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Abstract—Water bodies classification using remote sensing 

and deep learning techniques plays a pivotal role in the 

effective management of water resources. This study aims to 

address the challenge of accurate water body detection and 

classification, which is essential for understanding their 

distribution and characteristics, ultimately informing water 

usage and conservation efforts. Current methodologies 

predominantly rely on Support Vector Machines (SVM) and 

pixel-based approaches, resulting in suboptimal accuracy. 

In response, this paper proposes an ensemble model that 

combines the U-Net neural network and the Random Forest 

algorithm for enhanced water body detection and 

classification. The research commences by obtaining high-

resolution satellite images with a resolution of 0.5 m. The U-

Net model is employed to segment water bodies, and 

contour analysis is subsequently applied to extract shape 

features. The Random Forest Classifier is then utilized to 

classify the segmented water bodies into distinct categories, 

including rivers, ponds, lakes, canals, and other water 

bodies. Following the U-Net segmentation, the rasterized 

segments are converted into vector format. These vector 

data are leveraged to update Geographic Information 

System (GIS) maps, contributing to more accurate 

cartographic representations. The proposed approach is 

rigorously evaluated using a dataset from urban areas in 

Kolkata, West Bengal, India. The achieved accuracy rate 

stands at 67.01%.    
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I.   INTRODUCTION 

Water bodies are crucial for the effective management 

and monitoring of water resources. The motivation for 

precise water body classification stems from the growing 

global population and the necessity for efficient water 

resource management to address future challenges and 

preserve natural resources. Accurate detection and 

classification of water bodies provide valuable insights 

into their distribution and characteristics, supporting 

water usage and conservation efforts [1].  However, 

traditional methods for water body classification, such as 

Support Vector Machines (SVM) and pixel-based/object-

based approaches, often fall short in achieving high 
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accuracy [2]. To tackle this, the study employs high-

resolution satellite imagery and combines deep learning 

techniques—specifically, the U-Net and Random Forest 

algorithms. The U-Net detects water bodies, while the 

Random Forest algorithm classifies them into five 

categories based on shape features, such as rivers, lakes, 

canals, ponds, and other water bodies. This approach 

provides a practical solution to improve water body 

classification, essential for the conservation and 

management of water resources. 

The ensemble model proposed in this paper uses the U-

Net and Random Forest algorithm to detect and classify 

water bodies. The water bodies are segmented using U-

Net [3], while the Random Forest algorithm utilizes 

shape features to classify the water body. This approach 

has shown promising results in various image 

classification tasks. Very high resolution Satellite images 

with 0.5 m resolution are taken from SAS planet, 

providing detailed information for accurate water body 

classification. The U-Net is a Convolutional neural 

network with a distinctive “U” shape, widely used in 

image segmentation, featuring both an encoder and a 

decoder block [3]. Skip connections facilitate spatial data 

transfer between the encoder and decoder, enhancing 

segmentation accuracy and preserving spatial 

information [3]. The proposed U-Net model effectively 

segments the water bodies by leveraging its architecture 

designed for semantic segmentation tasks [4]. 

Once the water bodies are segmented, the next step is 

to classify them into specific categories such as rivers, 

lakes, ponds, canals and other water bodies. This is 

achieved using the Random Forest Classifier, which 

considers shape features extracted of the segmented water 

bodies. Shape features are calculated using contour 

analysis, which captures geometric properties such as 

area, perimeter etc., Contour analysis plays a crucial role 

in extracting shape features from water bodies for 

classification purposes. Contours are the boundaries of 

connected regions in an image and can be used to capture 

the shape characteristics of water bodies accurately [5].  

These features are utilized to train a Random Forest 

Classifier, which classifies the water bodies into 

categories such as rivers, lakes, ponds, canals and other 

water bodies. Random Forest is a machine learning 

approach that combines numerous decision trees to 

generate a stronger and more reliable classification 
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model [6, 7]. It is ideal for classifying water bodies based 

on shape features because it performs particularly well in 

classification problems requiring high-dimensional 

feature spaces. 

After the classification process, geo-referencing and 

change detection techniques are employed to analyze and 

understand the changes occurring in the water bodies 

over time. Geo-referencing is the process of assigning 

geographic coordinates to a satellite image or raster 

dataset, allowing it to be accurately positioned on the 

Earth’s surface. It involves selecting reference data, 

identifying Ground Control Points (GCPs), and applying 

transformation models to align the image with known 

geographic coordinates [8]. The predicted mask image or 

the classified raster image is aligned with the 

corresponding spatial reference system, enabling spatial 

analysis and integration with other geospatial data. 

After geo-referencing a raster image, the next step is 

raster to vector conversion. Raster to vector conversion 

involves transforming a geo-referenced raster image into 

a vector format, such as GeoJSON [9]. This process 

converts the pixel-based representation of the image into 

vector-based geometries, such as points, lines, and 

polygons, which can be represented as coordinates and 

attributes. Converting raster data to vector format enables 

more versatile analysis, feature extraction, and 

compatibility with various Geographic Information 

System (GIS) software [9]. GeoJSON files store 

geographic data in JSON (JavaScript Object Notation) 

format, providing a convenient and interoperable way to 

exchange and work with geospatial information [10]. 

Change detection is a critical step in analyzing the 

differences between past and present water body data. By 

comparing the GeoJSON files representing different time 

periods, we can identify the water bodies that are newly 

water bodies that have emerged, existing water bodies 

that have disappeared, and water bodies that are 

unchanged. This information is valuable for 

understanding the dynamics of water resources and 

supporting decision-making processes related to water 

management and conservation efforts. 

The proposed system was evaluated on the Indian 

dataset, specifically the urban areas of Kolkata, West 

Bengal, to assess its performance in real-world scenarios. 

The classification will be limited to differentiating 

between rivers, lakes, canals, ponds and other water 

bodies, which are common water bodies found in the 

urban landscape. 
The objectives of the study as follows: 1) Develop an 

exclusive dataset tailored to Kolkata, India. 2) Construct 

an ensemble model incorporating U-Net for segmentation 

and Random Forest for classification. 3) Conduct Change 

Detection analysis specifically focused on water bodies. 

4) Revise GIS maps by integrating the identified changes 

through the Change Detection process. 

This paper is organized as follows: The literature 

review of numerous works on water body detection and 

classification is covered in the first section of Section II. 

The next section, Section III, which comes next, goes into 

further detail on the suggested strategy and design. The 

interpretations and outcomes are discussed in Section IV. 

II.   RELATED WORKS 

For tropical wetland mapping, Liu et al. [11] discusses 

using Sentinel-2 imagery and the Google Earth Engine 

platform. It entails separating inland and coastal wetlands 

using Tide Height and Difference Threshold values, 

masking non-wetland regions using NDVI, NDBI, and 

NDWI values, segmenting different wetland clusters 

using the IF and SNIC algorithms, and using a 

Phenological classifier to separate vegetation and water 

body mixed wetlands. Random Forest is used for 

classification. 

Advantages: Their method maps ten types of wetlands 

with 82.07%. The generated water cover map is valuable 

for monitoring, protecting, and managing tropical 

wetlands. 

Disadvantages: The Sentinel-2 satellite, released in 

2015, has limited historical observations for studying 

long-term changes in tropical wetlands. To address this 

difficulty, further satellite data must be included. 

According to the work discussed in [12], the images 

are pre-processed to remove noise and enhance the 

contrast of water bodies. Next, a two-level pixel-based 

method is applied to preprocessed images. The water 

bodies are then extracted using a Water Index (WI) that 

identifies pixels with high water content. In the second 

step, the batch processing framework is used to automate 

the water extraction process. The framework allows for 

the simultaneous processing of multiple images, making 

it suitable for large-scale water information extraction. 

Finally, the extracted water bodies are validated using 

ground truth data or other available water body datasets. 

Advantages: The object detection approach reduced 

salt and pepper noise, reduced the water pixels which are 

misclassified successfully, boosting the accuracy of water 

body extraction. It also ensured that ponds and other 

bodies of water were well represented in the retrieved 

photos. 

Disadvantages: Because of the high resolution of the 

dataset, computations take longer and consume more 

memory. 

Tang et al. [13] created a water dataset using JRC 

GSW. Following that the image compositing is 

accomplished monthly by combining Landsat-7/8 and 

Sentinel-1 images, then followed by the data merging by 

Digital Elevation Models. Classification features like 

spectrum reflectance features, spectral indices and radar 

backscattering features are considered. Then, using the 

sample points and classification features, the RF classifier 

is trained in each cell consisting of a 5×5 geographical 

grid to extract surface water. By comparing surface water 

distribution data from the same time period with JRC 

GSW data and the water body borders that are derived by 

higher resolution image interpretation, the accuracy of 

water body extraction findings was finally assessed. 

Advantages: The suggested approach would accurately 

and consistently extract water bodies on a large scale, 

even with varying land cover and lake sizes. The results 
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show that the method is suitable for mapping surface 

water on a broad scale with high spatial and temporal 

resolution. 

Disadvantages: The impervious surface dataset and 

land glacier data were used. The approach may have 

problems removing ice, snow, and the buildings 

interference information, which can compromise surface 

water mapping accuracy. 

The NDWI is sharpened in the 1st stage to binarize the 

water pixels using Otsu approach. In the second stage, a 

four-neighbor connectivity technique is employed to 

generate water objects by joining independent water 

pixels. In the third stage, the water object’s form and 

water quality attributes are computed and given to the 

classifier for classification [14]. 

Advantages: Large-scale aquaculture ponds can be 

identified using a combination of geometry and water 

quality indicators. Under the influence of water quality 

factors, MF has the capacity to appropriately categorize 

mixed water objects. 

Disadvantages: Aquaculture ponds are another term 

for some natural lakes. The sample data set has a 

significant impact on the Mobile Financial Services 

(MFS) categorization as well. 

According to the methodology in [15], The automated 

approach consists of: calculating surface water maps and 

flood frequency maps, classification based on shape 

features, classification based on phenology, and then 

calculating the accuracy are all available. The Random 

Forest (RF) method is used to do shape-based 

categorization. They applied this method on time series 

Sentinel-1 and Sentinel-2 photographs (received from 

Google Earth Engine in 2020) which build a water cover 

map of china with high spatial resolution. 

Advantages: The method’s ability to obtain high 

spatial-temporal resolution data on all sorts of full water 

cover at vast sizes was proved by having the comparisons 

with 7 other data products relating to water. This 

approach may be used to generate long-term 

comprehensive water cover maps at the global and 

national scales, as well as a water cover classification 

map for existing datasets. 

Disadvantages: There were less rice fields in the 

CWaC due to Sentinel-1’s imaging technique and 

Sentinel-2’s restricted effective observation. Several 

unique situations, where some lakes are fed by rivers, 

cannot be handled by the feature-based approach. The 

lakes and river were manually edited apart, which 

required extensive post-processing. 

Work described in [16] continues with extra trees 

classifier and opensource segmentation using the training 

data that is automatically generated from freely available 

data. Throughout the study period, vegetated water 

accounted for 70% of total water was mapped, highlights 

the importance of mapping open and vegetated water 

bodies for surface water mapping. They devised solutions 

that could be beneficial to public health in malaria-prone 

areas which have more river flooding in Africa. This 

research highlights the significance of L-band SAR which 

is widely available. 

Advantages: This categorization system can 

automatically generate training data for open water and 

flooded vegetation. 

Disadvantages: Although publicly available, Sentinel-

1 C-band radar is limited in its ability to produce a signal 

from vegetated water bodies until grasses are 20 cm tall 

with suitable gaps between grass tussocks or clumps.  

A test site’s wetland area was defined using single 

polarized TerraSAR-X data and single and full-polarized 

RADARSAT-2 data [17]. The researchers intended to 

investigate how well several feature types, such as 

polarimetric scattering, intensity, and interferometric 

coherence performed in various categorization scenarios 

for wetland mapping. Classifier influence is accessed by 

using Random Forest (RF), SVM and an ensemble 

classifier. The research looked at how classification 

accuracy of both SVM and RF classifiers is affected by 

adding all feature types, as well as the classification 

accuracy of each feature type separately. To optimise the 

number of inputs and type, the researchers found that to 

integrate both Spearman’s rank-order correlation and RF 

variable importance to get better results.  

Advantages: The enhanced discriminating ability 

resulting from the synergistic application of several input 

characteristics. Combine the relevance of RF variables 

with analysis of Spearman’s rank-order correlation for 

optimizing both the kind and amount of input 

characteristics. An ensemble classifier, RF, outperforms 

SVM, when employing an object-based classification 

strategy. 

Disadvantages: Land cover types other than wetlands 

must be classified. 

According to methodology in [18], They sharpened the 

20 m SWIR bands by using NDWI of 10 m resolution 

image, which was focused on urban area water extraction. 

Then, the water maps were retrieved using object-level 

MNDWI mapping and a minimal bottom adjustment 

threshold. Their method was compared to existing 

techniques. According to the results, the suggested 

NDWI-based MNDWI images has greater separability 

and is more successful than current techniques for both 

classification-level and boundary-level water maps. 

Advantages: Comparing with MNDWI (20 m) and 

NDWI (10 m), the MNDWI results are more accurate. In 

downtown Beijing, water maps extracted using MNDWI 

enhanced the Kappa coefficient about 0.3 and the 

boundary index by more than 90%. 

Disadvantages: Normal NDWI provides adequate 

boundary position and classification accuracy for the 

coastal Yantai research location, where MNDWI 

approaches produce less accuracy, particularly for 

boundary index. 

The following two areas have major contributions in 

the work reported in [19]. In terms of application, the 

extraction of urban water bodies (like rivers, ponds, lakes, 

and canals) from satellite images, which gotten little 

attention in the existing literature, is being investigated. 

In terms of strategy, a novel machine learning method is 

proposed, which includes pixel-level water-area detection 

followed by object-level water-type categorization. At 
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pixel level, NDWI, MSI, and NDVI information indexes 

are used to extract water zones. The shadow index (MSI) 

can help to reduce shadow false alarms greatly. 

Advantages: The Shadow Index (MSI) has the 

potential to significantly reduce shadow false alarms, 

which are major errors in urban water bodies extraction. 

The suggested framework’s dual-level design may feature 

information extraction from the pixel and object levels 

for detection and classification, respectively. 

Disadvantages: Detection and identification of type of 

water body was critical criteria for urban water 

monitoring and management, are only possible in the 

defined scope zone, and water extraction requires further 

automation. Due to the time constraints of the sample 

approach, a more intelligent sampling strategy for water 

extraction and categorization is necessary. 

Research Gaps 

The field of water body mapping and GIS data 

management faces significant research gaps. Outdated 

GIS maps and water body data hinder resource 

management, while the complexity of India’s diverse 

water bodies challenges existing systems. The absence of 

standardized datasets for training and testing, coupled 

with the variation in water bodies classification into lakes, 

rivers, ponds, and canals, pose challenges to developing 

robust and generalizable models. Furthermore, improving 

the accuracy of current algorithms remains a priority in 

this context. Addressing these gaps is vital for more 

accurate mapping and better-informed urban planning, 

disaster management, and environmental monitoring. 

III.   METHODS 

An outline of the proposed system architecture, 

methodology, algorithms, and dataset for the designed 

system are presented here. 

A. Architecture 

Fig. 1 depicts the proposed U-Net model for detecting 

the water bodies. 

 

 

Fig. 1. Proposed U-Net architecture. 

Convolutional block: A Convolutional block consists 

of two consecutive Convolutional layers with ReLU 

activation. Each layer applies a 3x3 convolution 

operation with a specified number of filters. 

Encoder block: An encoder block consists of a 

Convolutional block followed by max pooling. The 

Convolutional block applies convolutions to the input, 

while the max pooling operation reduces the spatial 

dimensions by a factor of 2. 

Decoder block: A decoder block consists of a 

transposed convolution layer, concatenation with skip 

features, and a Convolutional block. The transposed 

convolution layer performs up-sampling by applying a 

2×2 convolution operation with a stride of 2. The skip 

features are the outputs from the corresponding encoder 

block and are concatenated with the up-sampled tensor. 

The concatenated tensor is then passed through a 

Convolutional block. 

The above U-Net model starts by creating an input 

layer with a shape of (512, 512, 3). The Contraction path 

of the model is then defined, consisting of four 

Convolutional blocks with 16, 32, 64, and 128 filters, 

respectively. The central layer of the U-Net model is then 

defined, which consists of two Convolutional layers with 

256 filters. Expansive path of the model is defined next, 

consisting of four decoder blocks having 128, 64, 32, and 

16 filters, respectively. Finally, an output layer with 2 

filters and Softmax activation function is defined, and the 

obtained model is returned. 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

                       (1) 

 

where xi represents the i-th element of the input vector x 

and n is the total number of elements in the vector. The 

Softmax function returns a probability distribution across 

the input vector, with each output vector element 

representing the likelihood of that class [20]. Table I 

shows the comparison of existing Unet model with the 

proposed Unet model. 

TABLE I. MODIFIED U-NET MODEL DETAILS 

Parameters Existing Model [3] Modified Model 

Channels in input image 1 3 

Shape of input image (572,572,1) (512,512,3) 

Strides 1 2 

Input Kernel size 3×3 3×3 

Initial No.of Filters 64 64 

Parameters 1.9 M 1.91 M 

Pooling type Max Pooling Max Pooling 

Size of Max Pooling at 

every layer 
2×2 2×2 

Number of layers 23 32 

Number of channels in 

output image 
1 1 

 

After the water body has been segmented, shape 

features such as area, perimeter, and compactness can be 

extracted using contours. Twelve shape features are 

calculated for each water body which is used to classify 

them into 4 classes. Using the Random Forest Classifier, 

we will classify the water bodies based on shape features 

into rivers, lakes, ponds and canals. The decision trees 
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used in Random Forest are constructed using the CART 

algorithm, which is a binary recursive partitioning 

algorithm that operates by splitting the data into subsets 

based on the values of one input variable at a time, until a 

stopping criterion is reached. The splitting criterion used 

by CART is the Gini impurity, which measures the 

quality of a split by the degree of impurity of the subsets, 

with impurity being defined as the probability of 

misclassifying a randomly chosen element in the subset. 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑖
2𝑛

𝑖=1                                (2) 

where n denotes number of classes, and 𝑝𝑖  is the 

proportion of samples belonging to class i.  

Here the Random Forest model contains 300 decision 

trees, where each tree is limited to a maximum depth of 

15 nodes. Fig. 2 depicts the Random Forest Classifier’s 

structure. It shows how 12 shape features are used to 

classify water body segments. Multiple decision trees are 

trained on subsets of the data and make independent 

predictions, with the final classification of a given sample 

into rivers, ponds, lakes, canals and other water bodies 

will be the majority vote of the individual decision trees. 

 

 

Fig. 2. Random forest classifier. 

B. Methodology 

Fig. 3 presents the proposed system flowchart that 

included preprocessing, water body segmentation, water 

body classification, Post-processing, Geo-Referencing, 

Raster to vector conversion, Change Detection and 

Updation of GIS maps. 

1) Preprocessing 

Images can be effected by noises such as salt and 

pepper noise, speckle noise and Gaussian noise [21]. 

Techniques like Median Filtering and Gaussian Filtering 

(see Algorithm 1) can remove salt and pepper noise, but 

Bilateral Filtering can successfully reduce Gaussian and 

salt & pepper noise [22]. 

 

 

Algorithm 1: Bilateral Filtering 

Step 1: Initialize an empty filtered image J with the same 

size as the input image I. 

Step 2: For each pixel (x, y) in I do the following: 
i. Initialize the filtered pixel value J(x, y) to zero. 

ii. Initialize the weight sum W x, y) to zero. 
iii. For each pixel (i, j) in a K × K window centered at 

(x, y) do the following: 
● Compute the spatial distance between (x, 

y) and (i, j) as 

𝑑 = √(𝑥 − 𝑖)2 + (𝑦 − 𝑗)2             (3) 

● Compute the intensity difference 
between I(x, y) and I(i, j) as 

𝑟 = |𝐼(𝑥, 𝑦) − 𝐼(𝑖, 𝑗)|                 (4) 

● Compute the bilateral filter weight w as 

 𝑊 = 𝑒
(−(

𝑑2

2𝜎𝑠
2)−(

𝑟2

2𝜎𝑟
2))

                 (5) 

where 𝜎𝑠  and 𝜎𝑟  are the standard 
deviations of the spatial and intensity 
domains, respectively. 

● Add the weighted pixel value I(i, j)*w to 
the filtered pixel value J(x, y). 

● Add the weight w to the weight sum 
W(x, y). 

iv. Set the filtered pixel value J(x, y) to J(x, y)/W(x, 
y). 

Step 3: Return the filtered image J. 

 

 

Fig. 3. Training and testing flow chart. 

Journal of Image and Graphics, Vol. 12, No. 1, 2024

80



 

 

Noise removal techniques are used to enhance image 

quality. Image enhancing techniques such as False Color 

Composite (see Algorithm 2), on the other hand, can be 

used to recover lost data [23].  

 

Algorithm 2: False Color Composition 

Step 1: Import the multispectral image and its corresponding 

metadata. 

Step 2: Choose which bands to use for each color channel in 

the FCC. 

Step 3: Normalize the pixel values in each band to a 

common scale, such as between 0 and 255. 

Step 4: Create a new image with the same dimensions as the 

input image, with three channels for red, green, and blue, 

respectively. 

Step 5: Assign the pixel values from the selected bands to 

the corresponding color channels in the new image. 

 

2) Water body segmentation 

The preprocessed images are divided into patches of 

size 512×512 pixels (see Algorithm 3) and useful patches 

(see Algorithm 4) are taken to undergo the segmentation 

process.  

 

Algorithm 3: Patching 

Step 1: Read the image in TIFF format. 

Step 2: Crop the image from the top left corner to the nearest 

size of the image that is divisible by the 512. 

Step 3: Extract patches from the image using patchify() 

function. 

Step 4: Loop through the patches and save each patch as a 

separate TIFF image. 

Step 5: Repeat the same process for mask images. 

 

Algorithm 4: Extracting Useful Patches 

Step 1: Read the image and mask. 

Step 2: Calculate the number of white pixels in the 

mask. 

Step 3: If the percentage of white pixels is greater than 5 

percent, Save the image and mask. 

Step 4: Define the central layer of U-Net with 2 

Convolutional layers with 256 filters, followed by no 

dropout layer. 

 

The next step involves using the U-Net for semantic 

segmentation [24] (see Algorithm 5). 

 

Algorithm 5: Semantic Segmentation Using U-Net 

Step 1: Split the dataset into training (80 %) and testing sets 

(20 %). 

Step 2: Define an input layer with shape (512,512,3) and 

assign it to the variable inputs. 

Step 3: I Define Contraction path of the U-Net model, which 

consists of 4 Convolutional layers with 16, 32, 64, and 128 

filters, respectively, a Convolutional layer with the same 

number of filters, and a max pooling layer. 

Step 4: Repeat the above steps for all patched images and 

masks. 

Step 5: The Expansive path consists of 4 transposed 

Convolutional layers with decreasing filter sizes, 

concatenated with corresponding Contraction path layers. It 

also includes 2 Convolutional layers with the same number 

of filters. 

Step 6: Define an output layer with 2 filters and Softmax 

activation function. 

Step 7: After training the U-Net model on a 512×512 image, 

now we will predict the output for an image of size 

12289×6874. 

Step 8: Split the image into individual patches of size 

512×512. 

Step 9: Apply the model to each square patch and predict the 

outputs. 

Step 10: Merge the predicted outputs smoothly and save the 

predicted mask image. 

 

3) Water body classification 

Feature Extraction: Contours can be used to derive 

shape characteristics from segmented water bodies. 

Twelve shape characteristics are calculated and their 

respective formulas are mentioned in the below 

Algorithm 6. 

 

Algorithm 6: Calculating Shape Features Of Water 

Bodies 

Step 1: Load grayscale image and apply binary threshold.  

Step 2: Find contours using thresholding method and convert 

grayscale image to color image. 

Step 3: For each contour, draw it on color image and 

calculate shape features: 

a. Calculate Major and minor axis length of ellipse 

using fitEllipse()  function. 

b. Calculate Length, width, and length-to-width ratio 

of bounding box using boundingRect() function.  

c. Calculate area and perimeter of contour using 

moments. 

d. Calculate Rectangularity, circularity, boundary 

index (circular objects), boundary index 

(rectangular objects), and compactness of contour  

 

                     𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑎𝑟𝑒𝑎

𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑤𝑖𝑑𝑡ℎ
   (6) 

 

                    𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
4 ∗ 𝜋 ∗ 𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2   (7) 

 

              𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖𝑛𝑑𝑒𝑥(𝐶) =
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

(2∗𝜋∗𝑚𝑎𝑗𝑜𝑟𝑎𝑥𝑖𝑠)
 (8) 

 

    𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖𝑛𝑑𝑒𝑥(𝑅) =
𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

(2∗(𝑚𝑎𝑗𝑜𝑟𝑎𝑥𝑖𝑠+𝑚𝑖𝑛𝑜𝑟𝑎𝑥𝑖𝑠))
 (9) 

 

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑎𝑟𝑒𝑎

(𝜋∗𝑚𝑎𝑗𝑜𝑟𝑎𝑥𝑖𝑠∗𝑚𝑖𝑛𝑜𝑟𝑎𝑥𝑖𝑠)
   (10) 

 

e. Append calculated shape features to a list 

Step 4: Create DataFrame from the list with appropriate 

column names and save DataFrame as CSV file. 

 

4) Random forest classification 

Random Forest (RF) Classifier (see Algorithm 7) is 

trained using a csv file containing the estimated shape 

features and class labels. We have considered 4 class 

labels. The trained RF model classifies the water bodies 

into 4 classes (rivers, lakes, canals, ponds). Finally, the 

trained RF model is used to label the expected mask 

image of size 12289×6874 with a specific color 

representing its projected label.  
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Algorithm 7: Random Forest Classifier 

Step 1: Load the dataset from the shape features CSV file 

using the pandas library. 

Step 2: Train the RandomForestClassifier with n_estimators 

= 300 and max depth = 15. 

Step 3: Classify the water bodies into rivers, lakes, ponds 

and canals.  

Step 4: Calculate shape features for the predicted mask 

image, a list of contours found in the image, and a color 

image. 

Step 5: Use trained random forest model to predict labels for 

the image and store them in a list of labels. 

Step 6: Apply area thresholding such that the area of the 

water body segment is less than 500,00, change the predicted 

label to other water bodies. 

Step 7: Define a dictionary that maps each label to an RGB 

color, i.e, river: red, pond: orange, canal: violet, lake: blue 

and other water: black. 

Step 8: For each contour, find the corresponding predicted 

label from the labels list, and use the label’s color from the 

label dictionary to draw and fill the contour on the image. 

 

5) Post processing 

The output of the U-Net model may contain certain 

imperfections, such as small isolated regions, fragmented 

boundaries, or noisy predictions. To avoid those, we 

perform morphological operations like dilation and 

erosion. Dilation expands the boundaries, while erosion 

shrinks them. Later we have applied area thresholding for 

further improvement of accuracy. By applying 

appropriate combinations of these operations, the 

imperfections are consolidated (see Algorithm 8). 

 

Algorithm 8: Post Processing 

Step 1: Read the predicted mask image where 255 represents 

the foreground (water bodies). 

Step 2: Define the structuring element for dilation and 

erosion. 

Step 3: Perform erosion on the image using the defined 

kernel and a specified number of iterations. 

a) Place the center of the kernel on each pixel of the 

input image, one by one. 

b) Compare the pixel values of the input image that 

are overlapped by the kernel with the 

corresponding kernel values. 

c) If all the corresponding pixel values in the kernel 

are non-zero (white), the center pixel of the kernel 

is part of the foreground. Otherwise, it is part of 

the background. 

d) Set the output pixel value (in the eroded image) to 

the minimum value of the foreground pixels 

covered by the kernel. This operation effectively 

erodes or shrinks the boundaries of the foreground 

objects. 

e) Repeat steps a-d for every pixel in the input image. 

f) After processing all pixels, the resulting image is 

the eroded image. 

Step 4: Set an area threshold to filter out small regions. 

a) Perform connected component labeling using 

connectedComponentsWithStats() function on the 

eroded image to identify separate regions. 

b) Iterate over the connected components and check 

their area against the threshold 50000. 

c) Assign black color (0) to regions below the 

threshold by modifying the labels. 

d) Convert the modified labels back to a binary 

image. 

Step 5: Perform dilation on the area thresholded image using 

the same kernel and a specified number of iterations. 

a) Place the center of the kernel on each pixel of the 

input image, one by one. 

b) Compare the pixel values of the input image that 

are overlapped by the kernel with the 

corresponding kernel values. 

c) If at least one corresponding pixel value in the 

kernel is non-zero (white), the center pixel of the 

kernel is part of the foreground. Otherwise, it is 

part of the background. 

d) Set the output pixel value (in the dilated image) to 

the maximum value of the foreground pixels 

covered by the kernel. This operation effectively 

expands or thickens the boundaries of the 

foreground objects. 

e) Repeat steps a-d for every pixel in the input image. 

f) After processing all pixels, the resulting image is 

the dilated image. 

Step 6: Save the modified image. 

 

6) Geo referencing 

The output obtained from the water body segmentation 

does not contain geographical information in it, i.e., 

coordinate information is lost. To restore the 

geographical information, Geo-Referencing is performed 

(see Algorithm 9). 

 

Algorithm 9: Geo-Referencing 

Step 1: Read the mask image and extract its dimensions. 

Step 2: Read the reference GeoTIFF image and retrieve its 

geo-referencing information. 

Step 3: Create a new GeoTIFF dataset for the output image. 

Step 4: Set the geo-transform and projection of the output 

dataset. 

Step 5: Read the pixel data from the mask image and write it 

to the output. 

 

7) Raster to vector conversion 

Following the process of geo-referencing, the output 

obtained is typically a GeoTIFF file (raster image). 

However, GIS maps primarily rely on vector formats. 

Therefore, in order to update GIS maps, the GeoTIFF file 

(raster image) needs to be converted into the GeoJSON 

format (vector image) (see Algorithm 10). 

 

Algorithm 10: Raster to Vector Conversion 

Step 1: Open the Geo-referenced mask file.  

Step 2: Read the image data, transformation, and coordinate 

reference system (CRS) from the opened mask file. 

Step 3: Create a binary mask where white pixels are True 

and black pixels are False. 

Step 4: Extract vector shapes from the binary mask.  

Step 5: Create Shapely geometries from the extracted 

shapes. 

Step 6: Create a GeoDataFrame from the Shapely 

geometries, using the extracted CRS. 

Step 7: Save the GeoDataFrame as a GeoJSON file using the 

defined output path and specifying the driver as ‘GeoJSON’. 
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8) Change detection and classification 

Using set operations on bi-temporal vector data, we 

can detect and classify changes in water bodies as new 

(see Algorithm 11), Extinct, or unchanged. This process 

helps monitor urban development and analyze spatial 

dynamics over time. 

 

Algorithm 11: Change Detection of Water Bodies 

Step 1: Predicted masks of image of year 2020(I1) and 

2023(I2) are converted to vector format (.geojson ). 

Step 2: Perform intersection operation, which results in 

unchanged water bodies. 

Step 3: Perform set difference operation on I1 and 

intersection results in extinct water bodies. 

Step 4: Perform set difference operation on I2 and 

intersection results in new water bodies. 

 

9) Updation of GIS maps 

To keep the GIS maps up to date and reflect the latest 

changes on the ground, the identified changes from the 

change detection analysis using geojson files are 

integrated into the GIS map layers (see Algorithm 12). 

 

Algorithm 12: Updation of GIS Maps 

Step 1: Collect and import updated vector data into QGIS 

software. 

Step 2: Edit the data to accurately represent real-world 

features. 

Step 3: Merge updated data with existing GIS map data. 

Step 4: Validate the updated map for accuracy and 

completeness. 

Step 5: Publish the updated map online or in print. 

C. Study Area and Dataset Collection 

For the water bodies classification, the city of Kolkata, 

located in the state of West Bengal, India, situated at 

22°34' N latitude and 88°22' E longitude is considered. 

The water demand in Kolkata has been increasing rapidly 

due to the growing population and urbanization. The 

water supply in Kolkata mainly comes from surface water 

sources such as the Hooghly River, Tolly’s Nullah and 

other smaller water bodies, as well as underground 

sources. To meet the water demand of the population in 

2021, Kolkata would require around 1,000 MLD (220 

MGD) of water. However, the available supply is only 

around 750 MLD (165 MGD), leading to a shortage of 

about 250 MLD (55 MGD). 

This shortage is mainly due to factors such as over-

extraction of groundwater, contamination of surface 

water sources, and inadequate infrastructure for water 

supply and distribution. Fig. 4 presents the study area 

considered for this research.  

Name of the Dataset: SasPlanet Images. Description: 

The VHRS images of size 12289×6874 are collected 

from SasPlanet which are about 0.5 m resolution. This 

database can be used for the segmentation of water bodies. 

The particularities of this setting are that each image 

depicts different water body images categorized into two 

classes such as water bodies and non-water bodies. Also, 

field data is collected for effective classification. 

Classes: 2 

Number of Images: 1333 

Train set size: 1066 

Test set size: 267 

Image resolution: 512×512 pixels 

 

 

Fig. 4. Study area. 

For validation purposes, we have taken cartosat-3 

images which are of 0.5 m resolution. Fig. 5 shows the 

sample cartosat-3 image. 

Name of the Dataset: Cartosat-3 Images. 

Description: The VHRS images of size 512×512 are 

collected from Cartosat-3 which are about 0.5 m 

resolution. This database can be used for the validation 

purpose. 

Number of Images: 268  

Image resolution: 512×512 pixels 
 

 

Fig. 5. Validation dataset specimen. 

Masking is done using QGIS software. Water bodies 

are masked with white color. Fig. 6 shows the satellite 

image and the corresponding mask image.  

 

 

Fig. 6. Original image and its mask image. 

Name of the Dataset: Shape Features dataset (.csv file) 

Description: This dataset can be used for the 

classification of water bodies. The dataset contains shape 
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features of different water bodies. These shape features of 

water bodies are calculated from satellite images. The 

particularities of this set- ting are that each record depicts 

different water bodies classified into five classes such as 

lakes, rivers, canals, ponds and other water bodies. 

Classes:5 

Number of water bodies: 152 

Train set size: 122 

Test set size: 30  

The individual water body shape features present in the 

mask image are calculated using Contours and stored in 

the .csv file. Fig. 7 presents the detected water bodies 

using contours and Fig. 8 presents a screenshot of the .csv 

file created with the shape features. 

 

 

Fig. 7. Water bodies detected in mask images using contours. 

Manually we label the water bodies as rivers, lakes, 

ponds, canals and other water bodies. Sample shape 

features in .csv file are shown in Fig. 8.  

 

 

Fig. 8. Sample shape features in dataset. 

D. Evaluation Metrics 

The evaluation metric considered for assessing the proposed 

U-Net model is Mean Intersection over Union (IoU), which is a 

commonly used evaluation metric in image segmentation tasks. 

                               𝐼𝑂𝑈 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃+𝐹𝑁)
                               (11) 

The IoU value ranges from 0 to 1, with a larger value 

indicating greater overlap between the expected and ground 

truth masks. An IoU of 1 indicates a perfect match, whereas an 

IoU of 0 indicates no overlap at all. 

         𝑀𝑒𝑎𝑛 𝐼𝑂𝑈 =
∑ 𝐼𝑂𝑈𝑖

𝑁
𝑖=1

𝑁
                     (12) 

where IOU1, IOU2, ..., IOUn are the IoU values for each class, 

and N is the total number of classes. 

The classification metrics for the Random Forest Classifier 

are Accuracy, Precision, Recall and F1 Score. 

Accuracy measures the overall correctness of the classifier 

predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                (13) 

Precision is defined as the percentage of accurately predicted 

positive samples among all anticipated positive samples. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                     (14) 

Recall is the percentage of accurately predicted positive 

samples among all actual positive samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                      (15) 

The F1 score is the harmonic mean of precision and recall, 

providing a balanced measure between the two. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
               (16) 

where TP: True Positive, TN: True Negative, FP: False Positive, 

FN: False Negative. 

False Positive Rate (FPR) is a metric represents the 

proportion of actual negative instances (non-water bodies) that 

are incorrectly classified as positive instances (water bodies). 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
           (17) 

E. Software Requirements 

Software requirements include: 

● Python libraries including PIL, OS, Numpy, 

Scikit-learn and TensorFlow. 

● Computing platforms like Google collab or 

Jupyter notebook. 

● QGIS, a geographical information system tool. 

F. Hardware Requirements 

● ×86 64-bit CPU 

● 8 Gigabytes of RAM 

● 4 Gigabytes of GPU 

● Working platform of Windows 10.11 or above 

IV.   RESULTS AND DISCUSSION 

In this part, the outcomes of the proposed system are 

discussed. The outcomes are attained after the proposed 

approaches are successfully implemented. 

A. Results 

For salt and pepper noise and Gaussian noise removal, 

bilateral filter is used. Bilateral filter is a nonlinear edge-

preserving smoothing filter that is used to eliminate noise 

from images while keeping their edges [25]. This filter is 

effective for reducing Gaussian noise and salt and pepper 

noise. Fig. 9 shows the bilateral filtered image output 

with an input of noisy image. 
 

 

Fig. 9. Original image and bilateral filtered image. 
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False color composite technique is used to enhance the 

image. This technique is used to display satellite images 

that assign different colors to different bands of the 

electromagnetic spectrum, creating a composite image 

that emphasizes certain features or properties of the scene 

[23]. The output in Fig. 10 shows the False color 

composite image output with an input of the original 

image. 

 

 

Fig. 10. Original image and false color composite image. 

When training any deep learning algorithm, small 

images produce better results allowing more accuracy 

without loss of information. Here the images and masks 

are patched from 12289×6874 to 512×512 pixels using 

splitting through the patchify method as shown in Fig. 11. 

 

 

(a) 

 

(b) 

Fig. 11. (a) Splitted Images (512×512) and (b) Splitted Masks 

(512×512). 

For water body segmentation, the inputs into the 

training U-Net model include both labeled data and 

unlabeled data. After successful execution of the inputs 

through the model, it produces outputs which include 

masked water bodies in the images. Fig. 12(a), (b) and (c) 

shows the test input Image, testing label and predicted 

label for test image. False positive rate for segmentation 

of water bodies was around 2.22%. 

 

 

 

Fig. 12. (a) Testing image, (b) Testing mask, and (c) Predicted mask. 

The model is now tested with mean intersection over 

union metric mean IOU. 

Mean IOU = 0.9150 

Accuracy = 96.44% 

After predicting the output for images of size 512×512, 

now we will predict the output for large images of size 

12289×6874. Initially we split the image into overlapping 

patches of size (512×512). Apply the model to square 

patches of the image, and overlap the predictions to 

merge them. Finally, we get a predicted Output image of 

size 12289×6874. Fig. 13 represents the predicted output 

for large images. 

 

 

Fig. 13. Original image, original mask, Predicted Output for large image. 

After the water body has been segmented,12 shape 

features are extracted using contours. Using the trained 

Random Forest model, water bodies are classified into 5 

classes i.e., rivers, lakes, ponds, canals and other water 

bodies. Based on the input calculated features, the RF 

classifier labels each water body. Fig. 14(a), (b), (c) 

represents the predicted large image, Expected Output 

and predicted output. 

 

 
(a)       (b)         (c) 

Fig. 14. (a) Predicted large image, (b) Expected output, and (c) 
Predicted output after classification. 

(a) 

(b) 

(c) 

Journal of Image and Graphics, Vol. 12, No. 1, 2024

85



 

 

A confusion matrix is a performance evaluation tool 

that compares actual and expected values to determine 

the accuracy of a classification model. Table II represents 

the Confusion matrix of 152 water bodies collected from 

the study area. 

TABLE II. CONFUSION MATRIX FOR 152 WATER BODIES IN OUR STUDY 

AREA 

Predicted 
Actual 

River Pond Canal lake Other 

River 1 0 0 0 0 
Pond 0 70 10 5 0 

Canal 0 3 10 0 0 

Lake 1 0 0 8 0 
Other 0 30 1 0 13 

Total 2 103 21 13 13 

 

Average False Positive rate for classification of water 

bodies is 11.18%. 

The misclassifications in the water bodies are mainly 

due to two reasons: 

● Some ponds were inaccurately detected due to 

segmentation errors and had an area less than the 

threshold for pond classification. As a result, they 

are misclassified to other water bodies. So the 

false positive rate for other water bodies is high.  

● Due to bridges that divide the canal into two 

sections, canals are misclassified as ponds. As a 

result, the area of canals is reduced, so they are 

misclassified as ponds. As a result, the false 

positive rate for ponds is major. 

During the training and testing phase, we provided the 

shape features csv file, which were calculated from the 

original mask images, as input. During the validation 

phase, we entered shape features generated from the 

expected mask image of the U-Net model. Table III 

presents the performance of the proposed model during 

training, testing and validation phases. 
 

TABLE III. COMPARISON OF PERFORMANCE IN DIFFERENT PHASES 

Metric Training Testing Validation 

Accuracy 100% 84% 67.1% 
Micro-averaged Precision 100% 84% 67.1% 

Micro-averaged Recall 100% 84% 67.1% 
Micro-averaged F1-score 100% 84% 67.1% 

Macro-averaged Precision 100% 89% 75.5% 

Macro-averaged Recall 100% 74% 65.4% 

Macro-averaged F1-score 100% 79% 63.6% 

 

Fig. 15 presents an image from the 2020 dataset along 

with the predicted binary mask generated after post 

processing. Some segmentation errors can be found in the 

output of the U-Net model. To avoid them, we perform 

post-processing. It involves morphological operations 

such as Erosion, Dilation and area thresholding. We will 

first use erosion to shrink the boundary of segmented 

water bodies. Then, we will use area thresholding to 

rectify the mistakenly classifying non-water bodies as 

water bodies. Finally, we will use dilation to expand the 

boundary of the segmented water bodies. 

 

 
 

 

Fig. 15. (a) image from 2020 and (b) binary mask of water bodies after 
post-processing. 

Now, we have taken cartosat-3 images for validation 

purpose. Fig. 16 presents a cartosat-3 image from the 

2023 dataset along with the predicted binary mask 

generated. This output made it easier to perform change 

detection from the bi-temporal images. 

 

 
 

 

Fig. 16. (a) cartosat-3 image from 2023, (b) binary mask of water bodies 
after post-processing. 

Fig. 17 shows three images, each as a GeoJSON layer. 

(1) indicates the water bodies that have remained 

unmodified during the specified time period. (2) indicates 

water bodies that have recently evolved throughout the 

historical period, while (3) symbolizes water bodies that 

have been extinct. 

(b) 

(a) 

(b) 

(a) 
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Fig. 17. (a) Unchanged Water bodies, (b) Newly emerged water bodies, 
and (c) Extinct water bodies. 

Fig. 18 depicts the updating of GIS maps in QGIS 

software. To identify changes in water bodies, several set 

operations are done on the vector water body segmented 

layers 2020 GEF and 2023 GEF. The colour ‘yellow’ 

indicates freshly formed water bodies, ‘pink’ represents 

stable water bodies, and ‘red’ represents extinct water 

bodies.  

 

 

Fig. 18. Updated GIS map in QGIS. 

 

Fig. 19 depicts the appearance of certain 

misclassification in the water bodies. This is due to the 

usage of VHRS Images, which necessitates a large 

amount of processing resources to train the model. Better 

results would be obtained by using greater computer 

power and training the model over longer epochs. 

This graph represents the model accuracy graph for 

training and validation data using ReLU activation. The 

U-Net model was executed with ReLU activation as 

hidden activation along with Sigmoid as output activation. 

The model accuracy improved very well with the increase 

in the number of epochs. 

 

 

Fig. 19. Model accuracy vs Epochs. 

Fig. 20 represents the model loss graph for training and 

validation data using ReLU activation. The loss also kept 

on minimizing with the epochs which started giving 

accurate results. The training and validation loss is almost 

the same after 15 epochs means that the model has 

stopped learning and has reached a state of convergence. 

 

 

Fig. 20. Model loss vs Epochs. 

Table IV represents the comparison with various 

existing other models for detection and classification of 

water bodies on different datasets. 

(a) 

(b) 

(c) 
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TABLE IV. COMPARISON WITH OTHER MODELS 

Study Methodology Accuracy Test Accuracy Dataset 

[11] Random Forest Accuracy 82% Vietnam dataset 

[15] Random Forest F1 Score 86% China dataset 

[26] 
Unet with 

tensor flow 
Accuracy 88% 

Chandigarh 
dataset 

Proposed 
Model 

Modified Unet 
model 

Accuracy 96.44% Kolkata dataset 

Proposed 
model 

Random Forest Accuracy 67.1% Kolkata dataset 

 

The proposed model performs better than the 

model proposed in the previous study [26] that used 

the U-Net architecture on an Indian dataset specific 

to Chandigarh. Our analysis demonstrates higher 

accuracy and relevance for Indian water body 

segmentation, showing the superiority of their 

approach. In particular, the proposed U-Net model 

consistently achieved higher accuracy compared to 

the model in [26]. 

V. CONCLUSION AND FUTURE WORK 

Natural resource conservation is not only a component 

of our daily lives; it is also a responsibility we have to the 

world and future generations. This work involves the 

detection and classification of water bodies using a U-Net 

model and a Random Forest model. Through the 

proposed model water bodies are extracted from satellite 

images for a dataset which has a resolution of 0.5 

meter/pixel. The region chosen for this work was Kolkata, 

West Bengal. A total of 1333 images of 512×512 size are 

collected from the study area. The U-Net model was 

trained on preprocessed data which includes bilateral 

filtering for noise removal, false color composition for 

image enhancement. The accuracy of the U-Net model is 

around 96.44%. After segmentation of water bodies, 

shape features of individual water body are calculated 

using contours. The shape features are given as input to 

the Random Forest Classifier. The RF model classifies 

the water bodies into rivers, ponds, lakes, canals and 

other water bodies. The accuracy of Random Forest 

model is around 67.1%. This misclassification is due to 

segmentation errors where some of ponds are 

misclassified into other water bodies. Canals are 

misclassified into ponds due to bridges that divide the 

canals. Some of the morphological operations such as 

Dilation, Erosion and Area thresholding has been applied 

on the predicted mask as part of post-processing which 

improved the overall accuracy of the model. Change 

detection techniques are employed to compare the 

GeoJSON files representing different time periods, 

allowing the identification of newly emerged water 

bodies, extinct water bodies, and unchanged water bodies.  

Future work mainly consists of improving the accuracy 

of the U-Net model and reducing the misclassification of 

water bodies.  
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