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Abstract—The integration of deep learning in medical image 

analysis is a transformative leap in healthcare, impacting 

diagnosis and treatment significantly. This scholarly review 

explores deep learning’s applications, revealing limitations in 

traditional methods while showcasing its potential. It delves 

into tasks like segmentation, classification, and enhancement, 

highlighting the pivotal roles of Convolutional Neural 

Networks (CNNs) and Generative Adversarial Networks 

(GANs). Specific applications, like brain tumor segmentation 

and COVID-19 diagnosis, are deeply analyzed using datasets 

like NIH Clinical Center’s Chest X-ray dataset and BraTS 

dataset, proving invaluable for model training. Emphasizing 

high-quality datasets, especially in chest X-rays and cancer 

imaging, the article underscores their relevance in diverse 

medical imaging applications. Additionally, it stresses the 

managerial implications in healthcare organizations, 

emphasizing data quality and collaborative partnerships 

between medical practitioners and data scientists. This 

review article illuminates deep learning’s expansive potential 

in medical image analysis, a catalyst for advancing healthcare 

diagnostics and treatments.   

 
Keywords—deep learning, machine learning, medical image 

analysis, high-quality medical image datasets 

 

I. INTRODUCTION 

The realm of image processing stands as a pivotal means 

for executing diverse procedures on images, aiming to 

yield enhanced visuals or extract valuable information. 

Across medical imaging, techniques like Computed 

Tomography (CT), Magnetic Resonance Imaging (MRI), 

mammography, ultrasound, Positron Emission 

Tomography (PET), and X-ray have long been 

instrumental in disease treatment, early diagnosis, and 

evaluation. The interpretation of medical images 

traditionally fell within the expertise of specialists adept at 

analysis and diagnosis. However, owing to the vast 
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spectrum of pathologies, the susceptibility of human 

fatigue, and the inherent variability among experts leading 

to potential errors, the integration of computer-assisted 

methodologies has emerged as imperative, mitigating the 

likelihood of misdiagnosis. 

The inadequacy of traditional machine learning 

algorithms in tackling the complexities inherent in medical 

imaging has become apparent. However, propelled by 

advancements in rapid processors, the intersection of deep 

learning and medical images now offers substantial 

promise. This synergy empowers accurate and efficient 

disease diagnosis, prevention, and treatment, supporting 

professionals in the medical domain.  

Compared to methods incorporating machine learning, 

deep learning into medical image processing presents a 

wide range of transformative benefits. Traditional 

approaches often rely heavily on extraction of features and 

rule-based systems which can be time consuming and 

prone, to oversight due to the subtle nature of medical 

images. On the hand machine learning algorithms 

demonstrate a capacity to independently learn and identify 

complex patterns without explicit human involvement. 

This adaptability is particularly crucial in the field of 

imaging, where there is variability in how pathologies 

present. Machine learning systems powered by networks 

can automatically extract relevant features from extensive 

datasets enabling them to achieve exceptional accuracy in 

tasks such as image recognition and classification. 

Furthermore, these systems employ an end-to-end learning 

approach that eliminates the need for task allocation, 

streamlines processes, and reduces the risk of human error. 

The combination of machine learning and processors 

further enhances efficiency allowing for timely and precise 

disease diagnosis, prevention and treatment. In summary, 

machine learning methods offer a solution to overcome the 
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limitations of approaches by effectively navigating the 

complexities involved in medical image analysis. 

For decades, human superiority in recognizing and 

differentiating patterns within medical images stood 

unchallenged. Presently, sophisticated deep learning 

algorithms enable machines to interpret and discern these 

patterns, marking a paradigm shift [1]. Deep learning, a 

subset of Artificial Intelligence (AI) rooted in Machine 

Learning (ML), mimics the structural and functional 

principles inspired by the human mind [2]. 

Artificial intelligence based on deep learning, guided by 

algorithms and formed by hidden neural cells, has become 

an important aspect in data science, with applications 

found in image recognition, classification, language 

processing, robotics, and other fields [3]. The Deep Neural 

Network (DNN), a cornerstone of deep learning, 

autonomously learns and extracts features sans human 

intervention, contingent upon the availability of ample 

data for learning and extraction [4]. Deep learning systems, 

leveraging substantial datasets alongside profound 

experience, exhibit remarkable accuracy in executing tasks. 

Furthermore, these systems perform classification 

processes on raw data via end-to-end learning, thereby 

eradicating the need for manual task allocation. 

The incorporation of AI in medical domains dates back 

to the previous century. However, inefficacies prevailed 

owing to hardware limitations and underdeveloped models. 

Notwithstanding, the evolution of artificial intelligence 

has witnessed substantial strides, bestowing physicians 

with potent tools for image-based medical processing. 

This article endeavors to review the gamut of deep 

learning algorithms employed in medical image 

processing across various diagnostic domains. It 

comprehensively lists and discusses the utilization of 

algorithms such as CNN, DBN, and SAE, elucidating their 

applications in disease diagnosis, classification, image 

enhancement, segmentation, image generation, and 

conversion. Additionally, this review delineates three 

primary contributions to the amalgamation of medical 

image processing and deep learning: 

Deep exploration of deep learning techniques in medical 

image analysis has been a significant focus, especially in 

segmentation and classification for disease diagnosis and 

treatment, particularly in medical imaging modalities such 

as MRI, CT scans, and X-rays. 

A critical examination of the challenges and limitations 

encountered while employing deep learning techniques in 

medical image analysis. These challenges include the 

imperative need for high-quality data, the interpretability 

of deep learning models, and the potential biases within the 

training data. The article accentuates the necessity for 

collaboration between medical experts and data scientists 

to craft effective deep learning models tailored for medical 

image analysis. 

An insight-based study covering various applications is 

currently being conducted, including brain tumor 

segmentation, breast cancer detection, skin cancer 

classification, and COVID-19 diagnosis. Moreover, it 

delves into the distinct datasets employed in medical 

image analysis, including the BraTS dataset for brain 

tumor segmentation and the COVID-CT dataset for 

COVID-19 diagnosis. 

In essence, this article serves to elucidate the potential 

of deep learning techniques within medical image analysis 

while underscoring the pressing need for continued 

research to surmount the challenges and limitations 

confronting the field. 

II. MEDICAL IMAGE DATASETS 

The dataset stands as a fundamental component 

significantly influencing the efficacy of a program 

employing deep learning algorithms. Its quality, including 

accurate labeling and proper construction, proves pivotal 

for effective learning [4]. Across diverse fields, large 

datasets are extensively utilized in processing medical 

images, acknowledged and endorsed by regulatory 

authorities as crucial for facilitating robust deep learning 

processes. 

The NIH Clinic’s Chest X-ray dataset boasts an 

extensive collection of over 112,120 chest X-ray images 

derived from more than 30,000 patients. This repository 

specifically identifies and labels 14 prevalent chest 

diseases through text mining techniques applied to the 

reports. However, it’s essential to note that these disease 

tags might contain errors as they’ve been generated 

through natural language processing methodologies [5]. 

This dataset is freely accessible and serves as a valuable 

resource for academic research [5]. Fig. 1 provides a 

sample representation from the Chest X-ray dataset. 

 

 

Fig. 1. NIH clinic’s chest X-ray dataset [5]. 

The Cancer Imaging Archive (TCIA) stands as the 

National Cancer Institute’s official repository, dedicated to 

housing cancer-related data. It meticulously upholds legal 

and technical protocols, employing robust anonymity 

measures to safeguard sensitive information [6]. This 

online repository serves as a comprehensive collection 

encompassing diverse datasets pertinent to cancer studies. 

Among its contents are a wide array of resources, 

including images, clinical data, and genomic information. 

The BraTS dataset comprises data obtained from a 

competition showcased during conferences focusing on 

“Medical Image Computing” and “Computer-Assisted 

Intervention,” emphasizing cutting-edge research in the 

field [7, 8]. This dataset features brain tumor images 

meticulously categorized by expert evaluators. The 

primary goal of the competition revolves around 

identifying the most effective algorithm capable of 

accurately segmenting tumors utilizing MR images. 
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Notably, in 2018, the competition expanded its focus to 

enhance predictions regarding patient survival. Fig. 2 

provides an illustrative sample from the BraTS dataset. 

 

 

Fig. 2. BraTS dataset example. 

The SARS-CoV2-CT and COVID-CT datasets play a 

crucial role in evaluating the effectiveness of CT scans for 

detecting COVID-19. Zhang et al. [9] conducted research 

focusing on diagnosing COVID-19 infection through the 

analysis of CT images. They used a COVID-CT dataset 

consisting of 349 CT scans collected from 216 individuals 

diagnosed with COVID-19. Similarly, Soares et al. [10] 

utilized the SARS-CoV-2 dataset to ascertain COVID-19 

infection employing deep learning methodologies. This 

dataset includes CT images sourced from 60 individuals 

with confirmed COVID-19 and 60 individuals presenting 

diverse lung conditions. Fig. 3 offers a representative 

glimpse into the SARS-CoV2-CT and COVID-CT 

datasets. 

 

 
(a)                                           (b) 

Fig. 3. SARS-CoV 2-CT and COVID-CT datasets’ example.  (a) SARS-

CoV2-CT dataset, (b) COVID-CT. 

The Digital Database for Screening Mammography 

(DDSM) is a robust repository specifically designed for 

breast cancer detection, covering more than 2,620 patient 

records [11]. Each scan within the DDSM encompasses 

approximately 10,480 mammogram data points, and 

meticulously categorized into three distinct classifications: 

normal, benign, and melanoma. Notably, these scans 

undergo thorough scrutiny and validation by specialized 

medical imaging professionals to ensure accuracy and 

reliability. The images within this database are captured 

and stored in JPEG format. Fig. 4 offers a representative 

sample showcasing mammography images from the 

DDSM dataset. 

 

 

Fig. 4.  DDSM dataset example. 

III. DEEP LEARNING METHODS 

Deep learning techniques include a variety of versatile 

algorithms that are widely used in many fields, including 

language analysis, recognition systems, and especially in 

the field of image processing. This study specifically 

delves into the realm of medical image processing 

algorithms. Within this domain, the focus is directed 

towards the utilization of Convolutional Neural Networks 

(CNNs) and Generative Adversarial Networks (GANs). 

These sophisticated frameworks serve pivotal roles in 

tasks such as classification, segmentation, image 

generation, and enhancement. 

A. Convolutional Neural Networks (CNN)  

CNNs, known as Convolutional Neural Networks, 

stands as one of the most successful and prevalent types of 

deep learning architectures for image analysis and 

classification [12]. Initially developed by Fukushima in the 

late seventies, CNN’s structure, characterized by multiple 

layers and the utilization of CNNs filters, processes inputs 

into smaller dimensions to extract essential features [13]. 

The evolution of CNNs for image analysis began in the last 

century, with significant milestones marking its progress. 

Yann LeCun’s work on LeNet in 1998 represented one 

of the earliest successful implementations of CNNs for 

recognizing text through back-propagation methods [14]. 

Despite these advancements, early CNNs faced limitations, 

necessitating multiple layers for extracting comprehensive 

visual features. Consequently, numerous subsequent 

algorithms sought to address these limitations and enhance 

deep learning systems. 

In 2012, AlexNet proposed by Krizhevsky et al. [2] 

marked a significant leap, further advancing CNNs 

capabilities and continuing to shape the field. Subsequent 

developments such as VGGNet by Karen and Andrew [15], 

GoogLeNet by Christian et al. [8], ResNet by 

Kaining et al. [16], DenseNet by Gao Huang et al. [17], 

and EfficientNet by Mingxing and Quoc [18] showcased 

the continuous evolution of CNNs architectures, each 

introducing novel approaches and structures to enhance 

image classification. 

The general CNNs structure for disease detection, as 

illustrated in Fig. 5, typically involves a sequence of layers: 

Convolutional, Activation, Pooling (comprising max and 

average pooling), Fully Connected, and Output layers [19]. 

The Convolutional layer, acting as the input layer, applies 

filters over the input image to generate feature maps by 

convolving the image [20]. These filters, with their 

specific coefficients, undergo iterative adjustments during 

training [3]. 

After passing through the convolution layers, the 

pooling layers, although optional, play a role in reducing 

dimensions and increasing computational efficiency, 

although with a slight loss of information [21, 22]. 

Meanwhile, the fully connected layer, which is the last 

layer of the network, combines the output of the previous 

layers with weights that have been determined through 

training based on a loss function [23]. This is an important 

process in the establishment and training of artificial 

neural networks for various image processing and pattern 
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recognition tasks. Activation functions within this layer 

calculate classification probabilities, making CNNs a 

preferred choice for medical image classification, 

especially when leveraging large labeled datasets for 

improved accuracy [21]. 

 

 

Fig. 5. General Convolutional Neural Networks (CNNs) architecture for 

brain disease detection 

B. Contested Producer Networks (CPN)  

In 2014, Goodfellow et al. [24] introduced the 

Generative Adversarial Network (GAN), aiming to expand 

image datasets and facilitate the transformation of textures 

or patterns from one image to another. Conceptually, this 

network operates as a manufacturer (“generator”) striving 

to create realistic images and a “splitter” (“discriminator”) 

discerning real from fake [24]. The GAN architecture 

comprises two adversarial models: the generator and the 

discriminator, engaged in a continual adversarial interplay, 

as illustrated in Fig. 6. 

 

 

 Fig. 6. Contested producer network architecture. 

The discriminator’s role lies in distinguishing between 

genuine and generated images, akin to traditional binary 

classification problems [25]. It produces a binary output 

(real/fake), guiding the generator in updating parameters 

to produce images that increasingly resemble genuine data. 

Throughout its evolution, various GAN iterations have 

emerged to address diverse tasks in image manipulation. 

Cycle-GAN, employing two stacked GAN models, excels 

in transforming images across diverse concepts [26]. 

Utilizing CNNs in both its generator and discriminator, 

Cycle-GAN primarily works with image data. Meanwhile, 

the DC-GAN architecture focuses on image-to-image 

conversion, renowned for its effectiveness [27]. Patch-

GAN is deployed in the discriminator to evaluate images 

by partitioning them into smaller sections, enhancing its 

discrimination capabilities [28]. Additionally, the 

Wasserstein GAN (W-GAN) model introduces the 

“Wasserstein Distance” in the GAN model, aiming to 

balance the training process and generate more consistent 

outcomes [29]. 

IV. APPLICATION OF DEEP LEARNING 

This segment of the article delves into the multifaceted 

applications of deep learning algorithms in medical image 

analysis. It covers a spectrum of tasks including 

segmentation, classification, and disease diagnosis, 

showcasing the pivotal role played by deep learning in 

accurate and efficient medical diagnostics. Additionally, 

the article explores applications in medical image creation, 

enhancement, and transformation. These applications 

underscore the versatility and significance of Deep 

learning methodologies in revolutionizing medical image 

analysis for a spectrum of purposes, from precise diagnosis 

to innovative image enhancement techniques. 

A. Segmentation 

Segmentation means dividing the image into significant 

areas retaining various features [30]. It means extracting 

labels for each pixel and making predictions about these 

labels by some inference processes. It is used widely in 

separating the homogeneous regions for diagnosis and 

treatment’s initial and critical components in medical 

image processing [23].  

Previously, this process has been done using different 

filters and mathematical formulas. This field has been 

developed recently, and deep learning-based techniques 

for segmentation tasks have been adopted.  

The segmentation process is vital in providing the 

essential features and information in CT and MRI medical 

images. It works on defining the organs or lesions’ 

pixels [31].  

Typically, CNN algorithms are utilized to do the 

segmentation process, the most prevalent deep learning 

technique employed in this sector [32]. The segmentation 

process helps analyze medical images in Computer-Aided-

Diagnosis (CAD) systems. Also, classification models are 

used for segmentation, for example, “detection tumor or 

lesion based on segmentation, then determine their type 

using classification process”. 

Zheng et al. [33] made progress in localizing kidneys, 

on CT scans by using segmentation techniques. This 

approach provided insights into the variations in kidney 

shape. Also offered data augmentation. However, the 

study has some limitations that prevent an assessment of 

its novelty, such as not discussing how applicable the 

findings are to diverse datasets and not considering 

concerns related to data. Nevertheless, one of the strengths 

of this article is its exploration of data augmentation 

methods and the integration of Multi Step Learning (MSL), 

which enhances the proposed methodology and deepens 

our understanding of the topic. 

In the field of pathology and microscope image analysis, 

Pan et al. [34] focused on improving nucleus detection 

using CNNs algorithms. Their approach, which centers 

around a scale fully convolutional neural network excels at 

detecting cells across various types and sizes with great 

versatility. Despite these strengths one notable weakness 

is that their work lacks comparisons with existing methods 

and provides details about their network training process. 

This absence of information limits reproducibility. A full 

understanding of their proposed approach. 
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Addressing pancreas segmentation in CT images, 

Farag et al. [35] utilized abdominal organs to generate data 

for developing computer aided tools. 

Their methodology is notable for its thoroughness and 

competitive performance metrics, indicating promise in 

the field of pancreas segmentation. However, the article 

faces transparency challenges due to information about the 

dataset and a lack of aids that could improve readers 

understanding of the methods effectiveness. Providing 

dataset information and incorporating visualizations 

would strengthen the overall impact of the article. 

Numerous enhancements have been made to CNN 

models resulting in segmentation processes. 

Long et al. [36] innovatively improved their models’ 

capabilities by replacing the connecting layer with a Fully 

Convolutional Network (FCN) enabling intelligent pixel 

wise prediction of dense images. While the article 

effectively explains concepts particularly focusing on 

FCNs and providing an overview of their architecture and 

key components, it assumes a high level of reader 

knowledge and lacks a thorough discussion on FCNs 

limitations. The demonstrated practical effectiveness of 

FCNs is a strength. However, addressing limitations and 

making the content more accessible to a wider audience 

could further enhance the impact of the article. 

Zhou et al. [37] introduced an approach to segmenting 19 

organs using a 2.5D Fully Convolutional Network (FCN) 

based on 3D CT images. The article highlights the 

effectiveness of their methodology the 2D FCN, with 3D 

voting in achieving accurate CT image segmentation. 

However, there are some weaknesses to consider, such as 

accuracy for structures and a limited focus on CT images 

without discussing how well the model generalizes to other 

imaging methods. The article addresses these limitations 

by providing comparisons and evaluations which 

contribute to its strength as a segmentation method. 

Sun et al. [38] proposed an approach using 3D 

Convolutional Networks (FCNs) for brain tumor 

segmentation in MRI images. Their work is notable for its 

methodology and unique multi pathway architecture 

contributing to the field. However, there are areas where 

improvement is needed, such as ensuring result 

reproducibility, comparing their method with existing 

approaches and providing visualizations to support their 

findings. Strengthening these aspects would enhance the 

impact of their work in the field of brain tumor 

segmentation. 

Ronneberger et al. [39] expanded on the concept of 

Convolutional Networks (FCNs) by introducing the net 

model specifically designed for biomedical image 

segmentation. 

The U net model, which has a shape resembling the 

letter “U”, incorporates a contraction section that’s similar, 

to CNN structures. This section includes activation 

functions (such as “ReLU”) and pooling layers. Notably 

the expansion section of the U net receives output features 

from the contraction section allowing for the generation of 

an input image with the size and resolution. The U net, like 

FCNs uses a series of up sampling and downsampling 

layers that are connected through a hop connection process. 

This enhances the flow of information for accurate 

segmentation, as shown in Fig 7. Although the article 

presents an approach to image segmentation using U Net 

it lacks sufficient method comparisons and consideration 

of ethical implications. The strengths of this approach 

include an effective methodology, performance on 

challenging datasets and a comprehensive implementation 

with detailed evaluation metrics for U Net. To improve the 

contribution of the article, it would be beneficial to address 

implications more thoroughly and provide a more 

extensive comparison with existing methods. Additionally, 

visually explaining the architecture of U net would be 

helpful.

 

Fig. 7. U-net Architecture. 

Çiçek et al. [40] have contributed to the development of 

the U-net structure by designing a 3-dimensional model 

specifically for volumetric segmentation. The model they 

developed has an approach that allows for precise 

separation of volumetric data in the field from 2-

dimensional image slices. The authors who introduced a 

network specifically designed for volumetric segmentation, 

provide a theoretical analysis of its operation, and use the 

technique effective data enhancement. However, in order 

to make an impact in the field of image segmentation, it is 

important to address the identified shortcomings by 

conducting detailed comparisons with other methods that 

provide more applicable features and conducting diverse 

evaluations, thereby providing clearer motivation. 
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Different versions of the developed U-net model are 

used in the medical image, such as U-net++m RU-net and 

R2U-net Multi ResU-net, SAU-net, ASCU-net, and 

MRFU-net [41–46]. 

1) MRI image brain tumor segmentation 

This section focuses on Brain tumor segmentation 

utilizing the BraTs-2020 dataset and the U-net model. The 

study’s primary objective involves outlining the 

segmentation process for the tumor’s core, leveraging the 

E1-Ce sequence MRI image, acquired using short-stroke 

radio frequencies, providing a clearer depiction of the 

tumor’s core. 

The MRI images are formatted in NIFTI and exhibit 

three axes: axial, coronal, and sagittal, with a pixel size of 

240×240. Variations in pixel intensity within MRI images 

often necessitate normalization during preprocessing to 

facilitate effective model training. 

Upon defining the tumor core’s coordinates, the image 

is centered for cropping purposes. Subsequently, the entire 

240×240 MR image is iteratively circled by x and y 

coordinates using a 64×64 frame. Regions displaying the 

highest density, indicative of potential tumor regions, are 

selected for the cropping process. 

The cropping operation may involve multiple segments 

based on tumor size. The U-net model is trained using the 

cropped E1-Ce MRI image, and manual segmentation by 

radiologists provides the ground truth data. 

The optimization algorithm, Adam, is employed during 

training, while the Dice Similarity Ratio serves as the 

model metric. This ratio is a statistical measure assessing 

the similarity between two datasets, commonly used in 

segmentation tasks. Following the training process, 

verification reveals Dice Similarity Ratio and sensitivity 

values of 68% and 80%, respectively. 

Fig. 8 illustrates the cropping operation applied to the 

MRI image before its utilization in model training. The 

model predicts segmentation slices, with the actual slices 

presented alongside the clipped slices. The U-net model 

demonstrates similarity between its output and the labeled 

parts of the image. Table I showcases the success rates and 

methodologies employed in various brain tumor 

segmentation studies. 

TABLE I. RECENT RESEARCH BASED ON BRAIN TUMOR SEGMENTATION 

Ref. Dataset Method Observations Result 

[47] BraTS 2015 
Deep Learning, 

CNN 

Convolutional neural networks have been 

studied on MR images to identify various 

tumor types. 

Dice Similarity Rate: 86.7% 

Accuracy: 98.33% 

[48] 

BraTS 2013 

BraTS 2015 

BraTS 2018 

Deep Learning, 

CNN 

In the first stage of the two-stage 

architecture, a multi-stage convolutional 

neural network architecture was 

developed (multi-cascaded convolutional 

neural network-MCCNN) to consider the 

local dependencies of the tags and 

perform rough segmentation. In the 

second stage, fully connected conditional 

random fields CRFs were used, taking 

into account the spatial context 

information, to eliminate some spurious 

outputs to provide more precise 

segmentation. 

BraTS 2013: Whole tumor: 89% accuracy, 90% 

sensitivity, Core tumor: 82% accuracy, 84% sensitivity, 

Enlarged tumor: 77% accuracy, 86% sensitivity 

BraTS 2015: Whole tumor: 87% accuracy, 87% 

sensitivity, Core tumor: 76% accuracy, 74% sensitivity, 

Enlarged tumor: 75% accuracy, 80% sensitivity 

BraTS 2018: Whole tumor: 88.24% accuracy, 90.74% 

sensitivity, Core tumor: 74.81% accuracy, 76.21% 

sensitivity, Enlarged tumor: 71.78% accuracy, 86.84% 

sensitivity 

[49] 
BraTS 2015 

BraTS 2017 

Deep Learning, 

CycleGAN 

An unpaired challenge training approach, 

an extended version of the cycleGAn 

architecture, is presented to segment the 

entire tumor and distinguish the core 

tumor region and other regions on the 

brain MR image. The proposed 

RescueNet (residual cyclic unpaired 

encoder-decoder network) uses residual 

and reflection principles. It has been 

stated that much less data is required for 

training. 

BraTS 2015: Whole tumor: 94.01% accuracy, , Core 

tumor: 94.29% accuracy, Enlarged tumor: 87.32% 

accuracy, 

BraTS 2017: Whole tumor: 94.63% accuracy, Core 

tumor: 58.6% accuracy, Enlarged tumor: 93.54% 

accuracy. 

[50] BraTS 2020 
Deep Learning, 

GAN 

A contentious generator network 

architecture, called Vox2Vox that enables 

brain tumor segmentation from 3D 

volume to 3D volume is presented. 

BraTS 2020: Whole tumor: 94.01% accuracy, 94.63% 

Harsdorf Similarity Ratio, Core tumor: 94.29% 

accuracy, 58.6% Harsdorf Similarity Ratio, Enlarged 

tumor: 87.32% accuracy, 93.54% Harsdorf Similarity 

Ratio 

[51] 

brain tumor 

dataset 

(figshare.com) 

Deep Learning, 

CNN 

A fully automated brain tumor 

segmentation and classification model 

using a Deep Convolutional Neural 

Network (DCNN), which includes a 

multi-scale approach, is presented. 

Dice Similarity Rate: 82.8% 

Accuracy: 94% 

present 

study 
BraTS 2020 

Deep Learning, 

CNN 

Tumor segmentation was performed on 

MRI images in the T1 Ce sequence with 

U-net architecture. As normalization, the 

clipping algorithm was applied to the MR 

images. 

Dice Similarity: Rate 86% 

Accuracy: 80% 

Journal of Image and Graphics, Vol. 12, No. 3, 2024

220



B. Classification and Disease Diagnosis 

Classification in medical imaging involves discerning 

the presence or absence of diseases within images, a 

critical process aiding in disease identification and 

classification, including distinguishing benign from 

malignant tumors. Deep learning techniques are 

extensively applied in this domain [52, 53]. 
 

 

Fig. 8. Brain tumor segmentation sample results based on U-net. 

The inception of deep learning in medical images dates 

to 2013 when Borsch and Tam introduced classification 

using Stacked Autoencoders (SAE) and RBM 

algorithms [54]. Significant progress has been made in the 

field of Alzheimer disease identification by researchers, 

such as Plis et al. [55], Suk and Shen [56], Suk et al. [57]. 

Alzheimer disease recognition applied Deep Belief 

Network (DBN) and Stacked Autoencoder (SAE) 

techniques based on MRI images. 

Plis et al. [55] provide an overview of deep learning 

methods. They lack an analysis of biological relevance and 

guidance on parameter selection. Suk and Shens 

innovative approach combine factor analysis with learning 

demonstrating novel methods with high accuracy, 

although there is a need for method comparisons and 

discussions on limitations [56]. Suk et al. [57] utilize a 

feature representation approach presenting a method 

description, but they also lack method comparisons and a 

clear definition of AD/MCI.  

In the field of detection, Gulshan et al. [58] introduce an 

approach that utilizes CNN algorithms along, with a 

diverse dataset. Despite achieving accuracy metrics, the 

study lacks information regarding utility, data privacy 

considerations and ethical aspects. Similarly, 

Gargeya et al. [59] have made notable contributions to 

diabetic screening through various studies, showcasing 

impressive sensitivity and specificity metrics. However, 

these researches are still lacking in addressing the impact 

and comparing it with existing methods. Acknowledging 

the progress made by the CNN algorithm in detecting 

retinopathy, it is also important to address its limitations 

and note the caveats.  

CNN algorithms have been widely applied in medical 

image analysis covering a range of applications. For 

instance, Lam et al. [60] focused on identifying 

retinopathy stages based on color fundus images achieving 

sensitivity and specificity equal to 95% and 94%, 

respectively However, their study lacked an assessment of 

utility and comparisons with methods. Similarly, 

Anton et al. [61] contributed to glaucoma identification 

with accuracy. However, they failed to compare their 

approach with existing methods or discuss related ethical 

issues. Chepala et al. [62] using Keras for brain tumor 

classification offered a user interface. However, they do 

not provide comparisons with other methods or details 

about pre-processing steps. Waghmare et al. [63] achieved 

accuracy in brain tumor classification. Did not provide 

detailed information about preprocessing steps or 

comparative analyses with alternative methods. 

Daz-Pernas et al. [51] achieving 97% accuracy in brain 

segmentation and classification like studies lacked details 

on preprocessing steps hyperparameter selection and 

comparative analyses. Finally, Nawaz et al. [64] focused 

on breast cancer detection using CNN models. However, 

they do not mention the details of image pre-processing. 

Make comparisons with other method. 

Khan et al. [65] have discussed the classification of 

breast cancer using CNN architectures. However, they do 

not provide reasons for the parameters used. Make 

comparisons with existing methods. In another study, 

Zheng et al. [66] Developed the deep learning EABA 

model for brain tumor detection achieved 97% accuracy.  

Several other studies have focused on cancer 

classification using CNN algorithms in types such as lung, 

prostate and skin cancers [67–73]. Zaid and Ghouti [67] 

proposed an automated pipeline for cancer classification. 

However, they did not compare it with existing methods or 

provide details about handling noisy images. Wu et al. [68] 

achieved accuracy in cancer classification, but lacked 

model interpretation and evaluation of generalization. 

Khan et al. [69] introduced a deep learning network based 

on CT image denoising and fusion for COVID-19 

screening. While showcasing accuracy, they did not 

include comparisons or validation on datasets. 

Arvidsson et al. on the hand investigated the 

generalization of prostate cancer classification with 

accuracy, but lacked model interpretation and evaluation 

of generalization [70]. 

Sun et al. [71] and Lakshmanaprabu et al. [72] have 

successfully applied deep learning algorithms, for lung 

cancer diagnosis. They haven’t provided thorough model 

interpretation and generalization assessment. Similarly, 

Heuvelmans et al. [73] achieved accuracy in lung cancer 

prediction using learning techniques, but they didn’t offer 

detailed model interpretation or generalization evaluation. 

Although these studies contribute insights into cancer 

classification, it is essential to address these identified 

weaknesses to further improve the reliability and 

practicality of the proposed methodologies in clinical 

settings. 

In skin cancer classification, Dorj et al. [74] made 

contributions by developing a CNN model that achieved 

remarkable accuracy, sensitivity and specificity. Their 

study utilized RGB images for classifying four types of 

skin cancer and demonstrated performance metrics. 

However, it’s worth noting that their research lacks 

comparisons with existing methods or baselines for skin 
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cancer classification and validation, on datasets or 

domains.  

In the field of medical image analysis, deep learning 

applications have made advancements in addressing lung 

cancer, skin cancer and even playing a crucial role during 

the ongoing COVID-19 pandemic. Zheng and Qian [71] 

delve into lung cancer diagnosis using deep learning 

algorithms on a dataset. However, their work lacks 

analyses and exploration of hyperparameters. 

Jinnai et al. [75] have contributed to the field of skin 

cancer classification through their region-based CNN 

model. Their approach achieves accuracy. It would be 

beneficial to see comparisons with state-of-the-art 

methods and a detailed analysis of hyperparameters. 

Shifting our attention to the context of COVID-19, 

Cai et al. [76, 77] have successfully quantified COVID-19 

pneumonia using CT imaging with accuracy. However, it 

would be useful to have comparisons with techniques and 

exploration of hyperparameters for their Net approach. 

Wang et al. [78] have developed a deep learning algorithm 

for COVID-19 screening based on CT images 

demonstrating accuracy. Nonetheless, it would be valuable 

to include benchmarking and an analysis of 

hyperparameters in their study. Roy et al. [79] utilize 

learning for lung ultrasonography in the diagnosis of 

COVID-19 achieving results. However, it would be 

important to compare their method with existing 

approaches and explore hyperparameters further. 

Hemdan et al. [80] introduce a framework for COVID-19 

diagnosis in X ray images using seven deep learning 

classifiers. While they emphasize timeliness, it is worth 

considering datasets for training models and conducting 

comparisons well as thorough hyperparameter analyses. 

Despite these studies limitations they collectively 

contribute to the evolving landscape of medical image 

analysis. Showcase the applications of deep learning in 

healthcare. It is crucial that future research addresses these 

identified weaknesses to ensure progress in this field. 

Table II summarizes various techniques and success rates 

for COVID-19 automatic detection based on deep learning. 

Fig 9 showcases recent classification studies: (a) brain 

tumor analysis [51], (b) breast cancer identification [60], 

(c) skin cancer classification [81], and (d) distinguishing 

normal lung X-rays from COVID-19 infected lung X-

rays [80]. These studies underscore the broad applicability 

of deep learning in medical image classification across 

diverse conditions.

 

 

Fig. 9. Recent classification studies: (a) brain tumor analysis [51], (b) breast cancer identification [60], (c) skin cancer classification [80], and (d) 

distinguishing normal lung X-rays from COVID-19 infected lung X-rays [80].

C. Medical Image Creation and Transformation 

Deep architectures play a pivotal role in medical 

applications, offering methods to enhance and manipulate 

algorithms for transforming data, particularly in 

generating information for areas with sparse data. In image 

conversion, 3D or 2D CNNs are widely employed, distinct 

from classification networks by lacking typical pooling 

layers. Instead, these networks are trained on paired input-

output images, capturing the discrepancy between the 

outputs [82]. 

Qu et al. [83] introduced a deep learning network that 

synthesizes 7T T1 weighted MRI images from their 3T 

counterparts. This innovative approach combines 

information, from wavelet domains utilizing wavelet 

transformation and a Wavelet based Affine 

Transformation (WAT) layer. What sets this network apart 

is its ability to capture both local features resulting in 

improved image quality and impressive performance 

across metrics. In a vein, Li et al. [84] addressed the issue 

of MRI synthesis for MR guided radiotherapy. Their study 

employed learning models like CycleGAN, Pix2Pix and U 

Net to tackle this problem with remarkable success. 

However, one must consider the limitations stemming 

from an imbalanced dataset of brain tumor patients, which 

raises concerns about the generalization and robustness of 

the models used. Additionally, Nie et al. [85] presented an 

approach that converts MRI images to CT images using 3T 

7T brain scans. The proposed method excels in generating 

target images while incorporating context techniques. 

Nonetheless it is worth noting that the use of imbalanced 

datasets in various medical imaging tasks may impact the 

broader applicability of this approach. 

In the field of computer assisted diagnostics and 

physician training, the generation of images is widely used 

to enhance data diversity. A groundbreaking approach by 

Han et al. [86] introduced a Generative Adversarial 
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Network (GAN) method for creating synthetic brain MR 

images that possess characteristics compared to original 

scans. While the conditional GAN framework empowers 

users with control over the generation process and 

incorporates cycle consistency loss functions to maintain 

consistency, there are some limitations in this study. 

Specifically, the use of a homogeneous dataset consisting 

solely of healthy subjects raises concerns about how well 

this approach can be generalized or adapted for broader use. 

Similarly, Qiao et al. [87] proposed a context sensitive 

CorGAN network focused on medical image generation 

with an emphasis on 3D MR imaging. By leveraging a 

dataset from the Cancer Imaging Archive, their CorGAN 

model demonstrates its effectiveness in capturing temporal 

information through generators equipped with Long Short-

Term Memory (LSTM) units and recurrent discriminators 

utilizing convolutional LSTM (ConvLSTM) units. The 

performance evaluation includes metrics such as mean 

error, peak signal to noise ratio, structural similarity index 

well, as visual quality assessment. 

TABLE II. AUTOMATIC DETECTION OF COVID-19 DISEASE BY DEEP 

LEARNING FROM MEDICAL IMAGES 

Ref. Dataset Type Method Results 

[63] A 

Chest 

CT 

images 

ResNet50, VGG16, 

Inception V3, 

DenseNet121, 

DenseNet201 

Accuracy = 90 

Precision = 60–70 

Specificity = 60–70 

[71] B 

Chest 

CT 

images 

CNN, Decision trees 

Accuracy = 82.9 

Precision = 81 

Specificity = 84 

[75] C 
chest 

X-ray 

Inception V3, 

Xception, and ResNet 

F1-Score = 94 

Accuracy = 95 

Precision = 96 

Recall = 91 

[76] D 

Chest 

CT 

images 

inception transfer-

learning 

Accuracy = 89.5 

Sensitivity = 0.87 

Specificity = 0.88 

[78] E 
chest 

X-ray 
VGG-19 

F1-Score=100 

Accuracy=96.3 

[79] F 

Chest 

CT 

images, 

chest 

X-ray 

VGGNet-19, 

ResNet50, 

InceptionV3, Xception 

F1-Score = 90.5 

Accuracy = 90 

Precision = 91 

Recall = 900.3 

[80] G 
CT 

images 
DenseNet 

Accuracy = 92 

Precision = 97 

Specificity = 0.8 

Note: A: https://nihcc.app.box.com/v/DeepLesion/folder/51877983116, 

https://nihcc.app.box.com/v/DeepLesion/folder/51877983116 

B: Clinical dataset of 44 patients infected with COVID-19, 55 typical 

viruses 

C: Chest X-ray (Covid-19 and Pneumonia) | Kaggle 

D: collected CT images of 259 patients include; 180 cases viral 

pneumonia, 79 cases SARS-COV2. Also, 15 cases COVID-19 

E: covid-chest x-ray-dataset/images at master · ieee8023/covid-chest x-

ray-dataset · GitHub 

F: https://github.com/UCSD-AI4H/COVID-CT/tree/master/Images-

processed, https://www.kaggle.com/tawsifurrahman/covid19-

radiography-database 

G: CT image of the patient(146-COVID-2955) 19, 149 Normal 

 

However, there are concerns regarding the ability of the 

CorGAN approach to generalize and remain robust due to 

the utilization of an unbalanced dataset. Fig. 10 illustrates 

various studies showcasing synthetic image generation 

methods.  

 

 

Fig. 10. Medical image creation with deep learning, (a) CycleGAN 

generating a retinal image [88], (b) pix2pix GAN model transforming 

MRI images into PET photos [89], (c) synthetic brain image created using 

the DCGAN model from T1 and 2T sequences [85]. 

D. Medical Images Enhancement 

The quality of medical images significantly influences 

diagnostic accuracy in both manual assessments and 

computer-assisted systems. However, acquiring high-

quality images is often impeded by the need for speedy 

acquisition and hardware limitations. Image enhancement 

techniques aim to refine digital images, employing 

methods like blurring, super-resolution, and noise 

reduction to elevate their quality, thereby enhancing 

various image analysis tasks, such as segmentation, 

classification, and detection. 

In the field of medical image processing, 

Armanious et al. [90] utilized MedGAN to address PET 

CT noise issues and correct MRI artifacts. Their study 

demonstrated transparency adherence to established 

neuroimaging practices and the use of evaluation metrics, 

including the Alzheimers Disease Neuroimaging Initiative 

(ADNI) database. However, it is important to note that 

their research had limitations due to the use of a dataset 

with characteristics. This highlights the necessity for 

generalizability of the model. Additionally, concerns arise 

regarding the absence of alternative evaluation methods 

and scans showcasing abnormalities particularly in 

scenarios involving brain tumors. 

Jifara et al. [91] introduced a feed forward Denoising 

Neural Network (DnCNN) for medical image denoising by 

incorporating batch normalization and residual learning 

techniques. Their article presents a methodology, clear 

explanations and comprehensive experimental results. 

Nevertheless, it is crucial to consider aspects related to 

privacy and data consent in their research. Furthermore, 
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there is exploration of how their model generalizes across 

diverse medical imaging scenarios. 

In the realm of medical image processing, Li et al. [92] 

proposed an enhanced neural network (3DECNN) aiming 

at improving spatial resolution in CT images. Their work 

showcases architecture along, with a description of the 

models details and thorough experimentation. However, 

there are some drawbacks to consider. One is the lack of 

discussion, which should be addressed. Additionally, the 

generalizability of the findings and the sensitivity of 

hyperparameters need exploration to ensure robustness 

across imaging scenarios [93]. In a study conducted by 

Yamashita and Markov [94], the focus was enhancing low-

quality optic nerve head images captured with Optical 

Coherence Tomography (OCT) using Single Image Super 

Resolution (SR) networks such as Sparse Representation-

based Convolutional Neural Network (SRCNN), Very 

Deep Super Resolution (VDSR), Deep Recursive 

Convolutional Network (DRCN), and Enhanced Super-

Resolution Generative Adversarial Networks (ESRGAN). 

The study provided a problem statement, an overview of 

SR networks and a transparent experimental setup. 

However, it is important to acknowledge that limitations 

such as training data, limited diversity in data sources and 

preliminary results may affect the applicability of their 

findings in real world scenarios [95]. Another interesting 

proposal was made by Raudonis et al. [96], who suggested 

a focal image fusion technique for enhancing early stage 

embryo images using a U-Net architecture. This study 

introduced an approach to fusion along with insights into 

hardware setup and comprehensive comparisons with 

alternative methods. However, the study presented some 

weaknesses that need to be addressed. Among these are the 

lack of exploration of how this method can be applied to 

various types of data, the absence of subjective 

comparisons of formalized images, and the lack of 

discussion of the limitations and challenges faced by the 

U-Net architecture. Additionally, a more in-depth 

examination of the trade-off between processing speed and 

image clarity is needed. Fig. 11 illustrates the 

transformative capabilities of deep learning in medical 

images. 

 

 

Fig. 11. Medical image creation and enhancement with deep learning, (a) 

MedGAN’s PET to CT scan conversion, addressing MRI motion artifacts 

and noise reduction [97, 98], (b) using WGAN to remove noise from low-

dose radiation images, subsequently converting them into standard CT 

scans [93]. 

V. CONCLUSION 

Deep learning stands as a prevalent technique in 

imaging analysis, offering diverse network architectures 

and algorithms that find applications in early diagnosis and 

treatment across various domains. Within healthcare, it 

serves as a tool for analyzing medical images, potentially 

reducing reliance on specialized expertise. While deep 

learning models confront challenges like data scarcity and 

suboptimal mathematical designs, a wealth of published 

studies underscores the technology’s enduring promise. 

This article serves as a comprehensive guide to deep-

learning techniques in medical image processing. It 

explores the pivotal roles of medical image segmentation 

and classification in disease diagnosis and treatment, 

spotlighting recent advancements fueled by deep learning 

algorithms. The coverage spans techniques and success 

rates in brain tumor segmentation, breast cancer detection, 

skin cancer classification, and COVID-19 diagnosis. 

Additionally, it delves into diverse deep learning 

algorithms like CNN, DBN, and SAE, showcasing their 

applicability across multiple medical imaging modalities, 

including MRI, CT, and X-ray. This piece aims to furnish 

a comprehensive overview of the technology’s 

multifaceted applications within the medical imaging 

landscape, catering to deep-learning users in this industry. 

From a managerial standpoint, this article underscores 

how healthcare organizations and medical imaging 

companies can harness deep learning algorithms to elevate 

the precision and efficiency of medical image analysis, 

thereby enhancing disease diagnosis and treatment 

outcomes. The critical importance of data quality and 

quantity in shaping effective deep learning models is 

highlighted, providing healthcare managers with insights 

to prioritize data collection and management efforts. 

Moreover, the article emphasizes the pivotal role of 

collaboration between medical practitioners and data 

scientists in crafting impactful deep-learning models for 

medical image analysis, encouraging cross-disciplinary 

teamwork and fostering the adoption of these techniques 

in medical imaging practices. 
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