, our automated tool can 

discern specificities in CT stroke images that may not be 

readily apparent to the human eye, thereby serving as a 

valuable resource for alerting neuro-physicians to the 

presence of early ischemic changes and the presence of 

disease. This innovative approach has the potential to 

revolutionize stroke diagnosis and treatment.  

Moreover, the effectiveness and accuracy of the current 

system can be significantly enhanced through several key 

factors. One of these critical factors is the availability of a 

sufficiently large volume of CT image datasets. Having 

access to a vast and diverse dataset of CT images is 

essential for training and validating machine learning 

models. A rich dataset allows the algorithms to learn and 

adapt to a wide range of real-world scenarios and 

variations, ultimately improving their performance in 

detecting ASPECTS regions. 

Another crucial factor is the reliability of ground-truth 

data. Ground-truth data refers to the manually annotated or 

expert-verified information that serves as the reference for 

machine learning models. In the case of ASPECTS scoring, 

having accurate and reliable ground-truth data for each 

image in the dataset is vital. These ground-truth 

annotations ensure that the machine learning models are 

trained on accurate examples, leading to more precise and 

reliable results. 

Additionally, the clarity of the features in the CT images 

plays a significant role in the system’s performance. Clear 

and well-defined features in the images make it easier for 

the algorithms to identify and segment ASPECTS regions 

accurately. This underscores the importance of high-

quality imaging equipment and techniques in medical 

imaging. 

Furthermore, the system’s performance can be 

continuously improved by exploring and evaluating new 

machine learning methods, particularly deep learning 

techniques. Deep learning has shown remarkable promise 
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in various medical image analysis tasks, including the 

segmentation of anatomical structures and the detection of 

abnormalities. By staying updated with the latest 

advancements in machine learning and adopting new 

methods, the system can benefit from state-of-the-art 

algorithms that may offer improved accuracy and 

efficiency in estimating ASPECTS ROIs. 

To recapitulate, the current system’s accuracy and 

reliability can be significantly enhanced through access to 

extensive CT image datasets, reliable ground-truth data, 

clear features in the CT images, and a willingness to 

explore and adopt cutting-edge machine learning methods. 

These factors collectively contribute to the system’s 

effectiveness in automating the estimation of ASPECTS 

regions and improving stroke diagnosis and treatment. 

VI. CONCLUSIONS 

This paper presents a groundbreaking approach for the 

segmentation and extraction of ASPECTS ROIs from CT 

Brain stroke images. This novel method is compared with 

the standard clinical approach that relies on DICOM 

viewers and visual assessment by experts. Additionally, 

the paper introduces an objective and automated ASPECT 

Score estimation system, which is built upon the 

segmentation of ASPECTS ROIs and a bilateral 

comparison of Gray-Level Co-Occurrence Matrix 

(GLCM) features extracted from the ten ROIs. 

In the context of exploring acute ischemic stroke 

imaged through CT scans, the study emphasizes the 

importance of a critical preprocessing step. This step 

involves skull bone stripping in CT stroke images, 

followed by the extraction and segmentation of ASPECTS 

regions using edge detection and thresholding techniques. 

The segmentation process of ASPECTs ROIs yields 

promising results with clinical implications. 

The study introduces a novel automated method based 

on Non-Contrast Computed Tomography (NCCT) to assist 

neuro-physicians in diagnosing and evaluating acute 

ischemic stroke. This approach is semi-quantitative in 

nature and serves as a valuable reference for neuro-

physicians in clinical practice, aiding in ischemic score 

judgment and ultimately improving treatment selection. 

Looking ahead to future studies, the authors plan to 

develop a user-friendly and graphical interface for the 

automated ASPECTS score system. Such an interface 

would be a significant advancement, as it could enhance 

the accessibility and usability of the system, further 

benefiting the diagnosis and treatment of ischemic stroke. 

This user-friendly interface has the potential to streamline 

the process for healthcare professionals, making it a 

valuable tool in the clinical setting. 
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