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Abstract—This paper provides a thorough analysis and 

comparison of the YOLOv5 and YOLOv8 models for wildfire 

and smoke detection, using the Foggia dataset for evaluation. 

The study examines the small (s), medium (m), and large (l) 

variants of each architecture and employs various metrics, 

including recall, precision, F1-Score, and mAP@50, to assess 

performance. Additional considerations such as training and 

inference times, along with the number of epochs required 

for optimal recall, are also evaluated to gauge the models’ 

real-world efficiency and effectiveness. Quantitatively, 

YOLOv5 models generally outperform YOLOv8, with the 

YOLOv5s variant achieving the highest scores across all 

metrics. However, visual assessments reveal that YOLOv8 

models exhibit similar, and in some cases superior, 

capabilities, particularly in detecting dark and dense smoke. 

Training times favor YOLOv5 models, contributing to their 

efficiency, and their shorter inference times offer advantages 

for real-time applications. While the “best model” variants 

confirm YOLOv5’s numerical dominance, YOLOv8’s “best 

models” also display competitive performance. Future 

research will explore model evaluation on diverse datasets 

and hyperparameter optimization to further enhance 

performance, adaptability, and applicability in various real-

world object detection scenarios.   

 

Keywords—wildfire detection, smoke detection, computer 

vision, deep learning, artificial intelligence, YOLO 

 

I. INTRODUCTION 

Wildfires are an increasing global threat with 

devastating consequences, including loss of life, property 

damage, and environmental impact [1, 2]. Annually, they 

burn millions of acres, releasing significant amounts of 

greenhouse gases that worsen air quality and climate 

change [3]. Therefore, timely and accurate detection is 
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crucial for mitigating their effects and preventing further 

spread [4]. 

Historically, traditional methods like manned 

watchtowers, satellites, and aircraft have been mainstays 

in wildfire detection, despite their costs and limitations [3]. 

Recent technological advances, particularly neural 

networks, offer more accurate and real-time detection, 

addressing some of these limitations [2, 4, 5]. 

The YOLO (You Only Look Once) architecture stands 

out among Artificial Intelligence (AI) techniques for its 

role in object detection [5]. As a convolutional neural 

network, YOLO has redefined the field of computer vision 

by detecting objects in both images and videos with 

unparalleled speed and accuracy [6]. Its unique capabilities 

have not only advanced the field but also had a wide-

ranging impact across various industries. 

In the YOLO series, YOLOv5 has distinguished itself 

as a potent and efficient model, effective in fields like 

security, medical imaging, and autonomous vehicles [5, 6]. 

Its real-time object processing and precision have made it 

a cornerstone in computer vision, driving ongoing 

innovation [7]. The series recently welcomed YOLOv8, a 

model surpassing its predecessors in performance [8]. It 

shows great promise for diverse applications and 

specifically, our research aims to deploy it for wildfire 

detection, contrasting its capabilities with YOLOv5 [9]. 

In Ref. [10], comparisons have been conducted that 

include other versions of YOLO. However, our study 

intentionally narrows this focus to a comparison between 

YOLOv5 and YOLOv8, with the latter being the most 

recently released version by Ultralytics. While YOLOv6 

and YOLOv7 do exist, they were not developed by the 

Ultralights’ team and thus, were not included in our study. 

This decision was based on the cutting-edge 

advancements of YOLOv8 and the proven precision and 
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efficiency of YOLOv5 in the computer vision industry. By 

concentrating our analysis on these two specific 

architectures, developed by the original creators at 

Ultralytics, we aim to gain a deeper understanding of their 

respective capabilities and contributions. This focused 

approach is expected to yield valuable insights particularly 

relevant to wildfire detection and the broader field of 

convolutional neural network research. 

To conduct our study, we use the Foggia dataset [11], 

featuring 8,974 images tailored for wildfire detection. We 

carry out the comparison using three different variants 

(small, medium and, large) of both YOLOv5 and YOLOv8, 

training them for a fixed number of epochs and assessing 

their “best models”. Performance metrics include recall, 

precision, f1, and mAP. 

Our study aims to evaluate the pros and cons of 

YOLOv5 and YOLOv8 in wildfire detection. Through this 

research, we seek to provide a comprehensive assessment 

of these existing detection systems, highlighting their 

strengths and limitations in the context of environmental 

monitoring. The insights gained from this study are 

intended to inform future research in the field of computer 

vision as applied to environmental challenges. By 

thoroughly analyzing these architectures, we aim to 

contribute valuable knowledge to the field, aiding in the 

refinement and application of these technologies for 

enhanced environmental protection and disaster mitigation 

efforts. 

II. MATERIALS AND METHODS 

A. Dataset 

The work presented in this paper leverages the Foggia 

dataset [11], a robust set of purpose-built images for smoke 

and wildfire detection. It was originally created in 2015 by 

a team of researchers with the aim of providing a 

representative set of visual data for the development of fire 

and smoke detection systems. The dataset initially 

comprised 31 videos, all sourced from the web, featuring 

real-life fire scenarios. These videos offer a range of 

resolutions from 320×240 to 800×600 pixels. 

The dataset is organized into two distinct sections. The 

first part, encompassing the initial 14 videos, 

predominantly features scenes with fire, while the latter 

part, comprising the remaining 17 videos, focuses on non-

fire scenarios. This segmentation is essential for training 

detection systems to discern between actual fire scenes and 

those that might be mistakenly identified as such. The 

Foggia dataset has been instrumental in various 

studies [12–14], demonstrating its effectiveness in training 

fire and smoke detection systems and highlighting its 

significance in the field. 

Over the years, the Foggia dataset has been the basis for 

various versions and adaptations, evolving to meet the 

changing requirements of wildfire detection research. The 

version we utilized in this study includes a total of 8,974 

images extracted from these videos. These images 

encompass 3,731 instances of fire and 6,791 instances 

featuring smoke, thereby offering a diverse range of 

scenarios for thorough analysis. Fig. 1 illustrates this 

variety. 

 

 

Fig. 1. Sample images from the Foggia dataset. 

This dataset has been carefully curated and was last 

updated in February 2023, ensuring its relevance and 

applicability to contemporary wildfire detection 

challenges. It is accessible through Roboflow, a platform 

revered for its provision of high-quality, machine learning 

compatible datasets. 

For our study, the dataset was partitioned into 70% 

(6,300 images) for training, 20% (1,800 images) for 

validation, and 10% (899 images) for testing. This 

distribution ensures a comprehensive model training and 

evaluation process, aiding in fine-tuning performance and 

providing a robust benchmark for assessing the models’ 

effectiveness in real-world scenarios. 

B. Architectures under Study 

1) YOLOv5 

YOLOv5, standing for You Only Look Once version 5, 

is a state-of-the-art object detection algorithm noted for its 

simplicity, accuracy, and reliability [5]. Released by 

Ultralytics on June 25th, 2020 [15], the model is composed 

of four core parts: input, backbone, neck, and head, as 

depicted in Fig. 2. 

 

 

Fig. 2. YOLOv5 architecture [16]. 

The backbone relies on the CSP-Darknet53 

convolutional network and uses the Cross Stage Partial 

(CSP) strategy to facilitate information flow while 

mitigating redundant gradients and vanishing gradient 
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issues [17]. Features are extracted and mapped from the 

input image via this backbone. 

The neck of YOLOv5 incorporates a variant of Spatial 

Pyramid Pooling (SPP) and integrates BottleNeckCSP into 

the Path Aggregation Network (PANet) [18]. This setup 

enhances the receptive field and focuses on crucial 

contextual features. PANet is further optimized using the 

CSPNet strategy for improved pixel localization. 

The head section, following the trend of earlier versions, 

consists of three convolutional layers that predict 

bounding boxes, scores, and object classes [17]. Despite 

some ongoing challenges such as feature map redundancy 

and target misses in certain scenarios [19], YOLOv5 

remains a leading solution in the object detection 

landscape. 

This model is available in various versions, ranging 

from lighter models to more robust ones. In this study, we 

will analyze three of these versions, as detailed in Table I. 

Each variant differs in terms of depth, width, number of 

parameters, and layers, offering a spectrum of choices 

from faster inference speeds to greater object detection 

accuracy [20, 21]. 

TABLE I. DETAILS OF THE STUDIED YOLOV5 VARIANTS 

Model Layers 
Size 

(pixels) 

Params 

(M) 

FLOPs 

(B) 

YOLOv5s 214 640 7.2 16.5 

YOLOv5m 291 640 21.2 49 

YOLOv5l 368 640 46.5 109.1 

 

2) YOLOv8 

YOLOv8, the newest version of the You Only Look 

Once series, was launched by Ultralytics on January 10th, 

2023 [15]. Building on the foundational YOLOv5, 

YOLOv8 introduces several key improvements, as 

depicted in Fig. 3, that make it an attractive option for 

future computer vision applications. 

 

Fig. 3. YOLOv8 architecture [16]. 

One pivotal update in YOLOv8 is the shift to anchor-

free detection, veering away from the anchor-box 

techniques of its predecessors [9]. This modification 

enables direct prediction of object centers, streamlining the 

Non-Maximum Suppression (NMS) process and 

alleviating issues related to anchor boxes, such as lack of 

generalization and difficulty in handling irregular shapes. 

In terms of convolutional design, YOLOv8 replaces the 

initial 6×6 convolution in the stem with a more efficient 

3×3 and updates the core building block by swapping C3 

for C2f [22]. Features are also concatenated directly in the 

model’s neck without enforcing identical channel 

dimensions, which cuts down on the parameter count and 

tensor size. An innovative feature named Spatial Pyramid 

Pooling Feature (SPPF) is introduced, enhancing the 

model’s ability to manage objects of diverse scales [22, 23]. 

YOLOv8 also incorporates online image augmentation 

during training, such as mosaic augmentation. This feature 

allows the model to learn objects in new positions and 

under different conditions, including partial occlusions 

and varying backgrounds [24]. 

While still lacking an official research paper, 

YOLOv8’s feature-rich design and vibrant community 

support underscore its cutting-edge nature and potential in 

the field of computer vision. 

Similar to what we observed with the YOLOv5 model, 

YOLOv8 also comes in different versions, each tailored to 

balance between detection accuracy and computational 

efficiency. Our study focuses on analyzing three of these 

versions, as specified in Table II. These variants of 

YOLOv8, like those of YOLOv5, vary in terms of depth, 

width, number of parameters, and layers [25, 26], allowing 

for a range of applications from resource-limited 

environments to scenarios requiring high precision in 

object detection. 

TABLE II. DETAILS OF THE STUDIED YOLOV8 VARIANTS 

Model Layers 
Size 

(pixels) 

Params 

(M) 

FLOPs 

(B) 

YOLOv8s 225 640 11.2 28.6 

YOLOv8m 295 640 25.9 78.9 

YOLOv8l 365 640 43.7 165.2 
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C. Training and Evaluation 

In our study, we implement a systematic methodology 

for training, evaluating, and comparing the deep learning 

architectures. Each model is trained for a predefined 200 

epochs, a duration chosen based on recommendations from 

the official repositories of the architectures, which suggest 

testing with epoch numbers close to 200 and 300.  

The performance of each model is monitored using a 

separate validation dataset. The ‘best model’ is selected 

based on achieving the highest recall on the validation set, 

emphasizing the importance of minimizing false negatives 

in wildfire detection. Following the training phase, these 

chosen ‘best models’ are evaluated on a dedicated test set 

to assess their generalization capabilities. 

1) Performance metrics 

a) Precision 

Precision is a fundamental metric in object detection. It 

measures the accuracy of the model’s positive predictions 

[16, 27, 28]. Mathematically, it’s defined as shown in 

Eq. (1), where TP is the count of correctly predicted 

positive instances, and FP is the number of false positives. 

High precision indicates fewer false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (1) 

b) Recall 

Recall signifies the percentage of actual positive 

instances correctly identified by the model [29]. In the 

realm of object detection, it essentially gauges the model’s 

ability to accurately detect and capture object  

instances [27, 28]. A higher value of recall corresponds to 

a lower count of missed detections. Recall is 

mathematically defined as shown in Eq. (2), where TP 

stands for the number of correctly predicted positive 

instances, and FN refers to instances erroneously identified 

as negative. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (2) 

c) F1-score 

The F1-score combines precision and recall to offer an 

overview of the model’s accuracy [29]. It is a calculated as 

the harmonic mean of these two metrics. The F1-score, as 

per Eq. (3), represents the ratio of the product of precision 

and recall to their sum, multiplied by 2.  

𝐹1 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (3) 

An elevated F1-Score suggests a superior balance 

between precision and recall, illustrating the model’s 

aptitude for accurate object detection while keeping false 

positives and false negatives to a minimum [27, 29]. 

d) Mean average precision 

The Mean Average Precision (mAP) gauges the balance 

between precision and recall. It achieves this by computing 

the Average Precision (AP) per class and subsequently 

averaging across all classes [28]. AP calculates precision 

at varying recall levels, essentially computing the area 

under the precision-recall curve [30]. 

Mathematically, it can be formulated as shown in Eq (4), 

with precision defining the precision at a specific recall 

level ®. A higher mAP indicates superior object detection 

performance, factoring in both precision and recall.  

Higher mAP indicates superior object detection 

performance, factoring in both precision and recall [16, 27]. 

𝐴𝑃 = 𝑎 ∫𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟)𝑑𝑟  (4) 

D. Implementation Details 

We conducted the training on a High-Performance 

Computing (HPC) cluster using two Nvidia A100 SXM4 

40GB GPUs, 32 CPU cores, and 64GB of system memory. 

The batch size used for training was set to 64, and we kept 

all the original hyperparameters for each model in order to 

establish a baseline for comparison. 

The implementations of the YOLOv5 and YOLOv8 

models were obtained from their respective official 

Ultralytics repositories, ensuring authenticity and 

consistency with the original designs. Python, in 

conjunction with the PyTorch framework, was employed 

as the programming language for this study, leveraging its 

robustness and flexibility in handling complex neural 

network architectures. 

III. RESULT AND DISCUSSION 

Table III provides the training times for each variant of 

the YOLOv5 and YOLOv8 models. Smaller models, 

YOLOv5s and YOLOv8s, have the shortest training 

duration, recorded at 1.073 and 1.269 h respectively. As 

expected, smaller models, with fewer parameters, 

generally demand less computational resources and time 

for training. 

The larger YOLOv5l and YOLOv8l models require 

1.951 and 2.275 h, respectively, for training, making them 

the longest to train. This is mainly because these models 

are more complex, demanding more computational 

resources. Notably, YOLOv8 models consistently have 

longer training times compared to YOLOv5 variants, 

possibly indicating greater complexity or additional 

features needing optimization. 

TABLE III. TRAINING TIME FOR EACH MODEL ADDRESSED 

Model Time (h) 

YOLOv5s 1.073 

YOLOv5m 1.470 

YOLOv5l 1.951 

YOLOv8s 1.269 

YOLOv8m 1.732 

YOLOv8l 2.275 

 

Table IV encapsulates the average performance metrics 

of each variant of the YOLOv5 model on validation. The 

standard deviation (SD) is also included to offer insights 

into the consistency of the performance of each variant. 
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TABLE IV. METRICS RESULTS FOR EACH YOLOV5 VARIANT ON VALIDATION 

Model 
Precision Recall F1-score mAP 

Mean SD Mean SD Mean SD Mean SD 

YOLOv5s 0.902 0.052 0.886 0.044 0.893 0.048 0.916 0.053 

YOLOv5m 0.901 0.055 0.883 0.048 0.891 0.051 0.910 0.057 

YOLOv5l 0.895 0.043 0.883 0.038 0.889 0.040 0.908 0.046 

The YOLOv5s variant stands out for its exceptional 

performance across all metrics, especially in wildfire and 

smoke detection. It achieves a precision score of 0.902, 

demonstrating its ability to make highly accurate 

predictions while minimizing false positives, a crucial 

feature for our specific application. 

The YOLOv5s model attains a high recall score of 0.886, 

highlighting its ability to identify true positive instances 

effectively. This capability is crucial for avoiding potential 

false negatives in wildfire detection scenarios. 

Additionally, YOLOv5s not only excels in precision and 

recall but also achieves top scores for F1-Score and 

mAP@50. These scores firmly establish the model’s 

outstanding performance in object detection tasks. 

The relatively small standard deviations for YOLOv5s 

across these metrics emphasize the model’s consistent and 

stable performance. It’s also worth mentioning that the 

performance variations among the YOLOv5 variants are 

relatively minor, indicating a consistent level of 

performance throughout the YOLOv5 architecture. 

In addition to numerical results, we conducted graphical 

tests to assess the performance of the models in a context 

more closely resembling real-world conditions. Fig. 4 

presents the results obtained using YOLOv5 models.  

 

 

Fig. 4. Inference using YOLOv5 models used. 

Generally speaking, all versions of the YOLOv5 model 

appear to be capable of detecting both smoke and fire in 

the provided images. However, subtle variations in their 

performance were observed. Moreover, this model yielded 

the highest confidence scores among all the evaluated 

models. The YOLOv5s and YOLOv5m versions showed a 

slight decrease in confidence scores, particularly when 

detecting instances of smoke. This could point to potential 

challenges these models face in differentiating between 

dense smoke and background elements, or in their 

sensitivity to certain patterns and lighting conditions. 

In the middle row, a high degree of parity in 

performance across all models is observed. The bounding 

boxes are well-positioned and virtually in the same 

location. Additionally, the confidence scores for all models 

exceed 85%, indicating strong performance in detecting 
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columns of less dense smoke under favorable lighting 

conditions. 

In the bottom row, another scene featuring a large 

column of smoke is presented. Interestingly, unlike in 

previous scenarios, only the YOLOv5m model was able to 

detect the smoke in this scene, albeit with a very low 

confidence score. The other two models, YOLOv5s and 

YOLOv8l, failed to detect anything in the image despite 

the presence of a very clear and easily identifiable column 

of smoke. This is noteworthy because, in prior scenes, the 

models correctly identified the smoke, demonstrating that 

the models have limitations in detecting columns of smoke 

with specific characteristics, as displayed in this scene. 

Examining the performance of YOLOv8 model variants 

on validation, as shown in Table V, YOLOv8s stands out 

in terms of precision, averaging a score of 0.886. The 

relatively low standard deviation of 0.048 indicates that 

this model not only delivers high prediction accuracy but 

also maintains consistency across various runs. This 

consistent precision is crucial in wildfire and smoke 

detection tasks, as it helps minimize false alarms, 

preserving resources and reducing the burden on 

emergency services. 

TABLE V. METRICS RESULTS FOR EACH YOLOV8 VARIANT ON VALIDATION 

Model 
Precision Recall F1-score mAP 

Mean SD Mean SD Mean SD Mean SD 

YOLOv8s 0.886 0.048 0.860 0.059 0.873 0.054 0.906 0.059 

YOLOv8m 0.882 0.040 0.866 0.050 0.874 0.044 0.905 0.051 

YOLOv8l 0.878 0.057 0.863 0.073 0.867 0.065 0.898 0.075 

Looking at recall, an essential metric in scenarios like 

wildfire detection where missed detections can lead to dire 

consequences, the YOLOv8m variant yields the highest 

average score of 0.866. However, the standard deviation 

for this metric is slightly higher, indicating a touch more 

variability in the model’s performance than with precision. 

Turning to the F1-Score, the YOLOv8s and YOLOv8m 

models display similar performance, both slightly 

surpassing the YOLOv8l variant. Regarding the mAP@50 

metric, which gauges the overall detection performance 

across various thresholds, the YOLOv8s variant again 

takes the lead. 

Thus, YOLOv8s shines with the highest precision and 

mAP@50, while YOLOv8m stands out with the highest 

recall. The relatively minor differences in performance 

among the variants point to an inherent stability within the 

YOLOv8 architecture. 

It is evident that the YOLOv5 models, specifically the 

small variant, are exhibiting superior performance across 

all metrics. Notably, YOLOv5s with its higher precision, 

recall, F1-Score, and mAP@50, implies an enhanced 

ability to accurately detect and locate wildfires and smoke 

in our dataset. 

The difference in average values for these key metrics 

between YOLOv5s and YOLOv8s, although marginal, is 

noteworthy. This highlights YOLOv5s’ reliability in this 

specific detection task. Moreover, YOLOv5s displays 

relatively low standard deviations, suggesting a higher 

level of consistency across different runs. 

Taking time efficiency into account alongside 

performance, YOLOv5 models hold an advantage due to 

their shorter training duration. Nevertheless, both 

YOLOv5 and YOLOv8 models demonstrate 

commendable performance in wildfire and smoke 

detection, with YOLOv5s having a slight edge. It’s 

essential to recognize that these findings are based on a 

single dataset, and further experiments with diverse 

datasets could yield additional insights. 

Table VI presents the best recall values and their 

corresponding epochs for each model variant of YOLOv5 

and YOLOv8. The highest recall among YOLOv5 models 

was attained by the small variant (YOLOv5s) at 0.907 

during the 107th epoch, showcasing its strong ability to 

identify true positives. In the case of YOLOv8, the 

medium variant (YOLOv8m) achieved the highest recall 

at 0.897 in the 187th epoch. 

Interestingly, the epoch of achieving the best recall 

varies among the models, possibly reflecting differences in 

model complexity and learning rate evolution. YOLOv5s 

reached peak performance earlier than YOLOv5m, with 

YOLOv5l doing so even sooner, by the 89th epoch. In 

contrast, both medium and large variants of YOLOv8 

required more epochs to attain their best recall compared 

to the small variant. 

Table VII shows the inference time in milliseconds for 

each ‘best model’ in both YOLOv5 and YOLOv8. Clearly, 

YOLOv5 models consistently exhibit faster inference 

times compared to their YOLOv8 counterparts. Notably, 

YOLOv5s achieves the fastest inference time at 0.9 ms, 

highlighting its efficiency in delivering high performance 

with minimal computational load. 

Conversely, YOLOv8 models exhibited slower 

inference times across all variants. However, it’s worth 

noting that these models still maintained a competitive 

time range, with the fastest being YOLOv8s at 1.3 ms. 

Despite the increased complexity of YOLOv8, its 

inference time performance remains commendable, 

although not as efficient as YOLOv5. 

TABLE VI. BEST RECALL AND CORRESPONDING EPOCH FOR EACH 

MODEL ON VALIDATION 

Model Best recall Epoch 

YOLOv5s 0.907 107 

YOLOv5m 0.906 153 

YOLOv5l 0.904 89 

YOLOv8s 0.895 93 

YOLOv8m 0.897 187 

YOLOv8l 0.895 182 
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TABLE VII. INFERENCE TIME FOR EACH “BEST MODEL” 

Model Time (ms) 

YOLOv5s 0.9 

YOLOv5m 1.4 

YOLOv5l 1.8 

YOLOv8s 1.3 

YOLOv8m 2.1 

YOLOv8l 3.0 

 

Table VIII depicts the testing results of the ‘best model’ 

for the YOLOv5 variants on the two distinct classes (fire 

and smoke), as well as the consolidated class (all). 

TABLE VIII. RESULTS OF EACH YOLOV5 ‘BEST MODEL’ ON TESTING 

Model Class Precision Recall F1 mAP 

YOLOv5s 

All 0.899 0.888 0.894 0.907 

Fire 0.837 0.844 0.841 0.854 

Smoke 0.962 0.932 0.947 0.960 

YOLOv5m 

All 0.903 0.888 0.895 0.905 

Fire 0.852 0.847 0.850 0.864 

Smoke 0.953 0.929 0.941 0.945 

YOLOv5l 

All 0.888 0.880 0.884 0.905 

Fire 0.828 0.835 0.831 0.861 

Smoke 0.949 0.924 0.936 0.949 

 

In the “All” category, representing combined 

performance for “Fire” and “Smoke” classes, all three 

models show relatively high performance. Among them, 

YOLOv5m achieves the highest precision and F1-score at 

0.903 and 0.895, respectively, closely followed by the 

YOLOv5s variant. Interestingly, the mAP@50 score, 

which combines both recall and precision, is the same 

(0.905) for both YOLOv5m and YOLOv5l models, despite 

YOLOv5l having slightly lower precision. This suggests 

that the YOLOv5l model’s higher recall compensates for 

its slightly lower precision when considering overall 

performance. 

Focusing on the ‘Smoke’ class, the YOLOv5s model is 

evidently superior with a precision of 0.962, which is 

significantly higher than the other two models. Its recall 

rate is also the highest at 0.932. This superiority in both 

precision and recall is reflected in the higher F1-score 

(0.947) and mAP@50 (0.960). The YOLOv5s model, 

therefore, offers an optimal choice for high precision and 

recall in “Smoke” detection. 

In the “Fire” class evaluation, YOLOv5m stands out 

with a recall of 0.847, slightly surpassing YOLOv5s (0.844) 

and YOLOv5l (0.835). Its higher precision score of 0.852 

indicates YOLOv5m’s tendency to return more relevant 

results. This balanced performance is confirmed by its 

leading F1-score of 0.850. 

The mAP@50 score highlights YOLOv5m’s superior 

performance in object detection and bounding box 

accuracy. With a score of 0.864, YOLOv5m is more 

accurate and reliable at identifying and locating instances 

of fire within an image compared to YOLOv5s (0.854) and 

YOLOv5l (0.861). In real-world applications like wildfire 

detection, this advantage can potentially lead to fewer false 

alarms and missed detections, demonstrating the reliability 

and practical utility of YOLOv5m. 

Regarding YOLOv8, the performance of its variants on 

different classes presents an interesting perspective, as 

shown in Table IX. 

TABLE IX. RESULTS OF EACH YOLOV8 “BEST MODEL” ON TESTING 

Model Class Precision Recall F1 mAP 

YOLOv8s 

All 0.896 0.866 0.881 0.912 

Fire 0.842 0.792 0.816 0.862 

Smoke 0.950 0.939 0.944 0.962 

YOLOv8m 

All 0.880 0.864 0.872 0.897 

Fire 0.830 0.807 0.818 0.844 

Smoke 0.930 0.921 0.926 0.950 

YOLOv8l 

All 0.886 0.876 0.881 0.899 

Fire 0.835 0.824 0.830 0.850 

Smoke 0.936 0.928 0.932 0.949 

 

When considering the “All” class, YOLOv8s leads in 

terms of precision (0.896) and mAP@50 (0.912), 

highlighting its superior object detection accuracy across 

classes and its stronger overall performance in accurate 

bounding box localization. Its superior mAP@50 score 

signifies that YOLOv8s is likely to be more reliable in 

real-world applications, producing fewer false alarms and 

better identifying the correct object locations. However, its 

recall score (0.866) lags slightly behind that of YOLOv8l 

(0.876), suggesting YOLOv8l may be slightly more 

effective in identifying all relevant instances across classes. 

Analyzing the “Smoke” class, we see that YOLOv8s 

again takes the lead with the highest precision (0.950) and 

mAP@50 (0.962) scores. These metrics underline its 

ability to accurately detect and localize smoke instances. 

Its recall score of 0.939, though marginally better than the 

others, indicates a nearly equal proficiency in identifying 

all relevant smoke instances. 

Regarding the “Fire” class, the “models” performance 

is more closely matched. YOLOv8l demonstrates a slight 

edge with the highest recall score of 0.824, indicating its 

superior capability to identify all relevant fire instances. 

However, the highest precision and mAP@50 scores are 

held by YOLOv8s (0.842 and 0.862, respectively). This 

indicates that YOLOv8s is more accurate in detecting and 

localizing fire instances, hence more reliable in practical 

applications. Despite these differences, the models exhibit 

closely matched F1-Scores, demonstrating a balanced 

performance in precision and recall. 

Overall, the YOLOv5 variants demonstrate better 

results in detecting both instances (smoke and fire). These 

variants show improvements in precision, recall, and F1-

score compared to YOLOv8. However, they exhibit 

slightly lower performance in terms of mAP@50.  

Regarding the “Smoke” class, the results vary 

significantly. Some YOLOv5 variants outperform 

YOLOv8 in metrics such as precision and F1-score, but 

have lower recall. Additionally, the mAP@50 results are 

similar across models. For the “Fire” class, the YOLOv5 

variants generally show better performance in terms of 

precision, recall, and F1-Score. In other words, they are 

better at detecting fire instances. The mAP@50 results are 
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more variable, but with very small differences between 

models. 

Moving on to the visual results displayed in Fig. 5 in the 

top row, good performance is observed across all models. 

The bounding boxes are well-positioned, and the 

confidence scores are high (>70%) for all main instances. 

However, similar to what was observed with the YOLOv5 

models, the YOLOv8l model detected an additional small 

instance of fire compared to the other models. Furthermore, 

its confidence score is moderately high, demonstrating a 

slight superiority of this variant. 

In the middle row, mirroring what was seen with the 

YOLOv5 models, a high degree of parity in performance 

among all models is observed. The bounding boxes are 

well-placed, although the YOLOv8m model shows slight 

variations and compaction. The confidence scores are high, 

indicating strong detection capabilities. 

Transitioning to the bottom row, we once again observe 

difficulties in the models’ ability to detect the smoke 

column in this particular scene, similar to what was 

observed with the YOLOv5 models. However, this time, 

two models, YOLOv8s and YOLOv8l, were successful in 

detecting the smoke column. Notably, the YOLOv8s 

model has a smaller and tighter bounding box, while 

YOLOv8l features a much broader bounding box, 

capturing a larger extent of the smoke column. 

Nevertheless, the confidence scores in both cases are 

relatively low, which does not provide adequate assurance 

in the detection capabilities and renders the models 

inefficient for potential real-world applications. 

In general terms, the YOLOv8 models display 

consistent and even superior performance compared to 

YOLOv5 models. Although neither model met the 

expected performance in certain scenarios, YOLOv8 

appears to have greater potential than YOLOv5. With 

improved training data or optimized training 

configurations, YOLOv8 is likely to further distinguish 

itself in terms of performance, which is anticipated given 

the enhancements introduced in this version. 

 

Fig. 5. Inference using YOLOv8 models studied. 

IV. CONCLUSIONS AND FUTURE WORKS 

In this study, we meticulously examined and compared 

the performance of YOLOv5 and YOLOv8, two notable 

iterations of the “You Only Look Once” (YOLO) object 

detection architecture. Our comprehensive analysis 

involved various critical factors, including metrics such as 

precision, recall, F1-Score, and mAP@50, as well as 

training times, inference times, and the number of epochs 

required to achieve optimal recall. To ensure robustness in 

our evaluation, we employed the Foggia dataset for our 

experiments. 

The comparative study between YOLOv5 and YOLOv8 

models has yielded insightful distinctions in performance. 

Across standard metrics, YOLOv5 consistently excels, 

achieving higher precision, recall, and F1-Scores, coupled 
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with shorter training times and fewer epochs to optimal 

recall. These factors underscore YOLOv5’s efficiency, 

making it particularly suitable for scenarios with limited 

resources or time constraints. 

While YOLOv5 has the upper hand in quantitative 

metrics, YOLOv8 is commendably close, particularly in 

mAP@50 scores, suggesting that it remains a competitive 

alternative in the object detection landscape. In terms of 

real-time application, YOLOv5’s faster inference times 

are advantageous; however, YOLOv8’s respectable 

inference times cannot be disregarded, as they reflect its 

viability in scenarios where slightly longer processing can 

be accommodated. 

Visual test results reveal a nuanced dynamic: YOLOv8 

excels in detecting dark and dense smoke, a critical 

attribute for real-time detection in variable conditions. On 

the other hand, YOLOv5 shows a slight advantage in 

identifying fire more confidently. Despite this, both 

models encounter challenges with light-colored smoke, 

indicating an area for potential improvement. 

In summary, while YOLOv5 outstrips YOLOv8 in 

efficiency and core metric performance, YOLOv8’s robust 

visual detection capabilities, especially for complex smoke 

scenarios, illustrate its practical utility. The decision 

between the two should be informed by the specific 

requirements of the intended application whether it is the 

precision and speed of YOLOv5 or the visual acuity of 

YOLOv8 that is more critical. With distinct strengths, both 

YOLO models hold promise for varied deployment in 

object detection tasks, particularly for enhancing wildfire 

and smoke detection solutions. 

Future studies could yield substantial benefits by 

expanding the scope of evaluation to datasets that 

encompass a wider variety of wildfire scenarios, which 

may further delineate the conditions under which each 

model excels. Such research is essential to refine detection 

accuracy, particularly in diverse and unpredictable 

environmental conditions. This will directly support 

efforts in environmental protection by enhancing early 

detection capabilities, ultimately contributing to more 

effective disaster mitigation strategies. 

Additionally, a systematic exploration of 

hyperparameters and model architectures could uncover 

optimizations that enhance model performance. These 

potential future directions aim to further improve the 

performance, flexibility, and applicability of the YOLOv5 

and YOLOv8 models, allowing for their effective 

deployment in various real-world scenarios and expanding 

their potential impact in the field of object detection. 

Emphasis on these areas of research could significantly 

advance the field of computer vision in environmental 

monitoring applications. 
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