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Abstract—In the 6G era, where ultra-fast and reliable 

communication is expected to be ubiquitous, encryption shall 

continue to play a crucial role in ensuring the security and 

privacy of data. Encryption and decryption of medical 

images and 3D printed models using 6D hyperchaotic 

function is proposed in this research work for ensuring 

security in data transfer. Here we envisage using a six-

dimensional hyperchaotic system for encryption purposes 

which shall offer a high level of security due to its complex 

and unpredictable dynamics with multiple positive Lyapunov 

exponents. This system can potentially enhance the 

encryption process for 3D objects and medical images, 

ensuring the protection of sensitive data and preventing 

unauthorized access. A hyperchaotic system is a type of 

dynamical system characterized by exhibiting more than one 

positive Lyapunov exponent, which indicates strong 

sensitivity to initial conditions. These systems have more 

degrees of freedom and complex and intricate dynamics 

compared to standard chaotic systems. The security of the 

encryption scheme depends on the complexity of the 

hyperchaotic system and the randomness of the secret key. 

The parameters of a 6D hyperchaotic system shall be used as 

an encryption key with six dimensions, each with its range of 

values, and shall provide many possible keys. In this work, 

we implemented a 6D hyperchaotic system for the encryption 

of the 3D printed model and medical images. The 

performance evaluation was done by metrics entropy, 

correlation, Number of Pixels Change Rate (NPCR), and 

Unified Averaged Changed Intensity (UACI) which revealed 

the robustness of the encryption model in ensuring security. 

Hyperchaotic systems can be efficiently implemented in 

parallel computing architectures, which allow faster 

encryption and decryption processes.   
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I. INTRODUCTION 

Encrypting 3D-printed model images involves 

protecting the model’s digital design from unauthorized 

access or modification. It is necessary to protect the 

intellectual property and confidential information 

contained within the designs. With the increasing 

popularity and accessibility of 3D printing technology, it 

has become easier for anyone to create and reproduce 3D 

models. Encryption also adds an extra layer of security to 

digital files, making it more difficult for hackers or 

malicious actors to access and modify the design files. This 

is especially important for sensitive designs, such as those 

used in the defense, medical, or aerospace industries. 

Image encryption using hyperchaotic systems is a popular 

technique for protecting the confidentiality and integrity of 

digital images. Steganography is the practice of hiding a 

secret message or information within another image, 

message, or video in a way that the existence of the hidden 

information is not obvious. In the healthcare sector, 

steganography is used for various purposes. 

Steganography is used to protect patient data and maintain 

confidentiality in the healthcare sector, particularly in 

telemedicine applications [1]. Patient data can be 

embedded within medical images or videos, which can 

then be securely transmitted without the fear of being 

intercepted by unauthorized users. Also, Medical images 

can be authenticated using steganography techniques. 

Digital watermarking techniques can be used to embed a 

unique signature within the image, which is used to verify 

the authenticity of the image. Steganography is used to 

embed hidden information within medical images or 

videos, which can aid in diagnosis and treatment [2]. 

Hyperchaotic systems are characterized by complex and 

unpredictable dynamics. This makes them potentially 

more secure than classical encryption methods, which rely 

on mathematical algorithms that may have known 
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vulnerabilities. Classical encryption algorithms can be 

susceptible to statistical attacks, where an attacker 

analyzes patterns in the ciphertext to gain information 

about the plaintext. The proposed method is shown to be 

robust to common attacks and improves the quality of 

decrypted models compared to existing methods. The 

proposed method is shown to be robust to common attacks 

and improves the quality of decrypted models compared to 

existing methods. 

II. RELATED WORKS 

There have been several papers in the literature that deal 

with steganography techniques for 3D models in the health 

sector. Early detection of diseases affecting humans is 

critical for preserving human health, and medical imaging 

has an inevitable role in the diagnostic and treatment 

process. However, ensuring the privacy and security of 

medical images is just as important to patients as the 

diagnosis and treatment itself, as it prevents tampering or 

attacks on the images. In previous study, an approach was 

proposed that combines chaotic Henon maps and advanced 

encryption methods with an S-box to create a hybrid 

encryption system that is both highly secure and efficient 

for processing voluminous multidimensional 3D 

images [3]. The researchers were able to increase the 

security of medical images against a variety of attacks—

including algebraic attacks—while retaining quick 

encryption/decryption speeds and manageable processing 

overheads by utilizing this hybrid approach. A method for 

encrypting 3D models in the metaverse using a 2D chaotic 

system, which generates an unpredictable keystream 

suitable for cryptography [4]. The proposed algorithm 

applies XOR and Semi-Tensor Product (STP) processing 

to the fractional and integer parts of the 3D model, 

respectively, to obtain a ciphertext model. 2D-LAIC 

produces the keystream needed for processing. The study 

demonstrates that 2D-LAIC offers superior security and 

efficiency for 3D model encryption and exhibits better 

dynamical behavior than conventional chaotic systems. 

The issue of protecting 3D printing models was 

addressed from unauthorized access and theft by proposing 

a random encryption algorithm. The algorithm involves 

distorting each facet of the 3D model using a geometric 

transformation and randomly each vertex of each facet 

using a secret key [5]. Then, to create the encrypted 3D 

printing model, a 3×3 matrix is created using the distorted 

vertices, and the matrix parameters are encrypted using the 

random integers of another matrix. The experimental 

results demonstrated that the algorithm is highly effective, 

providing better security than previously reported methods. 

The algorithm completely modifies the 3D triangular mesh, 

ensuring that the encrypted model is protected from illegal 

copying. An encryption system for 3D mesh graphical 

models was proposed using the 3D Arnold cat map, 

another chaos-based encryption system [6]. The 

encryption is performed separately on vertices and faces 

using shuffling and substitution, and the results are 

combined to form the encrypted model. The model 

provides confusion and diffusion, making the system more 

secure. Simulation findings demonstrated that the 

suggested method was effective and resistant to a variety 

of attacks. The system has potential applications in the 

encryption of 3D multimedia content in the emerging 

Virtual Reality era. 

As multimedia applications continue to develop, the 

security of 3D models has become a pressing concern. Due 

to their complex spatial structures, previous attempts at 

encrypting 3D models directly have been tedious and time-

consuming. To address this issue, an encryption method 

based on chaos theory is suggested in previous study [7]. 

A study was proposed for encrypting 3D polygon mesh 

models using a 3D Lorenz Chaotic map to modify the 

vertices values of the model [8]. The proposed scheme was 

tested on various 3D models and achieved good encryption 

results, as demonstrated by the Hausdorff Distance and 

histogram metrics. The results show that the original and 

extracted models are nearly identical, indicating that the 

proposed scheme provides strong encryption.  

To prevent unauthorized copying and access during 

storage and transmission, Pham et al. [9] presented an 

encryption technique for 3D printing models using the 

frequency domain of Discrete Cosine Transform (DCT). 

The facet data is extracted to create a 3×3 matrix, which is 

then transformed to the frequency domain of DCT. The 

approach creates an encrypted 3D printing model by 

encrypting the discrete cosine transform’s DC coefficients 

for the facet’s matrixes in the frequency domain. 

Experimental findings demonstrated that this strategy is 

quite successful for 3D printed models and provides better 

security than previous methods. The encryption process 

completely altered the entire 3D printing model. As 3D 

printing becomes more prevalent in various industries, it is 

increasingly vulnerable to unauthorized copying and 

distribution. To prevent this, 3D printing models should be 

encrypted during transmission and storage. A perceptual 

encryption algorithm was introduced [10]. Three control 

points, an interpolating vector, and curvature coefficients, 

are used by the algorithm to produce a degree 2 spline 

curve from a facet of the 3D printed model. These 

parameters are then encrypted using a secret key. Inverse 

interpolation and geometric distortion are employed to 

derive the encrypted 3D printing model using the 

encrypted characteristics of the spline curve. 

An encryption technique using 3D Lu chaotic mapping 

for 3D textured models was proposed to ensure the security 

and privacy of 3D content in the emerging AR/VR era [11]. 

The technique uses 3D Lu chaotic mapping for separately 

encrypting the vertices, textures of 3D models, and 

polygons before combining them to create the final 

encrypted model, algorithm proposed was found to resist 

attacks. The issue of unauthorized distribution and theft of 

3D printing models was discussed, and the authors 

proposed a selective encryption algorithm to address this 

problem [12]. The algorithm involved clustering and the 

use of discrete cosine transform to encrypt specific 

coefficients in the frequency domain of the 3D printing 

model. The proposed algorithm was effective in altering 

the entire 3D printing model and provided better security 

compared to previous methods. Results demonstrated that 
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the algorithm has zero decrypting error and is highly 

effective in encrypting 3D printing models. 

A new encryption method called three-dimensional 

Steerable Cosine Number Transform (3D-SCNT) was 

introduced, is obtained by rotating the basis vectors of the 

3D-CNT using a finite field rotation operator [13]. The 

3D-SCNT is applied in a proposed medical image 

encryption scheme, where the rotation angles are used as 

secret parameters. The scheme is tested against 

cryptographic attacks using computer experiments, and it 

is found to be resilient against them. A method was 

proposed that used an optimized asymmetric encryption 

method to protect 3D mesh models, which are commonly 

used in design, computer graphics, engineering, and 

entertainment [14]. The method addresses the challenge of 

preserving the privacy of these models, which are 

generated in large quantities due to the availability of 

acquisition equipment and sensors. 

Shah et al. [15] proposed a framework for reversible 

data hiding using the homomorphic Paillier cryptosystem 

in encrypted 3D mesh models. Cloud data management 

and End-to-end authentication are provided by the 

framework using two homomorphic characteristics of the 

cryptosystem. The proposed framework was implemented 

on different 3D mesh models, producing high-quality 

decrypted meshes with high embedding rates and error-

free extraction of information bits. Choi et al. [16] suggest 

a color image encryption algorithm for medical images 

that uses a pseudorandom number generator called 

Nonlinear Cellular Automaton (NCA) and a generalized 

3D chaotic cat map.  

A chaotic image encryption scheme which is a single 

round for secure transmission of medical images in 

telemedicine was proposed by Kumar et al. [17]. The 

proposed scheme uses a Combined Chaotic Key Generator 

(CCKG) to produce initial seeds for the permutation and 

diffusion processes. First, Zigzag Transform (ZT) 

scanning is used to permute the plain image block by block 

under the impact of the Lorenz System (LS) and Fractional 

Order Chaotic System (FOCS). The entire permuted image 

is then split into even and odd portions, and these portions 

are diffused individually by random pixel matrices 

produced by FOCS and LS. The dispersed odd and even 

bits are combined to create the cipher image. The proposed 

scheme is tested and found to be effective, robust, and 

competent for secure medical image transmission. 

Kok et al. [18] investigated the potential of using secure 

remote 3D printing in telemedicine to produce 

personalized medications based on electronic prescriptions. 

The use of 3D printing in telemedicine faces challenges 

such as cyber risks associated with transferring CAD files 

to the printer and ensuring the reproducibility of the final 

product. To address these challenges, the study uses 

DEFEND 3D technology for enhanced cybersecurity and 

intellectual property protection. The study confirms the 

feasibility of remote 3D printing of solid dosage forms 

using model polymers with good reproducibility and 

quality, indicating the potential for advancements in 

telemedicine and digital pharmacies. Further research is 

necessary to investigate the use of pharmaceutically 

relevant polymers in 3D printing. 

An overview of the current state of 3D digital 

watermarking was provided and its potential for protecting 

the Intellectual Property Rights (IPR) of printed 3D 

models against attacks such as 3D printing and 

scanning [19]. A robust reversible watermarking method 

for 3D models was proposed based on homomorphic 

encryption, which can protect the privacy and copyright of 

3D models transmitted over the internet [20]. 

In 6G, Internet of Things (IoT), and Edge Computing, 

encryption remains a critical component for securing data 

and communications [21]. With the advent of quantum 

computing, there’s a growing need for encryption 

algorithms that can resist attacks from quantum computers. 

6G is expected to incorporate post-quantum cryptographic 

techniques to ensure long-term security. Many IoT devices 

have limited processing power and memory, which 

requires lightweight encryption protocols like ECC 

(Elliptic Curve Cryptography) or symmetric key 

encryption optimized for IoT environments [22]. Edge 

computing brings computation closer to data sources [23]. 

This proximity allows for tighter control and encryption of 

data since it stays within a defined geographic area, 

reducing exposure to external threats. 

Security plays a vital role in the health care and defense 

sector in data storage and transfer. This research work 

proposes a 6D hyperchaotic model for the encryption and 

decryption of medical data and 3D printed model images, 

thereby ensuring security. Section II focuses on the 

hyperchaotic function, and its properties followed by the 

6D hyperchaotic function-based image encryption, 

Section III highlights the results of the encryption model 

for 3D printed model real-time 2D images and 2D medical 

images, validated by performance metrics, and finally, the 

conclusion is drawn in Section IV. 

III. DETAILED METHODOLOGY 

A. Hyperchaotic Function and Its Features 

Chaotic and hyperchaotic systems are mathematical 

models that exhibit highly complex and unpredictable 

behavior. These systems are characterized by their 

sensitivity to initial conditions, meaning that even tiny 

changes in the starting conditions can lead to dramatically 

different outcomes over time. The main difference 

between chaotic and hyperchaotic systems lies in the 

number of variables involved and the level of complexity. 

Hyperchaotic systems are a subset of chaotic systems that 

involve four or more variables. Compared to chaotic 

systems, hyperchaotic systems exhibit an even higher level 

of complexity and unpredictability. They are characterized 

by multiple positive Lyapunov exponents, which indicate 

the rate of exponential phase space divergence of 

neighboring trajectories. 

The mathematical modeling of hyperchaotic systems is 

an important area of research in nonlinear dynamics and 

chaos theory. Hyperchaotic systems are characterized by 

multiple chaotic attractors, and their behavior is highly 

complex and difficult to predict. Using a set of differential 

equations, the behavior of hyperchaotic systems can be 
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represented. These equations typically involve a set of 

state variables that represent the system’s internal state and 

a set of parameters that determine the system’s dynamics. 

The equations are usually nonlinear and may involve 

higher-order terms, making it difficult to solve them 

analytically. As a result, numerical methods are often used 

to simulate the system’s behavior and to analyze its 

properties. One popular numerical method for studying 

hyperchaotic systems is the Runge-Kutta method, which is 

a family of algorithms for solving ordinary differential 

equations. The Lyapunov exponent is a different strategy 

that assesses the rate of phase space divergence of nearby 

trajectories and gauges the system’s sensitivity to 

beginning conditions. Many hyperchaotic systems have 

been studied extensively in the literature, which include 

the Lorenz-like hyperchaotic system, the Rössler 

hyperchaotic system, the Chen hyperchaotic system, and 

the Liu hyperchaotic system. Each of these systems 

exhibits unique properties and has applications in various 

fields, including cryptography, signal processing, and 

chaos-based communication systems. The flow diagram of 

the proposed methodology is depicted in Fig. 1. 

 

 

Fig. 1. Flow diagram of the proposed methodology. 

Some examples of hyperchaotic systems and their 

corresponding mathematical formulas are given below. 

Lorenz hyperchaotic system [21]: By adding more 

nonlinear components to the initial system, the Lorenz 

hyperchaotic system expands the original system and 

creates higher-dimensional chaotic dynamics. Compared 

to the original Lorenz system, it is distinguished by having 

more variables and equations. 

𝑑𝑝

𝑑𝑡
= 𝑎 × (𝑞 − 𝑝) + 𝑏 × 𝑟 + 𝑐 × 𝑠        (1) 

 
𝑑𝑞

𝑑𝑡
= −𝑝 + 𝑞 + 𝑑 × 𝑟 + 𝑐 × 𝑠               (2) 

 𝑑𝑟 

𝑑𝑡
= 𝑝 + 𝑞 + 𝑠                                      (3) 

𝑑𝑠

𝑑𝑡
= −𝑏 × 𝑝 − 𝑑 × 𝑞 + 𝑟 + 𝑐 × 𝑠        (4) 

Rossler hyperchaotic system [22]: The Rossler 

hyperchaotic system is an extension of the Rossler system 

which displays intricate attractors with numerous unstable 

equilibrium points and delicate beginning condition 

dependence. The attractors produced by this system have 

complicated structures and can show high-dimensional 

chaotic patterns. 
𝑑𝑝

𝑑𝑡
= −𝑞 − 𝑟                               (5) 

𝑑𝑞

𝑑𝑡
= 𝑝 + 𝑎𝑞                                      (6) 

𝑑𝑟

𝑑𝑡
= 𝑏 + 𝑟(𝑝 − 𝑐)                            (7) 

Chen hyperchaotic system [23]: The Chen hyperchaotic 

system is a higher-dimensional extension of the Chen 

system which introduced additional nonlinear terms and 

variables, resulting in higher-dimensional chaotic 

dynamics compared to the original Chen system. With 

several unstable equilibrium points and complicated 

attractors, the Chen hyperchaotic system displays chaotic 

and hyperchaotic patterns. The attractors produced by this 

system can have complicated, multi-dimensional shapes. 

𝑑𝑝

𝑑𝑡
= 𝑎(𝑞 − 𝑝) + 𝑑 × 𝑟 × 𝑠                (8) 

𝑑𝑞

𝑑𝑡
= 𝑐 × 𝑝 − 𝑞 × 𝑟  (9) 

𝑑𝑟

𝑑𝑡
= 𝑥 × 𝑞 − 𝑏 × 𝑟  (10) 

𝑑𝑠

𝑑𝑡
= 𝑒 × 𝑝 − 𝑓 × 𝑠  (11) 

Lu hyperchaotic system [24]: A transition from one 

system to another is accomplished via the Lu system, 

which connects the Lorenz and Chen systems. It is also 

among the unified chaotic system’s simplest chaotic 

attractors. 

𝑑𝑝

𝑑𝑡
= 𝑎 × (𝑞 − 𝑝) + 𝑏 × 𝑞 × 𝑟         (12) 

𝑑𝑞

𝑑𝑡
= 𝑐 × 𝑝 + 𝑞 − 𝑝 × 𝑟  (13) 

𝑑𝑟

𝑑𝑡
= 𝑑 × 𝑝 × 𝑞 − 𝑒 × 𝑟                   (14) 

𝑑𝑠

𝑑𝑡
= 𝑓 × 𝑝 − 𝑔 × 𝑡                          (15) 

 

In these formulas, p, q, r, and s represent the state 

variables of the hyperchaotic system, and a, b, and c are 

parameters that determine the system’s dynamics. The 

exact values of these parameters can greatly influence the 

dynamics and complexity of the hyperchaotic system. 

These equations are typically nonlinear and involve 

higher-order terms, making it difficult to solve them 

analytically. Numerical methods, such as the Runge-Kutta 

method, are often used to simulate the system’s behavior 

and to analyze its properties. In a nutshell, the 

mathematical formulas for hyperchaotic systems are 

complex and exhibit a rich variety of dynamics, which 

makes them useful for a wide range of applications in 

various fields. 

In a hyperchaotic system, the Lyapunov exponent plays 

a crucial role in characterizing the system’s sensitivity to 
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initial conditions. The Lyapunov exponents quantify the 

exponential rate of convergence or divergence of nearby 

trajectories in the system’s phase space. In a hyperchaotic 

system, there are multiple positive Lyapunov exponents, 

indicating that the system exhibits more complex and 

intricate dynamics compared to standard chaotic systems. 

Each positive Lyapunov exponent corresponds to a 

specific direction in the phase space along which nearby 

trajectories diverge exponentially. The largest positive 

Lyapunov exponent is particularly important as it 

determines the overall rate of divergence of nearby 

trajectories and indicates the system’s level of chaotic 

behavior. If this exponent is positive, it implies that the 

system is chaotic and exhibits sensitive dependence on 

initial conditions. However, in a hyperchaotic system, 

there are additional positive Lyapunov exponents that 

describe the divergence along other directions in phase 

space. The presence of multiple positive Lyapunov 

exponents in a hyperchaotic system suggests that it has 

more degrees of freedom and a higher-dimensional phase 

space. Consequently, the system’s behavior becomes even 

more complex and unpredictable. The Lyapunov 

exponents are calculated using numerical methods, such as 

the Wolf algorithm or the Rosenstein algorithm, which 

involve tracking the evolution of nearby trajectories in the 

phase space and computing the logarithmic rate of their 

separation. The resulting set of Lyapunov exponents 

provided valuable insights into the dynamics and chaotic 

properties of the hyperchaotic system. 

B. 6D Hyperchaotic Function-Based Encryption Model 

In our proposed system, we implemented a 6D 

hyperchaotic system using the 2D image of 3D printed 

models obtained from our IDEA lab research 

laboratory [25]. A 6D hyperchaotic system refers to a 

dynamical system with six dimensions that exhibits 

hyperchaotic behavior. Hyperchaos is a phenomenon in 

which a system demonstrates both chaotic behavior and a 

high number of positive Lyapunov exponents, indicating 

complex and unpredictable dynamics [26–28]. The system 

has six state variables, represented by the vector x = [x1, 

x2, x3, x4, x5, x6], and one-time variable t. The parameters 

a, b, c, d, e, and r, are constants that affect the behavior of 

the system. To simulate the behavior of this hyperchaotic 

system, we need to provide initial conditions for the state 

variables x and specific values for the parameters. Here the 

values of the parameters are set to a = 20, b = 8/3, c = 28, 

d = −1, e = 8, r = 3, and two positive Lyapunov coefficients 

are used. We then used numerical integration methods, i.e., 

the fourth-order Runge-Kutta method, to solve these 

equations and to obtain the evolution of the system over 

time. 

𝑥(1) = 𝑎 × (𝑥(2) − (𝑥1)) + 𝑥4 − 𝑥5 − 𝑥(6) (16) 

𝑥(2) = 𝑐 × 𝑥(1) − 𝑥(2) − 𝑥(1) × 𝑥(3)           (17) 

𝑥(3) = −𝑏 × 𝑥(3) + 𝑥(1) × 𝑥(2)                    (18) 

𝑥(4) = 𝑑 × 𝑥(4) − 𝑥(2) × 𝑥(3)                       (19) 

𝑥(5) = 𝑒 × 𝑥(6) + 𝑥(3) × 𝑥(2)                       (20) 

𝑥(6) = 𝑟 × 𝑥(1)    (21) 

The different steps in the implementation of image 

encryption algorithm using the 6D hyperchaotic algorithm 

is given below and is depicted in Fig. 2. 

(1) Get the size of the input image I and store the 

dimensions in variables M and N; 

(2) Convert the input image I into a column vector P 

of doubles; 

(3) Generate chaotic initial conditions x using a 

logistic map; 

(4) Define the system of differential equations L that 

represents a hyperchaotic system; 

(5) Set the time interval [N0, MN3] for solving the 

differential equations using the ode45 solver. 

Solve the system of differential equations and 

obtain the solution trajectory in the form of a 

matrix Y; 

(6) Extract a portion of the solution trajectory Y and 

reshape it to obtain the vector L. Sort the elements 

of L and store the sorting indices in S. 

(7) Rearrange the pixel values of the input image I 

according to the sorting indices S and store the 

rearranged image in R. Reshape R back to the 

original image dimensions. 

(8) Perform a matrix multiplication of 2×2 blocks in 

image R with a fixed matrix A to obtain the 

encrypted image C. 

(9) Take the modulus of the elements of C with 256 to 

ensure the pixel values are within the valid range. 

(10) Repeat the above steps for a specified number of 

rounds, encrypting the image iteratively. 

(11) Store the final encrypted image I as I_enc, which 

is of type unit 8. 

The above algorithm applies a hyperchaotic system to 

encrypt an input image by sorting and rearranging its pixel 

values. The image is then divided into 2×2 blocks, and 

each block is multiplied by a fixed matrix. The resulting 

encrypted image is obtained after multiple rounds of 

encryption. The steps in the decryption phase are the 

reverse of the encryption phase. 

 

Fig. 2. Flow diagram of the steps of the proposed encryption model. 
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IV. SIMULATION RESULTS AND DISCUSSION 

We implemented our method in MATLAB 2020a and 

analyzed the different parameters discussed below using 

2D slices of 3D printed models generated from our IDEA 

lab research laboratory. The medical images utilized in this 

research work are obtained from Mar Sleeva Medicity 

Hospital, Kerala, prior permission was obtained for using 

the images. Fig. 3 shows the 3D-printed model of a piston 

head. Fig. 3(a) shows the original object, Fig. 3(b) shows 

the encrypted object and Fig. 3(c) shows the decrypted 

object. 

 

 

Fig. 3. Encryption and decryption of 3D object-D1 (Piston head) (a) 

original object (b) encrypted object (c) decrypted object. 

Fig. 4 shows the histogram of the original object (piston 

head) while Fig. 5 shows the histogram of the object after 

encryption. Comparing the histograms of the objects 

before and after encryption provides insights into the 

effects of encryption. It is observed that Encryption 

introduced a shift in pixel intensities, resulting in a 

histogram that is shifted towards higher intensity. The 

encryption process also broadens the histogram, 

expanding the range of pixel intensities. Also, fine details 

and subtle variations in the original image may be lost or 

smoothed in the encrypted image, leading to a flatter 

histogram. Additionally, certain encryption techniques 

aim to spread pixel intensities uniformly, resulting in a 

more uniform histogram in the encrypted image. 

 

 

Fig. 4. Histogram of the original 3D object-D1 (Piston head). 

 

Fig. 5. Histogram of the encrypted 3D object-D1 (Piston head). 

The correlation coefficient is another parameter used for 

measuring the similarity or relationship between two 

images. It is often applied to compare the corresponding 

pixel values of two images and assess how they vary 

together. Figs. 6 and 7 show the horizontal, vertical, and 

diagonal correlation coefficients of the same 3D object-D1, 

before and after encryption. 
 

 

Fig. 6. Correlation coefficient plot of the original 3D object-D1 prior to 

encryption. 
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Fig. 7. Correlation coefficient plot of the original 3D object-D1 after 

encryption. 

The proposed encryption model was tested on 2D slices 

of 3D object models and 2D medical images (Figs. 8 

and 9). Tables I and II show the horizontal and vertical 

correlation coefficients of the various input images.  

Tables III and IV show the horizontal and vertical 

correlation coefficients of the various images after 

encryption. The horizontal and vertical correlation values 

of the input and encrypted images reveal the proficiency of 

the encryption model. The correlation of the input images 

is high, while the correlation value of the encrypted images 

is low. 

TABLE I. CORRELATION COEFFICIENTS OF INPUT 3D OBJECT IMAGES 

Position 

3D 

Object-D1 

(Input) 

3D 

Object-D2 

(Input) 

3D 

Object-D3 

(Input) 

3D 

Object-D4 

(Input) 

Horizontal 0.9764 0.9270 0.9921 0.9769 

Vertical 0.8033 0.7822 0.7717 0.7718 

TABLE II. CORRELATION COEFFICIENTS OF INPUT MEDICAL IMAGES 

Position 

Medical 

Image-M1 

(Input) 

Medical 

Image-M2 

(Input) 

Medical 

Image-M3 

(Input) 

Medical 

Image-M4 

(Input) 

Horizontal 0.9993 0.9763 0.9759 0.9962 

Vertical 0.9984 0.9670 0.9800 0.9984 

TABLE III. CORRELATION COEFFICIENTS OF ENCRYPTED 3D OBJECT 

IMAGES 

Position 

3D 

Object-D1 

(Encrypted) 

3D 

Object-D2 

(Encrypted) 

3D 

Object-D3 

(Encrypted) 

3D 

Object-D4 

(Encrypted) 

Horizontal −0.0190 −0.0141 −0.0154 −0.0150 

Vertical 0.0356 −0.0401 0.0421 −0.0315 

TABLE IV. CORRELATION COEFFICIENTS OF ENCRYPTED MEDICAL 

IMAGES 

Position 

Medical 

Image-M1 

(Encrypted) 

Medical 

Image-M2 

(Encrypted) 

Medical 

Image-M3 

(Encrypted) 

Medical 

Image-M4 

(Encrypted) 

Horizontal −0.0007 −0.0008 −0.0041 −0.0177 

Vertical 0.0006 0.0046 0.0048 0.0003 

 

 

Fig. 8. (a), (d) and (g) represent the input images, (b), (e) and (h) represent 

the encrypted output and (c), (f) and (i) represent the decrypted outputs 

corresponding to 3D objects D2, D3 and D4. 

 

Fig. 9. (a), (d), (g) and (j) represent the input images, (b), (e), (h) and (k) 

represents the encrypted output, and (c), (f), (i) and (l) represent the 

decrypted outputs corresponding to medical images. 
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The entropy of an image refers to the amount of 

information or uncertainty contained in the image. It is a 

measure of the average amount of information needed to 

encode each pixel in the image. Mathematically, the 

entropy of an image is calculated using the probability 

distribution of pixel intensities. Let’s assume we have a 

grayscale image with pixel intensities ranging from 0 to 

255. The entropy H is given by Eq. (22): 

𝐻 = − ∑ 𝑝(𝑖) × 𝑙𝑜𝑔2((𝑝(𝑖))       (22) 

where p(i) is the probability of a pixel having intensity i, 

and the summation is performed over all possible 

intensities. 

The entropy value is measured in bits per pixel (bpp). 

The entropy of an encrypted image and a normal 

(unencrypted) image differ significantly. In a normal 

image, entropy represents the amount of information or 

randomness in the pixel intensities. A high-entropy image 

typically contains a wide range of intensities and exhibits 

complex patterns, while a low-entropy image tends to be 

more uniform or predictable. On the other hand, an 

encrypted image is designed to appear randomly and 

contain no discernible patterns or structure. The encryption 

process introduces randomness and obscures any 

meaningful information. As a result, the entropy of an 

encrypted image is generally expected to be high, closer to 

the maximum possible entropy. However, it’s important to 

note that encryption does not directly affect the entropy 

calculation. Entropy is computed based on the pixel 

intensities themselves and their probability distribution. So, 

if the encryption algorithm preserves the statistical 

properties of the image, the entropy may remain like the 

original image. Ultimately, the specific encryption 

algorithm used, and the quality of encryption 

implementation can impact the entropy of the encrypted 

image. Some encryption methods may introduce 

additional steps that intentionally increase entropy to 

enhance security. Table V shows the entropy values of the 

original 3D object, entropy after encryption, and after 

decryption. The entropy of the encrypted image is closer 

to 8, indicating the efficiency of the encryption model. 

TABLE V. ENTROPY VALUES OF THE ORIGINAL IMAGES, AFTER 

ENCRYPTION AND AFTER DECRYPTION 

Image Details 

Entropy 

of input 

3D model 

Entropy 

of encrypted 

3D model 

Entropy 

of decrypted 

3D model 

3D Object-D1 5.050 7.967 5.050 

3D Object-D2 4.124 7.876 4.124 

3D Object-D3 4.704 7.961 4.704 

3D Object-D4 3.554 7.855 3.554 

Medical image-M1 6.794 7.997 6.794 

Medical image-M2 6.562 7.993 6.562 

Medical image-M3 6.368 7.996 6.368 

Medical image-M4 6.996 7.999 6.996 

 

The encryption and decryption time obtained for the 

different 3D objects are given below in Table VI. 

TABLE VI. ENCRYPTION AND DECRYPTION TIME FOR VARIOUS IMAGES 

Image Details Encryption time(s) Decryption time(s) 

3D Object-D1 9.898973 1.742406 

3D Object-D2 7.262983 1.771650 

3D Object-D3 6.978551 1.904733 

3D Object-D4 7.666405 1.955614 

Medical image-M1 6.371 1.762 

Medical image-M2 0.642 0.114 

Medical image-M3 1.028 0.172 

Medical image-M4 2.944 0.742 

 

The NPCR value indicates the percentage of differing 

pixels between x and y. It is commonly used as a measure 

of the dissimilarity or change between two images or 

matrices. A higher NPCR value indicates a greater level of 

change between the two matrices. The NPCR values 

obtained for the 10 different 3D object models under 

consideration are tabulated in Tables VII and VIII.  

TABLE VII. NPCR VALUES FOR DIFFERENT 3D MODELS 

Metric 
3D 

Object-D1 

3D 

Object-D2 

3D 

Object-D3 

3D 

Object-D4 

NPCR 99.4999 99.4916 99.4916 99.4907 

TABLE VIII. NPCR VALUES FOR MEDICAL IMAGES 

Metric 
Medical 

Image-M1 

Medical 

Image-M2 

Medical 

Image-M3 

Medical 

Image-M4 

NPCR 99.734 96.219 98.854 99.3438 

 

Universal Image Quality Index (UACI) is a metric used 

for evaluating the quality of an image by comparing a 

reference image to a distorted or processed image. UACI 

measures the visual similarity between the original and 

distorted images. 

The formula to calculate UACI is as follows: 

𝑈𝐴𝐶𝐼 = (1/𝑁) × ∑ √(𝑟(𝑖) − 𝑑(𝑖))
2

+ (𝑐(𝑖) − 𝑑(𝑖))
2
 (23) 

 

Where N is the total number of pixels in the image. r(i) 

represents the pixel intensity value of the original image at 

pixel i. d(i) represents the pixel intensity value of the 

decrypted image at pixel i. 

The UACI value ranges from 0 to infinity. A lower 

UACI value indicates higher similarity and better quality 

between the reference and distorted images. The UACI 

values obtained for our proposed system are given in 

Tables IX and X. 

TABLE IX. UACI VALUES FOR VARIOUS 3D OBJECT MODELS 

Metric 
3D Object-

D1 

3D Object-

D2 

3D Object-

D3 

3D Object-

D4 

UACI 24.1933 24.2435 24.2250 24.2369 

TABLE X. UACI VALUES FOR MEDICAL IMAGES 

Metric 
Medical 

Image-M1 

Medical 

Image-M2 

Medical 

Image-M3 

Medical 

Image-M4 

UACI 35.308 29.421 35.264 26.239 
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The inferences from the results are as follows: 
Low Correlation: When the encrypted images have 

little statistical similarity to the original images, it indicates 
that the encryption model is effective in transforming the 
data in such a way that it becomes difficult to discern any 
patterns or similarities between the original and encrypted 
data. This lack of correlation is a positive sign for the 
security of the encryption model, as it suggests that it is 
challenging for an attacker to derive any meaningful 
information about the original image from the encrypted 
version. 

High Entropy: High entropy in encrypted images 
means that the data is highly random and contains a large 
amount of information. This randomness makes it difficult 
for an attacker to predict or analyze the encrypted data, 
thereby enhancing the security of the encryption model. 
High entropy ensures that the encrypted data appears as 
random noise to anyone who attempts to analyze it without 
the proper decryption key. 

High NPCR and Low UACI: NPCR and UACI are 
metrics used to evaluate the robustness of an encryption 
model against small changes in the input image. A high 
NPCR value suggests that a small change in the plaintext 
image results in a significant change in the encrypted 
image. Similarly, a low UACI value implies that the 
average intensity of the pixels in the encrypted image does 
not change much when the original image is modified 
slightly. These characteristics are essential for security, as 
they indicate that the encrypted data remains largely 
unaffected by minor alterations in the input image, making 
it more challenging for attackers to manipulate the 
encrypted data to retrieve meaningful information. Table 
XI represents the performance of the proposed encryption 
model in contrast with the existing works. 

TABLE XI. PERFORMANCE OF THE PROPOSED ENCRYPTION MODEL IN 

CONTRAST WITH THE EXISTING WORKS 

Reference 

details 
Algorithms used Inferences 

Ref. [29] 
2D Schaffer map 

hyperchaotic model 

Tested on benchmark 

images and validated in 

terms of entropy and 

correlation. The average 

entropy value is 7.99945 

and the correlation value 

ranges −92×10−7 and 

18×10−5.  

Ref. [30] 

3D memristive neuron 

model-based 

encryption model 

2D and 3D image 

encryption using chaotic 

function, validated in 

terms of correlation, 

entropy, NPCR value of 

99.6199, and UACI value 

of 33.4661.  

Ref. [31] 

Hyperchaotic model 

based on Cascade 

Modulation Couple 

(CMC) and two 1D-

chaotic map. 

Teste on benchmark 2D 

images, validated in terms 

of correlation, entropy, 

UACI, and NPCR 

Proposed 

Methodology 

6D hyperchaotic 

function encryption 

model 

Tested on medical and 3D 

printed model images, 

validated in terms of 

correlation, entropy, 

NPCR, and UACI. 

Performance was found to 

be robust when compared 

with the existing 

works [29–31]. 

Overall, considering these characteristics collectively 

can help assess the robustness and security of an image 

encryption model. They provide insights into how well the 

encryption process protects the original data from 

unauthorized access and ensures the confidentiality and 

integrity of the information. 

Implementing and solving 6D hyperchaotic systems can 

be computationally expensive, especially in real-time 

applications or on resource-constrained devices. 

Hyperchaotic systems, especially in higher dimensions, 

may not have well-established hardware implementations. 

Implementing them efficiently in real-world applications 

could be challenging. 

V. CONCLUSION 

The outcome of this research work finds its applications 

in healthcare and the 3D printing industry for secure data 

transfer. A 6D hyperchaotic system operates in a six-

dimensional phase space. This high dimensionality 

provides a large parameter space, making it more 

challenging for attackers to predict and reverse-engineer 

the encryption process. Hyperchaotic systems are 

characterized by highly nonlinear differential equations. 

This nonlinearity adds an extra layer of complexity to the 

encryption process, making it more resistant to standard 

cryptanalysis techniques. The randomness and 

unpredictability of hyperchaotic systems make them 

resistant to various statistical attacks, such as frequency 

analysis or correlation attacks. 

As we have seen from this work, a six-dimensional 

hyperchaotic system characterized by multiple positive 

Lyapunov exponents, indicating highly complex and 

unpredictable dynamics was used for the encryption of the 

3D object and medical images. This 6D hyperchaotic 

system had a higher level of complexity and intricacy in its 

behavior, making it valuable for studying nonlinear 

dynamics and complex systems. The unpredictable nature 

of hyperchaotic systems is advantageous for information 

security applications, such as cryptography, as it makes it 

difficult for adversaries to decipher encrypted information. 

Also, the larger parameter space of a 6D hyperchaotic 

system provides more flexibility and control in shaping the 

system’s behavior. The performance validation by metrics 

revealed the proficiency of the 6D hyperchaotic encryption 

model. 

We will be focusing on the hardware implementation of 

the hyperchaotic encryption model as the next step forward. 

Deep learning model coupled with the 6D hyperchaotic 

model yields proficient results. 
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