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Abstract—Deep learning encompasses the inherent 

properties of scattered data and acquires a more abstract 

representation of data than conventional machine learning 

techniques. Nevertheless, existing deep learning algorithms 

perform inadequately on novel problems such as image 

classification as they generally require an extensive number 

of samples intended to train the model. One of the efficient 

methods to resolve the indicated drawback is meta-learning, 

acclaimed as learning to learn. Using antecedent knowledge 

to aid in the learning of new tasks improves meta-capacity for 

generalization to unfamiliar tasks. Meta-learning determines 

previous assignments intending to discover a representation 

that is easily adaptive to unknown challenges. Meta learning 

methodologies help find these components through 

multitudinous learning episodes by learning to solve a set of 

tasks instead of solving a single task at a time. Episodic meta-

learning seeks to imitate a realistic environment by 

producing small artificial tasks from a substantial set of 

training tasks for meta-training and then moving on to the 

related method for meta-testing. The research is evaluated 

with meta learning algorithms like Prototypical Network and 

proto-Model-Agnostic Meta-Learning (MAML) with 

episodic meta learning on SVHN and Omniglot dataset 

reporting compelling enhancements on public benchmarks. 

In this research, the obtained results demonstrate a notable 

improvement and enhancement compared to existing 

methodologies, indicating a successful and impactful 

improvisation in the proposed methodology.   

 

Keywords—meta learning, deep learning, few shot learning, 

prototypical networks proto-Model-Agnostic Meta-Learning 

(MAML) 

I. INTRODUCTION 

Deep learning has noticed tremendous success and has 

established itself as an effective method in extensive areas, 

including computer vision and natural language processing, 

even though it is extremely dependent on an extensive 

amount of labelled training data. Meta-learning aims to 

make it possible for models, specifically deep neural 

networks ascertain how to perform efficiently on new tasks 

from a barred amount of data samples. Meta learning 

solves new hidden tasks with a few sets of examples [1]. 

In classic machine learning domains, there is often a large 

dataset taken which is peculiar to a task and intended to 

train the model while using the dataset for 
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regression/classification purposes. That differs 

significantly from the way people use their prior 

knowledge to efficiently acquire an additional skill from 

just a small number of examples. Technically, this entails 

using metadata of an algorithm to understand how the 

method of autonomous learning may become flexible in 

managing learning difficulties, which leads to improving 

the consummation of present learning algorithms. The 

inductive bias of the respective learning algorithm refers 

to the set of assumptions that it makes about the data. 

Humans are naturally capable of picking up new abilities 

fast. For instance, by observing a single knife, we can 

distinguish all knives from other cutlery pieces, such as 

spoons and forks. Our competencies are substantially more 

extensive than merely being able to recognize new items, 

learn a new language, or figure out how to use a new tool, 

being able to learn new skills and adapt to new situations 

quickly (revolve around only a few instances or 

demonstrations). Machines, particularly deep learning 

algorithms, however, often learn rather differently. They 

struggle with generalization and need huge quantities of 

information and computation. Humans excel at adapting 

and learning quickly because they use their existing 

experience and expertise to address novel problems. 

Similar to this, meta learning makes use of prior 

knowledge obtained from data to complete fresh tasks 

more quickly and effectively. Meta learning aims to 

enhance the outcomes and performance of the learning 

algorithm by adjusting certain properties of the algorithm 

in response to the results. Using meta-learning, researchers 

may determine algorithms that give accurate predictions 

from datasets [2, 3]. The primary goal is to develop a meta-

learning approach based on episodic learning for few-shot 

image classification in order to enhance the model’s ability 

to rapidly adapt and generalize to novel classes with 

limited labeled examples. 

II. LITERATURE REVIEW 

Metadata from learning different algorithms is fed into 

meta- learning algorithms. They then formulate forecasts 

and offer data regarding the outcome of these learning 

algorithms. In a learning model, an image’s metadata 

could include things like its size, resolution, style, creation 
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date, and owner. The most significant difficulty in meta-

learning is systematic experiment design. Meta-learning 

uses a small number of observations to generalise 

effectively to tasks that are unperceived. In conditions 

where there are few data points available, the goal is to 

simultaneously learn a representation and acclimate it to 

previously unrelated tasks [4]. Even while meta-models 

could be expounded over a wider range of learning 

problems the present literature refers to this process as 

“few-shot learning”. It is thought to be the key 

environment for estimating meta-learning 

algorithms [5, 6]. Li et al. [7] introduced the idea of few-

shot learning in 2003, highlighting the difficulty in 

applying previously acquired knowledge to the acquisition 

of new categories. Few-shot learning is planted entrenched 

on the concept of Bayesian framework in the initial phases 

of the research, and the sample’s class probability 

reasoning is derived by integrating the model parameters 

with preceeding probability along with the posterior 

probability. Researchers advanced deep neural network 

models to address this issue of few-shot image 

classification as deep learning design has become more 

advanced. Most of the few-shot learning techniques 

currently in use have recently incorporated deep learning. 

The long-standing issue of the requirement for substantial 

and broad datasets is resolved by this method. Few-shot 

learning often stands in need to learn features of a training 

sample. Meta-learning algorithms that rely on a small 

number of data points might be brittle when the set of tasks 

is heterogeneous [8, 9]. 

The ongoing problem of the requirement for substantial 

and extensive datasets is resolved by this approach. Few-

shot learning becomes competent in learning the features 

of a few labelled images for training samples to categorise 

new test images. Many image processing applications, 

namely image segmentation [10], image recognition [11], 

image classification, and image retrieval [12–14], 

currently make extensive use of few-shot learning. 

Additionally, a survey of few-shot picture classification 

has significant practical significance. Large-scale labelled 

data collection is challenging in industries like 

medicine [15] and public security [16], which hinders deep 

learning model’s performance. Few-shot learning is an 

efficient methodology for the issue of some high-

performance models being unable to generalise in new 

classes as a result of the lack of training data, allowing 

particular high-performance models to be designated in 

other disciplines. Few-shot learning has currently been 

reviewed by different scholars. The study advancement of 

few-shot classification models along with algorithms in 

line with techniques centred on data augmentation, model 

fine-tuning and transfer learning was explicitly introduced 

by Zhao et al. [17]. Few-shot learning has been extensively 

examined in the scholarly literature, and Wang et al.[18] 

have systematically classified and organized it into a 

cohesive taxonomy based on the perspectives of model, 

data, and algorithm. 

Prototypical networks are also associated with the 

neural statistician considering the procreative modelling 

literature [19], which extends the variational autoencoder 

to learn generative models of the datasets instead of 

individual points [20–22]. The “statistic network” which 

converts a collection of data points caught up in a statistic 

vector, is one element of the neural statistician. So, to get 

an approximative posterior over the statistic vector, it does 

this by encoding each point inside a dataset, catching a 

sample mean, and implementing a subsequent processing 

network. By addressing each character as a distinct dataset 

and establishing predictions on the class whose 

approximate posterior over the statistic vector has the least 

KL divergence from the posterior constrained by the test 

point. The model was tested for one-shot classification on 

the Omniglot dataset. In a feedforward model that can 

yield effective results, researchers also generate a 

summary statistic about each class by adjusting the top 

layer weights. The tasks of the model with regards to the 

parameters: when sensitivity can learn an internal feature 

representation that is high, small local changes to 

parameters are suited for various tasks using a method of 

training the model’s parameters [23, 24]. Contemporary 

data mining systems are only as powerful as their users. 

These technologies allow several algorithms incorporated 

into a single system, but their selection and combining 

ought to be completed before the system is launched, 

typically by a skilled user. According to several 

researchers, if machine learning systems are to be useful to 

non-specialists at all, the selection of learning and data 

transformation methods should be automated. Others 

argue that existing technology does not allow for complete 

automation in the aspect of the data mining process. An 

intermediate solution is the development of helper systems 

to assist in the selection of the appropriate learning 

algorithm(s). There appears to be an underlying consensus 

that meta knowledge should be smoothly included in the 

data mining system, regardless of the proposed approach. 

Meta-learning is scrutinised with the development and 

implementation of learning algorithms to acquire meta 

knowledge to assist machine learning users during the 

model selection process. Meta-learning for image 

classification holds great promise in overcoming the data 

scarcity challenge by enabling models to learn a generic 

understanding of tasks and quickly adapt to new ones. As 

research in this area progresses, meta-learning approaches 

are expected to play a vital role in enhancing the efficiency 

and applicability of image classification models across 

diverse domains. 

This paper demonstrates that by establishing a better 

representation with episodic learning and better 

adaptability for the meta-learned model, employing a 

guided technique to designate the data greatly enhances the 

results on the workload. As investigations advance in this 

field, it is anticipated that meta-learning methodologies 

will play a crucial role in improving the effectiveness and 

adaptability of image classification models across a variety 

of domains. The resilience of meta-learning algorithms is 

further enhanced by this process when out-of-distribution 

tasks are available. At the time of meta-training and meta- 

testing, these techniques are utilized to generate the 

context and the query sets (in different combinations). The 

objective is to determine whether drawing the query and 
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context sets in the form of episodes during meta-training 

can improve meta-training, and also assess the 

performance of actively drawing context sets on the rate of 

adaptation during meta-test. The combination of methods 

carried out during meta-train and meta-test time yields the 

best results, it also exhibits that the results still improve 

when the selection is just transferred for the adaptation at 

meta- test time in the form of episodes. We apply our 

methodology to proto–MAML [25] and prototypical 

networks [19], indicating that metric-based and 

optimization-based episodic meta-learning [26] can both 

benefit significantly from properly choosing the data. In-

depth, experiment is conducted on Omniglot [27] and 

SVHN [28] datasets. The empirical findings support the 

theoretical study of the computational cost of the strategy, 

which has linear complexity in picking respective data 

points for episode configuration. The results of consequent 

studies signify that few-shot categorization methods are 

more accurate. Fine-grained image categorization and 

facial recognition have both benefited from the application 

of metric learning. The main goal is to discover an 

embedding function that indicates how similar samples 

within a category are to those within various classes. The 

query photos will be categorized when the embedding 

function has been learned. The Siamese network is made 

up of two identical sub-ConvNets that work together to 

decrease the distances between paired data that have the 

same label while maintaining a large distance between the 

data that have different labels. In contrast to absolute pair-

wise distances, triplet loss aims to concentrate on relative 

distances. It’s been used extensively in assignments with 

finer details.  

III. MATERIALS AND METHODS 

The research aims to establish a comprehensive meta-

learning approach based on episodic learning for few-shot 

image classification, contributing to advancements in the 

field. As much data the model can comprehend is typically 

delivered into machine learning applications [18]. This is 

to ensure that the model predicts more precisely in many 

machine learning applications. Few shot learning, on the 

contrary seeks to develop precise machine learning models 

with lesser training data. Few-shot learning, differs from 

traditional supervised learning due to the fact it makes 

predictions based on few data. Few-shot learning, which 

refers to acquiring new ideas from a small number of 

examples, is a skill that humans naturally have but that 

machines still lack. As suggested in Algorithm 1, 

improving on this feature might result in improved 

algorithms that flexibly grow their knowledge without 

requiring big labelled datasets [29]. The emphasis is on 

few-shot classification, which involves assigning 

previously unknown cases to one of N new ‘test’ classes 

using only a modest number of samples as references about 

each class. 

The generic term for Few-Shot Image Classification 

(FSIC) task is an N-way K-shot problem [30]. There are 

many categories in the training set for few-shot learning, 

numerous examples are involved in each category. During 

the training phase, K samples (in N × K images) are 

arbitrarily chosen from each category of image samples of 

the training set to serve as a support set. The prediction 

object of the model, also known as a query set, is then 

chosen from the remaining samples from each of the N 

categories of data. The classification task is known as the 

few-shot image classification if K is extremely small 

(often K < 10); a task signifies a one-shot image 

classification when K = 1; and zero-shot image 

classification task is considered when K = 0. Episode 

training technique is typically applied for few-shot 

learning. The support set and the query set are both present 

in an episode. A few-shot learning activity is therefore 

equivalent to one episode. A few-shot image classification 

job aims to precisely categorise the images of the query set 

using support set that is already in existence. Hence, the 

model must learn how to differentiate between these N 

categories from N × K samples. 

 

Algorithm 1: Extract n-way k-shot images 

Require: n way, k shot, N classes, X training dataset 

1. Select N number of samples randomly from the 

corresponding support set 

2. random. shuffle (N) # each folder corresponding to a group 

3. Train a model to predict the sample with an optimization 

algorithm 

4. Update model parameters using the loss calculated 

5. Train all K-shots 

6. X.appen (images [0:k]) concerning K images in the 

corresponding group 

7. Evaluate the model parameters on the query set. 

A. Types of Meta Learning 

The methodology of enhancing a learning algorithm 

over several learning episodes is termed meta-learning 

explained in Fig. 1. A model can understand how to 

swiftly adjust to new tasks using meta learning and 

minimum amount of training data. This is especially 

helpful for scenarios when the work distribution is flexible 

and there is a steady influx of new tasks. By allowing a 

model to gain knowledge from a small number of instances, 

meta learning can result in effective data utilization [31]. 

This is to ensure that meta learning algorithms can 

generalise to new tasks besides fewer training examples by 

learning to recognise the underlying structure. As described 

meta learning is categorized into different categories as 

shown in Table I. 

TABLE I.  META LEARNING CLASSIFICATION 

Model Based Metric Based Optimization based 

Memory Augmented 

Nueral Networks (MANN) 

Convolutional 

Siamese Nueral 

network 

LSTM Meta learner 

Meta Networks Matching Networks MAML 

 
Prototypical 

Networks 
Reptile 

  Proto-MAML 

 

1) Optimization based 

Optimization-based meta-learning algorithms can be 

good at learning with just a few examples and adjusting 

optimization. As an instance, the gradient-based 

optimisation used by deep learning models to learn is not 
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intended to handle a small number of training samples and 

does not converge within a limited number of optimization 

steps. However, this is the problem that meta-learning 

algorithms with an optimization-based approach aim to 

overcome, and these optimization techniques are based on 

hyperparameters. At the outset of the learning process, 

hyperparameters are established, and their values govern 

the entire learning process. Thus, hyperparameters have a 

direct effect on the effectiveness of the training process. 

This approach assists well-designed models in adapting 

to unknown tasks during the testing stage. A Model-

Agnostic Meta-Learning (MAML) method, which is 

considered as well-known example of meta-learning, was 

proposed by Finn et al. [32]. The core methodology of the 

MAML is learning a neural network initialization that 

follows a fast gradient direction to efficiently categorize 

novel classes. Furthermore, the Latent Embedding 

Optimization (LEO) method employed a learning 

algorithm similar to the MAML, incorporating an inner 

loop for task-specific parameter initialization and an outer 

loop for modernizing the parameter [33]. Instead of 

directly learning the explicit high-dimensional model 

parameters, LEO separated the gradient-based adaption 

process within a low-dimensional latent space and learned 

the productive distribution of model parameters. The prior 

meta-learning-based methodology simply proceeded with 

a pure meta-training criterion by training the model from 

scratch. In more recent picture recognition challenges, 

however, researchers have tried combining meta-learning 

and fine-tuning to create a hybrid solution. To maximize 

the use of the advantages of transfer-learning and meta-

learning in the FSL scenario, Chikontwe et al. [34] 

developed a Meta-Transfer Learning (MTL) approach. A 

general meta-learning architecture called SNAIL is made 

of a casual attention layer and an interleaved time 

convolution [35]. To combine the data from previous 

experiences, the convolution network learns the feature 

vector from the training samples. To complete the few-shot 

learning tasks, the causal attention layer chooses 

knowledge from the accumulated experience to be 

popularised towards a new task. To address few-shot 

classification tasks, Chu et al. [36] suggested a 

reinforcement learning model contingent on the maximum 

entropy block sampling technique. 

The usage of gradient over lengthy inner optimizations 

causes a lot of computation and memory concerns. Many 

contemporary approaches are expressed as specific 

examples of a generalized inner loop meta-learning 

framework in a unified gradient-based meta-cognitive 

perspective. The prominent fundamental goal of the study 

of meta-learning is to comprehend an interplay between 

the mechanism of learning and the particular settings in 

which the mechanism is relevant. Due to the short amount 

of training samples in few-shot image classification tasks, 

the learner generally overfits, and before converging to 

yield a better result it is typically trained for millions of 

iterations. These issues not only impair the learner’s 

performance but the model’s ability to classify data 

accurately is also affected. 

2) Metric-learning based methods 

Metric-learning approaches use a straightforward 

methodology that compares the distances or similarities 

between the query image along the corresponding labelled 

image in the support set. To be more explicit, the complete 

support set is encoded into the latent representation space 

first. The query image is then projected into the above 

space, and then the similarity between each query image 

and support image is computed. The category of each 

inquiry image ought to be predicted using the 

correspondence measurement. 

Prototypical network (ProtoNet) which is a classical 

metric-learning-based methodology [21]. As the prototype 

representation, the mean vector of feature embeddings of 

respective support classes was accurately calculated. The 

similarity between each query image and its corresponding 

prototype is then learned for categorization. In particular, 

the nearest-neighbour classifier is used for prediction 

during the testing step. Another exemplary metric-learning 

method was the relation network (Relation-net) suggested 

by Sung et al. [37]. The RelationNet proposed a covariance 

metric network (CovaM-Net) which arrogated new 

covariance metric concerning second-order local 

covariance representation for each class, rather than 

conventional first-order class representations (e.g. mean 

vector), alternately choosing a specific metric function. 

There are no data-independent parameters in the classifier 

considered in metric-learning approaches (for example, 

the nearest-neighbor classifier). As a result, there is no 

purpose to use a fine-tuning process during the testing 

stage. Metric-learning [38] or non-parametric methods 

have so far mostly been used in the well-known but 

particular few-shot meta-learning applications. By merely 

analyzing validation points with training points and 

predicting the label of matching training points, non-

parametric learning is intended to be performed at the inner 

(task) level. This method has been achieved by using 

Siamese, matching, prototypical, relation, and graph 

neural networks along with a certain sequence [39–41]. In 

this scenario, metric learning (identification of a feature 

extractor) which depicts the data properly for comparison 

corresponds to outer-level learning. The extractor is 

utilized for target tasks as before after being learned on 

source tasks. A meta-learning model needs to be trained on 

numerous tasks before being further optimized for new 

tasks. A task is essentially a supervised learning issue 

(such as regression analysis or image classification). The 

concept is focused on how to extract prior information 

from a group of tasks, allowing for efficient learning on 

new tasks. For an image classification problem, an ideal 

setup would comprise many classes, each with at least a 

few samples. 

3) Model learning based methods 

A specialized type of meta-learning approach that 

concentrates on learning a model or representation of the 

underlying tasks or environments is known as model-

based meta-learning. These meta-learning models are not 

based on any broad assumptions.  Instead, they rely on 

models that are specifically developed for quick learning; 

these models quickly change their parameters with 

minimum training. This quick parameter change is 
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accomplished using internal architectures managed by 

another meta-learner model. 

Acquiring a model that successfully generalizes and 

adapts to new tasks with less data is the main objective. In 

model-based meta-learning, the meta-learner develops a 

model to represent the dynamics, structure, or patterns that 

are common to several connected tasks. This model can be 

used to produce simulated data, plan activities for new 

tasks, or make predictions. Model learning-based methods 

generally engage a meta-training approach on a series of 

few-shot tasks derived from base classes during the 

training stage. The goal of the model-based meta-learning 

is to develop the model parameters by leveraging the 

general knowledge acquired through the completion of 

multiple tasks, enabling the model to solve associated tasks 

adaptively and enhancing the performance of few-shot 

learning classification tasks. One crucial area of few-shot 

learning is model-based meta-learning approach. 

Andrychowicz et al. [42] develops meta-learner 

contingent on LSTM and demonstrates a method to 

convert the creation of an optimisation algorithm into a 

learning problem. Another LSTM-based meta learner was 

suggested by Ravi et al. [43] to learn important parameter 

updates and general learning model initialization. The 

Memory-Augmented Neural Network (MANN), which 

trains the Neural Turing Machine (NTM) [44] used as a 

metal earner, was proposed by Santoro et al. [45] as an 

alternative to LSTM. This neural network has better 

memory than usual. The sample feature information is 

retained in the shown external memory module, and the 

reading and writing processes are optimised by the meta 

learning algorithm. 

IV. PROPOSED APPROACH 

A. Meta Learning Process 

Meta-learning, commonly referred to as learning to 

learn, focuses on teaching models how to learn and swiftly 

adapt to new tasks or domains. Meta-learning seeks to train 

models to learn how to learn rather than teaching them for 

a specific activity, allowing them to generalize across 

various tasks and increase their learning efficiency. Meta-

training and meta-testing/adaptation are the two main 

stages in the meta-learning process [46]. The model first 

learns its parameters from a training dataset made up of 

photos from different classes and then utilizes those 

parameters as prior knowledge to fine-tune its parameters 

about a limited training set as mentioned in Fig. 1. Only a 

few instances from each respective class are used to train 

a model, and it is then tested against examples from those 

classes that were withheld from the original dataset, much 

like it will be tested when only a few training examples 

from novel classes are used. Each episode, or pair of train 

and test data points, makes up each training example in this 

scenario. 

A distribution of tasks is established during the meta-

training phase. Each task comprises a particular learning 

challenge or a challenge that the model must overcome. 

The tasks can range in complexity and come from an 

extensive variety of fields. The model is exposed to a small 

labelled dataset or a few training samples for each task 

(few-shot learning setting). Based on these training 

samples, the model is tuned to function properly. In the 

adaptation process to improve the model’s performance, 

the parameters are modified based on the training data. 

Finding a collection of initial parameters that enables the 

model to easily generalize to new tasks is the objective. On 

numerous tasks selected from the task distribution, the 

procedure is repeated. The model builds up knowledge and 

patterns that it can use on future tasks as a result of the 

variety of tasks it is assigned. 

 

 

Fig. 1. Meta Learning process. 

To quickly adjust to new tasks, the model requires to 

establishment of generalizable representations that 

incorporate similarities and transferable information 

across tasks. The model is evaluated using new, unsolved 

problems when the meta-training is finished. These tasks 

are distinct from those that were part of the meta-training. 

The model adjusts to the new task using the knowledge and 

parameters acquired during meta-training. Using the 

provided labelled data, it executes a few gradient updates 

or optimisation processes. The model adjusts its 

parameters for each new assignment to perform well on 

test examples and accumulate prior knowledge so that, at 

the time of inference, it can swiftly pick up knowledge 

unique to a certain task with just a few training instances. 

So forth the parameters are originally learned from a 

training dataset that is made up of images from different 

classes, and they are then used as prior knowledge to 

further fine-tune the characteristics according to the 

limited training set. Based on metrics like accuracy, error 

rate, or similar task-specific measurements, the 

performance of the updated model on the new task is 

determined. To enable models to learn is the basic 

methodology of meta-learning, which enables them to 

quickly adapt to new tasks or domains with minimum 

labelled data. The models develop generalised knowledge 
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and optimisation techniques by training on a variety of 

tasks during meta-training. These techniques can then be 

applied to new tasks during meta-testing or 

adaptation [47–49]. This method is especially helpful in 

situations where getting labelled data for every new 

task might be difficult or expensive. 

B. Episodic Meta Learning 

Episodic meta-learning [26] is an approach in meta-

learning that focuses on learning from episodes or tasks 

rather than individual data points It is particularly useful in 

instances of few-shot learning where the model must 

swiftly adapt to new tasks with an absence of labelled 

samples [50]. Episode comprises organizing training in a 

series of learning problems, each relying on small “support” 

and “query” sets to mimic the few-shot conditions 

encountered during evaluation as explained in Algorithm 2. 

A query data set is preowned to calculate and optimise a 

training loss given the specialised model. The context data 

set is utilised for model specialization and imitates tiny 

datasets used for adaptation at meta-test time as in Fig. 2. 

By generating a collection of small scale simulated tasks 

from a greater set of training tasks during meta-training 

and conducting meta-testing in an analogous way. 

Episodes are generated by a task distribution which has 

been sampled. Each episode represents a distinct 

assignment or instructional scenario as explained in 

Algorithm 2. The tasks can emanate from different fields 

and range in challenges. There are a few common 

parameters used to initialize the model. The generic 

knowledge that is anticipated to apply to a variety of jobs 

is captured by these characteristics [51]. There are a few 

common parameters used to initialize the model. The 

generic knowledge that is anticipated to apply to a variety 

of tasks is captured by these characteristics. The model’s 

parameters are upgraded using gradient-based 

optimization techniques, for instance, Stochastic Gradient 

Descent (SGD), after adaptation on the support set. A 

conceptual change in machine learning is represented by 

episodic meta-learning, which employs episodes to train 

models to swiftly adapt to new tasks with less data. This 

novel method tackles the difficulties associated with few-

shot learning scenarios, in which models have to 

efficiently generalize from a limited number of examples 

per class. Inspired by human learning, episodic meta-

learning emphasizes the capacity to apply knowledge 

gained from a variety of experiences to new circumstances. 

In the realm of few-shot image classification, our research 

pioneers a transformative meta-learning approach 

grounded in the rich framework of episodic learning. By 

orchestrating learning episodes that mirror real-world few-

shot scenarios, our model evolves dynamically, distilling a 

meta-knowledge. 

To reduce loss or error on the query set, modifications 

must be made. A meta-objective, which frequently 

requires combining the losses or errors across numerous 

episodes is utilised to optimize the model parameters. The 

meta-objective directs the model’s learning of parameters 

which help in efficient adaptation and task generalization. 

The model is tested on new episodes that were unseen 

during training after the meta-training is finished. The 

model receives a support set and a query set for every new 

episode. It must adjust to the support set and correctly 

predict or classify the query set. 

 

 

Fig. 2. Episodic Meta learning. 

Algorithm 2: Episodic learning 

Input: Episodic input samples Ex  

Output: Episodic output samples Ey 

1. Generate random samples and select k samples from Ex 

2. sample subsets of Labels L 

3. Sample images constituting support set and query set 

4. Construct a support set and query set such that they contain 

classes of L 

5. Train a series of mini-batches in which the image is 

affiliated to either support or query set 

6. Learn the function f by minimizing the episodic loss 

7. Generate a new sample Xn and learn the f1 by   minimizing 

the update rule 

8. Repeat the method until convergence 

9. For each episode e: predict the label Ey for the occurrence 

of the input Ex Ey = f(Ex) 

C. Prototypical Network 

A metric-based meta-learning method which acts 

similarly concerning a k-nearest neighbor classification is 

called the Prototypical Network, or ProtoNet [19]. A new 

example is categorized using metric-based meta-learning 

techniques dependent on a distance function, d and all the 

components in the support set. How the prototype concept 

is learned in a feature space is how ProtoNets carries out 

this concept as explained in Fig. 3. Each input in the 

support set is initially encoded in an L-dimensional feature 

vector by ProtoNet using an embedding method. 

 

 

Fig. 3. Prototypical network. 
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The principle underlying the prototypical network is 

that there could be an entrenching in which a variety of 

points gather around a single prototype rendition for each 

respective class. It seeks towards learning sample-

averaged per-class prototypes in the feature space. To be 

more precise, embedding functions with trainable 

parameters, prototypical networks calculate the M-

dimensional representation or prototype for each class. 

Additionally, every prototype is its class’s mean vector of 

embedded support points. Prototypical networks offer an 

interesting method for few-shot and zero-shot learning as 

they are more effective than previous meta-learning 

methods. By contriving distances to prototype 

representations for each class, they establish a metric space 

where classification is done. The black dots present next to 

the class label are the averages that do not seek to enable 

model recognition of the images in the prototypes, while 

the coloured dots show an encoded support training set 

followed by generalization to the test set. The prototype 

network learns to integrate these instances into a shared 

feature space given a set of labelled examples for each 

class. This is often accomplished by mapping the input 

examples to embedding vectors using a neural network 

design, such as a Convolutional Neural Network (CNN). 

The network determines the prototype for each present 

class by aggregating the embedded vectors of the labelled 

instances that correspond to that class. For each class in the 

embedding space, the prototypes act as centroids or as 

points of reference. The network computes additional 

examples’ embeddings using the learned embedding 

function to classify them. The distances between each 

class’s prototypes and embeddings are then calculated. 

D. ProtoMAML 

A combination of the prototypical networks and MAML 

is called protoMAML, according to Liu et al. [25]. It 

provides prototype networks with an adaptation 

mechanism akin to (fo) MAML and is demonstrated to 

perform significantly better on Meta-Dataset than 

foMAML. MAML has a challenge with how to construct 

the output classification layer. The output layer must be 

initialized with zeros or randomly in each iteration if each 

task has a distinct number of classes. We just begin with 

random predictions, even if there are always the same 

number of classes. To get a reasonable categorization 

outcome, this calls for numerous inner loop phases. To 

address this issue, Novais [49] proposed combining the 

advantages of Prototypical Networks and MAML. 

Specifically, prototypes are used to initialize the output 

layer, resulting in powerful initialization.  

Using Algorithm 3, ProtoMAML is implemented. by 

sampling the batch of tasks, along with support and query 

set for each task, at the beginning of each training step. 

This simply implies that several support-query set pairings 

from our sampler in the case of few-shot classification are 

sampled. Adjust the current model on support set for each 

task. However, a copy of the model is improved because 

the initial parameters are remembered for other tasks such 

as outer loop gradient update and subsequent training steps. 

The model after it has been adjusted, the first-order 

gradients concerning the starting values are computed. 

Since they directly depend on, gradients in accordance to 

the output layer initialization is taken into account, or 

prototypes, in contrast to simple MAML. 

The model proceeds in two ways to accomplish this. 

First, apply the original model to the support sets to 

enumerate the prototypes. Disconnect prototypes when 

initialising the output layer to stop the gradients. This is 

because gradients between prototypes and the original 

model are not taken into consideration in the inner loop. 

By including prototype networks, ProtoMAML expands 

the MAML framework to few-shot learning settings. Few-

shot learning aims to acquire an understanding of recent 

ideas or classes from a small number of labelled examples. 

To resolve this issue, ProtoMAML makes use of the 

concept of prototype networks. Learning a set of task-

specific prototypes that capture the distinctive qualities of 

each class or concept is the main goal of ProtoMAML. The 

benchmarks for categorizing new cases are these 

prototypes. 

 

Algorithm 3: Proto MAML for Few-Shot Supervised 

Learning 

Require: p(T): Tdistribution accross the tasks Require: α, 

β: step size hyperparameters 

1: initialize θ 

2: While not done do 

3: Sample batch of tasks Ti ∼p(T) 

4: For each base task do 

5: Evaluate the prototype by mean of embedded vector 

concerning K examples 

6: Calculate adapted parameters concerning gradient 

descent: θ 

7: Consideration of the gradients with regards to the output 

layer initialization, i.e. the prototypes, which directly depend 

on θ 

8: end for 

9: Calculate the distance between embedding and prototype 

for each class 

10: Closest prototype is assigned as the predicted class for 

a new class 

11. end while 

V. EXPERIMENTAL APPROACH 

The meta learning approach is scientifically validated in 

this section. To answer the questions, we activate the 

output layer with zeros on each iteration alternatively, as 

described above, we develop an experimental test-bed that 

matches the random. Even if the number of classes remains 

constant, we intend to implement episodic meta-learning. 

To start with arbitrary predictions, we assess a few few-

shot scenarios. This necessitates a learning scenario. The 

process of training a model’s number of inner loop steps to 

provide correct parameters such that only a few gradient 

steps or a single classification conclusion, are required. 

Researchers developed a gradient step, which delivers 

strong results on a novel job that can combine the 

advantages of MAML with a prototype seen from a feature 

learning approach as developing networks to handle this 

issue. 

In particular, initialising internal delineation that is 

predominantly suitable for many tasks. Prototype 

networks to initialise our output layer strongly. The 
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internal representation is adaptable to many scenarios, 

which can be demonstrated that the linear layer with 

softmax can fine-tune the parameters moderately. 

A.  Experimental Setup 

In all attempts to learn the embedding, the same network 

of architecture is utilized. The neural network f is agitated 

of four convolutional blocks: a 22 max pooling layer, a 

batch normalization layer, a 64-filter 33 convolution, and 

a ReLU nonlinearity. This architecture was chosen to keep 

the experiment as close to earlier results while also 

demonstrating that the implemented technique does not 

necessitate significant modifications in the setup of the 

meta-learning algorithms. All the models were trained 

with the SGD optimizer and a learning rate of 0.05. 

B. Algorithms 

The episodic training method is preowned to run the 

meta-learning algorithms, Prototypical Networks and 

protoMAML.These algorithms were chosen because they 

are canonical representations of metric-based and 

optimization-based meta-learning. To assess the 

improvement obtained by constructing episodes with meta 

learning, we compare them to uniformly selected baselines. 

C. Datasets 

Omniglot and SVHN are two well-known and 

commonly utilized datasets. Omniglot is divided into 

individual sets of 30 training classes, 10 validation lessons, 

and 10 testing classes for alphabets. There are 50 alphabets 

in Omniglot. The Omniglot “background” images are used 

as training sets. We are going to train our model using a 

data source of 40,000 few-shot classification assignments. 

The training set alphabets and testing set’s alphabets are 

employed in completely divergent scenarios. This ensures 

that the model will attain to categorize characters that were 

not observed during training when it becomes subjected to 

the test. The Street View Home Numbers (SVHN) dataset 

is a real-world image collection for home number 

detection. Although it has classes 0 to 9 like MNIST does, 

it is challenging due to its real-world environment and 

potential for distracting numbers to the left and right. Each 

image is assigned a class between 0 and 9 that corresponds 

to the image’s prime digit. 

VI. RESULT AND DISCUSSION 

This section incorporates the experimental findings of 

few representative algorithms on universal datasets, as 

well as evaluation and conclusions, to compare the 

performance of various meta learning methods. The 

scenarios generated in this collection of studies are 

permitted to designate the context sets at meta-test, 

demonstrating that developing better context sets at test 

time is functional for meta-learning algorithms to 

acclimate and accomplish new tasks. In most 

circumstances, metric-based meta-learning algorithms 

outperform other algorithms. The fundamental cause for 

this effect is improved space coverage. Sample batch of 

tasks, along with support and query set for each task, at the 

beginning of each training step. This involves selecting 

several support-query set pairings from our sampler in case 

of few-shot classification. Thus, the present model is fine-

tuned on the support set for respective activity. However, 

the original settings must be remembered for the remaining 

tasks. The outer loop gradient update along with the 

subsequent training steps must duplicate our model and 

only fine-tune the replica. Classification accuracy for 5-

way 1-shot and 5-way 5-shot tests are considered as an 

evaluation criterion. Accuracy is a frequent evaluation 

metric used by researchers to evaluate the model’s 

performance in few-shot image classification issues. The 

percentage of samples successfully categorised by the 

model among all samples is termed classification accuracy. 

 

Accuracy =
Number of correctly classified samples

Number of total samples
× 100% 

 

The model is trained to ingeminate through a large 

number of arbitrarily generated few-shot classification 

tasks, with the fit method updating the model via episodic 

meta-learning after each task. As previously mentioned, 

this is known as episodic training. ProtoMAML can 

outperform ProtoNet, as seen in Figs. 4 and 5. This is 

because as sample sizes increase, it becomes more 

important to modify the parameters of the underlying 

model. ProtoMAML, however, performs worse than 

ProtoNet for K = 2. Since there is a risk of overfitting with 

more updates, it is likely related to the decision to use 200 

inner loop updates. Nevertheless, it is challenging to arrive 

at any statistically significant conclusions due to the huge 

standard deviation for K = 2. 

In this research, the obtained results demonstrate a 

notable improvement and enhancement compared to 

existing methodologies, indicating a successful and 

impactful improvisation in the proposed methodology as 

mentioned in Table II. 

TABLE II. ACCURACY OF THE PROPOSED ALGORITHM (5-WAY 

ACCURACY) 

Algorithm Dataset 1-shot (%) 5-shot (%) 

ProtoNet Omniglot 99.07±0.16 99.07±0.56 

ProtoMAML SVHN 61.20±1.80 75.50±0.80 

 

 

Fig. 4. Few shot performance protonet and proto maml on omniglot 

dataset. 
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Fig. 5. Few shot performance protonet and proto maml on SVHN 

dataset. 

VII. CONCLUSION 

In this research, we explore the function of episodes in 

popular few-shot learning methods to understand the 

reasons behind the impoverished competitiveness of meta-

learning approaches about traditional baselines. Under the 

research, the hyperparameters utilized to sample these 

events have a significant impact on the performance. By 

combining the Prototypical Networks and MAML with the 

closely related episodic analysis, we were able to ignore 

these hyperparameters, while improvising the few-shot 

classification accuracy. ProtoNet offers alternative 

advantages compared to ProtoMAML, specifically a very 

cheap training and test cost as well as an uncomplicated 

implementation. The few-shot image classification is a 

research topic combined with practical applications. The 

performance is closely related to the scale and amenity of 

the dataset. Through the utilization of meta-learning 

principles, the model demonstrates a capacity to rapidly 

adapt to novel classes with limited examples, showcasing 

its potential for real-world applications where data scarcity 

is a common challenge. The episodic learning framework 

enables the model to generalize effectively from a small 

number of support examples, exhibiting a form of memory 

and abstraction akin to human-like learning. This not only 

enhances the model’s ability to handle novel tasks but also 

contributes to the efficiency and scalability of the few-shot 

learning process. 

Furthermore, current few-shot image classification 

methods are designed particularly for large datasets. Due 

to data security restrictions and the complexity of data 

collection, there are extremely few segments of data 

research in these special disciplines. As a result, 

constructing a more appropriate multimodal fusion 

strategy to further boost the classification is a few-shot 

image classification research trend. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Syeda Roohi Fatema and Sumana Maradithaya 

conducted the research and analyzed the data. Syeda Roohi 

Fatema wrote the paper. All authors have approved the 

final version. 

REFERENCES 

[1] C. Cao, Y. Li, Q. Lv, P. Wang, and Y. Zhang, “Few-shot action 

recognition with implicit temporal alignment and pair similarity 

optimization,” Computer Vision and Image Understanding, vol. 

210, 103250, 2021. 

[2] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto, “A 

baseline for few-shot image classification,” arXiv preprint, 

 arXiv:1909.02729, 2020. 

[3] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-

learning in neural networks: A survey,” IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 5149–

5169, 2021. 

[4] I. H. Sarker, “Deep learning: A comprehensive overview on 

techniques, taxonomy, applications and research directions,” SN 

Computer Science, vol. 2, no. 6, 2021. 

https://doi.org/10.1007/s42979-021-00815-1 

[5] H.-J. Ye and W.-L. Chao, “How to train your MAML to excel in 

few-shot classification,” arXiv preprint, arXiv:2106.16245, 2021. 

[6] D. Sahoo, H. Le, C. Liu, and S. C. Hoi, “Meta-learning with domain 

adaptation for few-shot learning under domain shift,” in Proc. ICLR, 

2019. 

[7] L. F.-F., “A Bayesian approach to unsupervised one-shot learning 

of object categories,” in Proc. the Ninth IEEE International 

Conference on Computer Vision, France, 2003, vol. 2, pp. 1134–

1141. 

[8] W. Liu, X. Chang, Y. Yan, Y. Yang, and A. G. Hauptmann, “Few-

shot text and image classifification via analogical transfer learning,” 

ACM Trans. Intell. Syst. Technol., vol. 9, pp. 1–20, 2018. 

[9] L. Gui, Y.-X. Wang, and M. Hebert, “Few-shot hash learning for 

image retrieval,” in Proc. the 2017 IEEE International Conference 

on Computer Vision Workshops, Venice, Italy, 2017, pp. 1228–

1237. 

[10] S. Qiao, C. Liu, and A. L. Yuille, “Few-shot image recognition by 

predicting parameters from activations,” in Proc. the IEEE 

Conference on Computer Vision and Pattern Recognition, Salt Lake 

City, UT, USA, 2018, pp. 7229–7238.  

[11] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot 

learning for semantic segmentation,” arXiv preprint, 

arXiv:1709.03410, 2017.  

[12] B. Liu, X. Yu, A. Yu, P. Zhang, G. Wan, and R. Wang, “Deep few-

shot learning for hyperspectral image classification,” IEEE Trans. 

Geosci. Remote Sens., pp. 2290–2304, 2018 

[13] I. Ashrafifi, M. Mohammad, A. S. Mauree, and K. M. Habibullah, 

“Attention guided relation network for few-shot image 

classifification,” in Proc. the 2019 7th International Conference on 

Computer and Communications Management, Bangkok, Thailand, 

2019, pp. 177–180.  

[14] L. Gui, Y.-X. Wang, and M. Hebert, “Few-shot hash learning for 

image retrieval,” in Proc. the 2017 IEEE International Conference 

on Computer Vision Workshops, Venice, Italy, 2017, pp. 1228–

1237.  

[15] R. Singh, V. Bharti, V. Purohit, A. Kumar, A. K. Singh, and S. K. 

Singh, “MetaMed: Few-shot medical image classification using 

gradient-based meta-learning,” Pattern Recognit., vol. 120, 108111. 

2021. 

[16] Y. Yu and N. Bian, “An intrusion detection method using few-shot 

learning,” IEEE Access, vol. 8, pp. 49730–49740, 2020.  

[17] K. Zhao, X. Jin, and Y. Wang, “Survey on few-shot learning,” J. 

Softw. vol. 32, pp. 349–369, 2021. 

[18] Y. Wang, Q. Yao, J. Kwok, and L. M. Ni, “Generalizing from a few 

examples: A survey on few-shot learning,” arXiv preprint, 

arXiv:1904.05046, 2020. doi: http://arxiv.org/abs/1904.05046 

[19] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for 

few-shot learning,” arXiv preprint, arXiv:1703.05175, 2012. 

doi: http://arxiv.org/abs/1703.05175 

[20] J. Kim, T. H. Oh, S. Lee, F. Pan, and I. S. Kweon, “Variational 

prototyping-encoder: One-shot learning with prototypical images,” 

in Proc. the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, 2019, pp. 9462–9470. 

[21] M. Assran and M. Rabbat, “On the convergence of Nesterov’s 

accelerated gradient method in stochastic settings,” in Proc. ICML, 

2020.  

[22] Y. Wang, R. Girshick, M. Hebert, and B. Hariharan, “Low-shot 

learning from imaginary data,” in Proc. the 2018 IEEE/CVF 

Journal of Image and Graphics, Vol. 12, No. 2, 2024

213

https://doi.org/10.1007/s42979-021-00815-1


Conference on Computer Vision and Pattern Recognition, Salt Lake 

City, USA, 2018, pp. 7278–7286. 

[23] H. Zhang, J. Zhang, and P. Koniusz, “Few-shot learning via 

saliency-guided hallucination of samples,” in Proc. the 2019 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, Long Beach, CA, USA, 2019, pp. 15–20. 

[24] Y. Liu, H. Zhang, W. Zhang, G. Lu, Q. Tian, and N. Ling, “Few-

shot image classification: Current status and research trends,” 

Electronics, no. 11, 1752. 2022. 

https://doi.org/10.3390/electronics11111752 

[25]  E. Triantafillou, T. Zhu, and V. Dumoulin et al., “Meta-dataset: A 

dataset of datasets for learning to learn from few examples,” in Proc. 

ICLR, 2020.  

[26] B. Ermis, G. Zappella, Cedric, and C. Archambeau, “Towards 

robust episodic meta-learning,” in Proc. the Thirty-Seventh 

Conference on Uncertainty in Artificial Intelligence, 2021, pp. 

1342–1351. 

[27] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “The 

Omniglot challenge: A 3-year progress report,” Current Opinion in 

Behavioral Sciences, vol. 29, pp. 97–104, 2019. 

[28] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, 

“Reading digits in natural images with unsupervised feature 

learning,” in Proc. NIPS Workshop on Deep Learning and 

Unsupervised Feature Learning, 2011. 

[29] K. Killamsetty, C. Li, C. Zhao, R. Iyer, and F. Chen. “A reweighted 

meta learning framework for robust few shot learning,” arXiv 

preprint, arXiv:2011.06782, 2020. 

[30] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. 

Wierstra, “Matching networks for one shot learning,” arXiv preprint, 

arXiv:1606.04080, 2017. doi: http://arxiv.org/abs/1606.04080 

[31] M. A. Shedivat, L. Li, E. Xing, and A. T. Walkar, “On data 

efficiency of meta-learning,” in Proc. International Conference on 

Artificial Intelligence and Statistics, 2021, pp.1369–1377.  

[32] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning 

for fast adaptation of deep networks,” in Proc. the 34th 

International Conference on Machine Learning, Sydney, NSW, 

Australia, 2017, pp. 1156–1168. 

[33] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. 

Osindero, and R. Hadsell, “Meta-learning with latent embedding 

optimization,” arXiv preprint, arXiv:1807.05960, 2018. 

[34] P. Chikontwe, S. Kim, and S. H. Park, “CAD: Co-adapting 

discriminative features for improved few-shot classification,” in 

Proc. the 2022 IEEE/CVF Conference on Computer Vision and 

PatternRecognition, New Orleans, USA, 2022, pp. 19–20. 

[35] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple 

neural attentive meta-learner,” arXiv preprint, arXiv:1707.03141, 

2018. doi: http://arxiv.org/abs/1707.03141  

[36] W.-H. Chu, Y.-J. Li, J.-C. Chang, and Y.-C. F. Wang, “Spot and 

learn: A maximum-entropy patch sampler for few-shot image 

classifification,” in Proc. the 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition, Long Beach, CA, USA, 

2019; pp. 6244–6253.  

[37] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. 

Hospedales, “Learning to compare: Relation network for few-shot 

learning,” in Proc. the 2018 IEEE/CVF Conference on Computer 

Vision and Pattern Recognition, Salt Lake City, USA, 2018, pp. 

1199–1208.  

[38] W. Li, J. Xu, J. Huo, L. Wang, Y. Gao, and J. Luo, “Distribution 

Consistency Based Covariance Metric Networks for Few-Shot 

Learning,” in Proc. the AAAI Conference on Artificial Intelligence, 

2019, vol. 33, no. 1, pp. 8642–8649. 

[39] J. Zhu, J. J.-Jaccard, A. Singh, I. Welch, A. S. Harith, and S. 

Camtepe, “A few-shot meta-learning based Siamese neural network 

using entropy features for ransomware classification,” Computers 

& Security, vol. 117, 102691, 2022. 

[40] F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao, “Collect and 

select: Semantic alignment metric learning for few-shot learning,” 

in Proc. the 2019 IEEE/CVF International Conference on 

Computer Vision, Seoul, Korea, 2019, pp. 8459–8468. 

[41] P. Chikontwe, S. Kim, and S. H. Park, “CAD: Co-adapting 

discriminative features for improved few-shot classification,” in 

Proc. the 2022 IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, New Orleans, LA, USA, June 2022, 19–20. 

[42] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, 

T. Schaul, B. Shillingford, and N. de Freitas, “Learning to learn by 

gradient descent by gradient descent,” Adv. Neural Inf. Process. 

Syst, vol. 29, 3981–3989, 2016. 

[43] S. Ravi and H. Larochelle, “Optimization as a model for few-shot 

learning,” in Proc. the 5th International Conference on Learning 

Representations, ICLR 2017, Toulon, France, 2017, pp. 24–26.  

[44] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” 

arxiv preprint, arxiv:1410.5401, 2014. 

[45] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, 

“Meta-learning with memory-augmented neural networks,” in Proc. 

the International Conference on Machine Learning, New York, NY, 

USA, 2016, pp. 1842–1850.  

[46] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. 

Osindero, and R. Hadsell, “Meta-learning with latent embedding 

optimization,” arXiv preprint, arXiv:1807.05960, 2018.  

[47] M. Garouani, A. Ahmad, M. Bouneffa, M. Hamlich, G. Bourguin, 

and A. Lewandowski, “Using meta-learning for automated 

algorithms selection and confifiguration: an experimental 

framework for industrial big data,” Journal of Big Data, vol. 9, no. 

1, pp. 1–20, 2022. 

[48] J. Vanschoren, “Meta-learning: A survey,” arXiv preprint, 

arXiv:1810.03548, 2018. 

[49] P. Novais, “Meta-learning and the new challenges of machine 

learning,” International Journal of Intelligent Systems, vol. 36, no. 

11, pp. 6240–6272, 2021 

[50] M. A. Shedivat, L. Li, E. Xing, and A. T. Walkar, “On data 

efficiency of meta-learning,” in Proc. International Conference on 

Artificial Intelligence and Statistics, 2021, pp. 1369–1377.  

[51] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. 

Agarwal, “Deep batch active learning by diverse, uncertain gradient 

lower bounds,” arXiv preprint, arXiv:1906.03671, 2019. 

 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

 

Journal of Image and Graphics, Vol. 12, No. 2, 2024

214

https://doi.org/10.3390/electronics11111752
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/



