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Abstract—Stomatal density influences plant photosynthesis, 

transpiration, and secondary production like fruit and oil. It 

could serve as a selection criterion for developing plant 

varieties. The genetic diversity of patchouli is still relatively 

limited owing to a lack of flowering and fruiting; therefore, 

genetic variability is also limited. One approach to 

overcoming this problem is to collect plants from specific 

regions, called accessions, to identify potential varieties 

capable of producing abundant and high-quality patchouli oil. 

Parameters such as stomatal density were evaluated during 

this process. Conventional manual calculations have inherent 

drawbacks, including time constraints, low precision, and 

susceptibility to bias. Therefore, automated methods are 

essential for stomatal detection models and counting 

calculations based on deep learning. The dataset consisted of 

100 and 400 microscopy images split at a ratio of 8:2 for the 

training and testing data, respectively. A stomata detection 

model using YOLOv5 achieved precision, recall, and 

F1−Score of 0.88 each. The accuracy of the stomata 

calculation on the test data was 97%. This result 

demonstrates the ability of the model to calculate the 

stomatal density in microscopy images. 

 

Keywords—deep learning, patchouli, stomata detection, 

stomatal density, YOLOv5 

I. INTRODUCTION 

Patchouli is an herbaceous plant or shrub, and a rare 

wood that provides a pleasant scent for medicines, 

perfumes, and cosmetics. Patchouli produces essential oils, 

known as patchouli oil. The main compound responsible 

for the aroma is patchoulol or patchouli alcohol. Patchouli 

can be used as a spice, eaten as functional food or 

prescribed as a drug. The chemical compound patchoulol 

causes patchouli to react as a drug in the treatment of 

human diseases. Patchouli is useful as an influenza 

antiviral, antidepressant, lung-protective, brain-protective, 

and antibacterial agent [1]. However, the genetic diversity 

of patchouli remains relatively low. This is because 

patchouli does not flower or bear fruit; therefore, there are 

no natural or artificial crossings. Plant propagation through 

stem cutting and tissue culture results in a lack of genetic 

variability [2, 3]. 

Efforts have been made to increase the genetic diversity 

of patchouli by exploring various production centres and 

other regions. Plants for patchouli research were collected 

from specific sites (accessions). The next step was to 

continue the selection of accessions based on 

morphological characteristics such as leaf shape and stem 

colour. Accessions were observed, characterised, 

evaluated, and selected to obtain patchouli accessions with 

the potential to produce high-quality products [4]. The 

parameters observed during accession selection included 

the number of stomata on the leaves based on microscopic 

observations. 

Stomatal density directly affects the photosynthesis and 

transpiration of the plants, which in turn affects the 

secondary production of the plants, such as flowers, fruits, 

and oil [5]. Stomatal density has potential as a selection 

criterion for varietal development in tea plants [6] and for 

the breeding of drought-tolerant oil palms [7]. Studies on 

stomatal density and patchouli oil glands have been 

conducted to determine the internal structure (anatomy) of 

patchouli [8, 9]. The analysis of patchouli stomatal density 

can be used for plant breeding in the selection process of 

new patchouli varieties based on ideotype breeding 

(character traits for selection). Ideotype breeding is a plant 

breeding method that focuses on the selection and 

development of plants with specific characteristics [10]. 

The traditional method for obtaining stomatal density is 

manual calculation, which is time-consuming and has low 

accuracy [11]. This occurs because of the weak and limited 

image quality [12]. To address this problem, an intelligent 

stomatal counting model based on object detection is 

needed, which will help researchers calculate the amount 

and density of stomata. Research on stomatal detection has 
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been conducted using template-matching techniques on 

microscopy images of wheat and barley leaves that have 

almost the same stomatal size [13]. Six templates were 

utilised to capture variations in stomatal shape. In image 

analysis, template matching compares an input image with 

a predefined reference image to identify and locate objects 

or patterns. Stomatal detection depends on the template 

that has been specifically chosen, so it cannot capture the 

various shapes and positions of the stomata, leading to 

inaccurate detection. Low contrast values between 

stomatal cells and backgrounds result in low accuracy in 

distinguishing stomata from other objects, and template 

matching requires manual segmentation of multiple 

training images to build template datasets, which can be 

time-consuming and biased. 

Generally, research on stomata in microscopy images 

has been conducted using image-processing approaches 

with segmentation, thresholding, and morphological 

operations within the framework of small-scale data. 

Image-processing research has focused on machine 

learning and computational processes that can recognise 

increasingly diverse object patterns. Computer vision is 

widely associated with image processing and machine 

learning, and it is used to predict or detect objects in a 

broader range of studies [14]. Stomata detection research 

has continued to grow with the development of machine 

learning and deep learning algorithms for object detection. 

Computer vision has developed in various fields, such 

as agriculture, to classify varieties of chickpeas [15], 

wheat [16], and breeding programmes [17], and to classify 

varieties for the nursery plant industry [18]. Using 

dermoscopic images, Deep Convolutional Neural Network 

(DCNN) models in the medical field, which contain 

various artefacts such as hair, gel bubbles, and blood 

vessels, which pose a challenge in the skin lesion 

classification process, are used to help diagnose skin 

diseases [19]. The DCNN was applied for the 

identification of human digestive tract abnormalities using 

endoscopic images. The problems of interclass similarity 

in gastrointestinal abnormalities and the presence of 

artefacts in the images became a challenge in the 

identification task [20]. Similar to medical images, 

microscopy images of patchouli stomata contain artefacts 

such as trichomes and epidermis, which pose a challenge 

in the detection of stomata overlapping with trichomes. 

Microscopy images are downscaled to train the model 

without losing details on the data content or knowledge of 

stomatal object recognition. YOLOv5 is part of the CNN 

method that uses the Convolution + Batchnorm + SiLU 

(CBS) module. 

Since 2014, deep learning-based object detection has 

evolved. It is primarily divided into two parts: a single-

stage and a two-stage detector. The single-stage detector 

technique comprises You Look Only Once (YOLO), 

single-shot multi-box detector (SSD), Retina-Net, 

CornerNet, and CenterNet. Object detection techniques 

that include two-stage detectors include Region-

Convolutional Neural Networks (R-CNNs), Spatial 

Pyramid Pooling Networks (SPPNNs), fast R-CNNs, 

faster R-CNNs, and Feature Pyramid Networks 

(FPNs) [21]. 

YOLO was the first single-stage detector to apply a 

single neural network to an entire image in deep learning. 

YOLO divides an image into multiple regions and 

simultaneously predicts bounding boxes and probabilities 

from each region. YOLO is trained to understand images 

and immediately optimizes recognition performance. The 

YOLO algorithm was designed to detect objects in images 

by predicting the bounding box and class probabilities 

directly from the image in a single stage. This approach 

differs from two-stage object detection algorithms, which 

use a two-stage proposal process for region 

classification [21]. 

Stomata detection research was conducted on a small 

dataset (183 soybean leaf images), resulting in high 

accuracy and precision. Some stomata in the images were 

visually blurred but were still analysed if they were 

recognisable as stomata by the human eye. The object 

detection model using YOLO demonstrated exceedingly 

high average accuracies for YOLOv3, YOLOv4, and 

YOLOv5 (94%, 98%, and 99%, respectively) [22]. This 

indicates that the YOLO model can successfully recognise 

stomatal patterns in the test images without requiring a 

large number of labelled images. 

Researchers encounter three main challenges when 

working with microscopic images: size, quantity, and the 

time required for annotation [23]. The YOLO model 

utilises smaller images without losing important details, 

and the trained model can detect objects in larger images. 

However, YOLO has the disadvantage of reduced 

accuracy in detecting small objects. An improved YOLO 

has been developed to overcome this problem. YOLOv5 is 

open-source software that enables researchers to develop 

the YOLOv5 architecture by adding an attention 

mechanism module. Research using YOLOv5 

encompasses the detection of stomata in broad bean leaves 

with a precision value of 93% [24]. Other research on non-

stomata objects include the detection of mummy berry 

disease with 96% accuracy [25] and fish detection with 

95% accuracy [26]. 

Stomatal detection studies commonly use datasets from 

fruit crops, nuts, and food crops such as wheat and maize. 

However, there is a lack of stomata datasets for aromatic 

plants such as patchouli in the Cuticle Database 

(https://cuticledb.eesi.psu.edu), especially for superior 

patchouli varieties. Therefore, we need patchouli stomata 

datasets for training and testing object detection models. 

The analysis of microscopy images of stomata in plants 

with diverse leaf structures is challenging [27]. Some 

images may be of consistent quality and ease of analysis, 

but obstructed objects and unclear guard cells hinder 

successful detection. Stomatal density, which represents 

the number of stomata per field of view, was critical for 

analysis. Current calculations require manual labelling 

using software such as ImageJ, which is a cumbersome and 

time-consuming process with limited accuracy. Biologists 

often select microscopy images with visible stomata for 

ease of observation and counting, overlooking images with 

poor quality and noise [27]. 
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Patchouli has trichomes (leaf hairs) on its leaves, so the 

resulting microscopy images sometimes overlap between 

stomata and trichomes. The patchouli epidermis is so thin 

that the stomata sometimes appear blurred. Overlapping 

and blurring of microscopy images is the main challenge 

in patchouli stomata detection research. The microscopy 

image dataset is divided into datasets without noise and 

those with noise. YOLOv5 has several advantages to 

support more applications, including being lightweight, 

fast, and able to run on mobile platforms [28]. The 

algorithm used for stomatal detection is YOLOv5, which 

includes YOLOv5s, YOLOv5m, and YOLOv5l, which 

were combined in this study as a baseline for detecting 

stomata in superior varieties of patchouli. 

The objectives of this study were 1) to integrate a deep 

learning algorithm for automatic detection of stomata in 

microscopy images of patchouli and 2) to count stomata to 

analyse stomatal density as a parameter that affects 

production and essential oil levels in patchouli. The results 

of this study can be used to conduct stomatal density 

analysis to contribute to plant breeding (proliferation) in 

the selection of new patchouli varieties based on ideotype 

breeding (characteristics for selection) and patchouli 

secondary parameters. 

A. Problem-Solving Approach 

Stomata regulate two physiological functions, namely, 

photosynthesis and transpiration [29]. Variations in 

stomatal density suggest that this trait can be improved 

through well-designed breeding strategies [6]. Ideotype 

breeding is a plant breeding method used to select and 

develop plants with specific characteristics. Ideotype 

breeding involves the selection of desirable traits to create 

an ideal plant [30]. However, ideotype breeding aims to 

produce plants with better yield potential and pest and 

disease resistance. 

Traditional stomata counting relies on visual 

observations by researchers. Stomata types are diverse and 

scattered in many images of different sizes, causing 

manual stomata calculations to be easily missed, time-

consuming, and costly. To address this problem, a stomatal 

detection model and automatic stomata count calculations 

based on computer vision are needed. 

B. State of the Art and Novelty 

Many studies on stomatal detection have been 

conducted using plant datasets at the plant family and 

species levels, and this study proposes patchouli varieties. 

Related studies are presented in Table I. 

Based on previous research and studies on stomatal 

detection, the best accuracy was achieved using the 

YOLOv5 algorithm. Based on the strength of YOLOv5, 

the YOLOv5 algorithm was used to detect and calculate 

stomatal density in patchouli. Patchouli has trichomes, or 

leaf hairs, so the stomata overlap with the trichomes. This 

condition creates noisy microscopy images. This is a 

challenge and a novelty in research related to stomatal 

detection in patchouli microscopy images. 

 

 

TABLE I. RESEARCH ON STOMATA (2017–2023) 

Methods Object Accuracy 

Cascade Object Detection 

(COD) [27] 
Grape 74% 

Deep Convolutional Neural 

Networks (DCNN) [31] 
Cuticle database 94% 

YOLOv3 [23] 
Common beans, barley, 

and soybeans 
91% 

Deep learning (VGG19) [32] Herbarium 94% 

Single-Shot Detector  

(SSD) [33] 
Quinoa (whole grain) 94% 

Mask Region-CNN (Mask R-

CNN) [34] 
Gymnosperms 90% 

Faster R-CNN [35] Wheat 92% 

DCNN [36] Maize 94% 

SSD [7] Oil palm 96% 

YOLOv5 [22] Soybean 98% 

YOLOv5 [24] Broad bean 93% 

II. MATERIALS AND METHODS 

The research method of the object detection-based smart 

count model for calculating patchouli stomatal density is 

described in the research flowchart shown in Fig. 1. 

 

 

Fig. 1. Research flow chart of the patchouli stomata smart count model. 

The research method was divided into three stages: the 

first stage of data collection and preprocessing, the second 

stage of building a stomatal detection model using the 

YOLOv5 technique, and the third stage of analysing 

stomatal density parameters. Below is a description of each 

activity. 

A. Data Collection and Preprocessing Stages 

The Research Center for Spice and Medicinal Plants 

(BALITTRO) released two patchouli varieties, Sidikalang 

and Patchoulina2, from which the data for this study were 

obtained. Both varieties were selected because they 
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produce high-quality patchouli oil. In addition, Sidikalang 

is tolerant to bacterial wilt, while Patchoulina2 is resistant 

to bacterial wilt. Patchouli propagated from stem cuttings 

was grown in the experimental garden of the Plantation 

Instrument Standardization Agency in West Java, 

Indonesia. The process of stomatal microscopy image 

acquisition is illustrated in Fig. 2. 

 

 

Fig. 2. Stomata image acquisition process. 

Microscopy images were obtained by observing the 

stomata of each variety. The fifth leaf from the tip was then 

collected from different stems. Leaves with a central width 

of one centimetre were picked for observation. Stomata 

were prepared via the whole-mount method. Using an 

Olympus BX53 microscope at 200 magnification, we 

counted the number of stomata for observation. 

The whole-mount method determines the morphology 

of the epidermis and the stomata. The materials used were 

nitric acid (HNO3), distilled water (aquades), glycerine, 

and safranin. The working method was to prepare a 

solution of nitric acid and water in a ratio of 1:3 in a glass 

container, which was then heated to boiling for 2–4 min 

along with leaf samples that had been cut to a size of 1×1 

cm to peel off the epidermis. The epidermis was removed 

and placed in a petri dish filled with water. Next, the 

epidermis was removed (placed on a glass object) and 

observed. After cleaning with water to remove dirt, 

safranin was applied until evenly distributed, and then the 

samples were rinsed with water until clean. Subsequently, 

glycerine was sprinkled, and the sample was covered with 

a cover glass. Nail polish was placed on the edge of the 

cover glass to prevent air from entering the object of 

preparation (the research specimen), which was ready for 

observation. 

B. Patchouli Stomata Dataset 

Patchouli has characteristics that distinguish it from 

other plants, such as the presence of numerous trichomes 

or leaf hairs that cover the stomata. The epidermis is thin; 

therefore, the guard cells, or pores, of the stomata are 

opaque. On this basis, the acquisition of microscopy 

images of patchouli was divided into two parts: 1) images 

with clearly visible stomata (without noise) and 2) images 

with trichomes (leaf hairs) or blurred stomata with images 

with added contrast and brightness (images with noise). In 

the hope that guard cells and pore stomata can be observed 

and detected, the contrast and brightness enhancement of 

the blurred stomata can be observed via microscopic 

imaging. 

The dataset used in this study comprised two datasets: a 

dataset consisting of 100 images and 400 microscopy 

images of stomata. The image size was 1920×1080 pixels. 

The microscopy image dataset was divided into an 80% 

training dataset and a 20% test dataset. A total of 10,840 

stomatal objects from 400 microscopy images of patchouli 

were manually labelled with bounding boxes using the 

LabelMe software tool. During the labelling process, 

bounding boxes were marked on all stomatal positions and 

conditions, as well as the contrast and brightness settings 

of the images, to obtain clearer stomata. Some stomata 

appeared unclear with random stomatal positions, such as 

vertical, horizontal, and oblique positions. An example of 

manually labelled stomatal objects in a microscopy image 

of patchouli at 200 magnification is shown in Fig. 3. This 

study focused on images with noise, and it is challenging 

for the model to correctly detect stomata. The dataset 

contains noisy images, as shown in Fig. 4. 
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Fig. 3. Manual labelling of stomata with bounding boxes. 

 
 

 

Fig. 4. Microscopy image with noise. 

C. Stomata Detection Model Using the YOLOv5 

Algorithm 

Stomata image data were analysed using the YOLOv5 

architecture [19], which consists of 24 layers, including 

layers in the backbone (5 CBS, 4 C3, and 1 SPPF) and 

layers in the neck (4 concat, 2 upsampling, 4 CBS, and 4 

C3). The training model was validated to assess its 

performance before the testing. The evaluation involved a 

comparison between the manual calculations performed by 

experts and the results obtained from the stomata 

calculation model using the YOLOv5 architecture. 

YOLOv5 follows the consistent design philosophy of the 

YOLO series in its algorithm. It is structured into three 

basic components: the backbone, the neck, and the head. 

The input layer processes the image detection and sends it 

to the backbone for feature extraction, resulting in feature 

maps of different sizes. Subsequently, the feature fusion 

network (neck) combines these features to generate three 

feature maps, namely, P3, P4, and P5, with dimensions of 

80×80, 40×40, and 20×20, respectively, in YOLOv5. 

These maps are used to detect large, medium, and small 

objects within the image in the head section [37]. The 

training process using the YOLOv5 architecture is 

illustrated in Fig. 5. 

 

 

Fig. 5. Stomata detection model with YOLOv5. 
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YOLOv5 performs object detection at multiple stages. 

In the initial stage, images collected in the model are 

processed through the deep layers of the artificial neural 

network. These layers are responsible for extracting 

features from an image and learning the patterns of the 

image presented. This model can identify objects in an 

image by learning patterns. In the next step, the model 

generates predictions for each cell in the grid. This 

prediction consists of a bounding box that indicates the 

object's location in the image, along with a class label 

specifying the type of object that was detected. After 

obtaining predictions for each cell, the next step is to 

combine and filter the predictions [38]. This process 

utilises the Non-maximum Suppression (NMS) technique 

outlined in Algorithm 1 to eliminate redundant or 

overlapping detections. The highest-scoring bounding 

boxes are retained while overlapping bounding boxes with 

lower scores are removed [39]. 

 

Algorithm 1. Non-Maximum Suppression (NMS) 

Require: Set of predicted bounding boxes B, confidence 

scores S, IoU threshold τ, confidence threshold T 

Ensure: Set of filtered bounding boxes F 

1: F ← ∅ 

2: Filter the boxes: B ← {b ∈ B | S(b) ≥ T} 

3: Sort the boxes B by their confidence scores in descending 

order 

4: while B ≠ ∅ do 

5: Select the box b with the highest confidence score 

6: Add b to the set of final boxes F: F ← F ∪ {b} 

7: Remove b from the set of boxes B: B ← B − {b} 

8: for all remaining boxes r in B do 

9: Calculate the IoU between b and r: you ← IoU(b, r) 

10: if you ≥ τ then 

11: Remove r from the set of boxes B: B ← B − {r} 

12: end if  

13: end for  

14: end while 

 

In YOLOv5, the loss function is determined by 

evaluating several metrics to quantify the disparities 

between the predicted outputs of the model and the actual 

labels. The two primary components of the loss calculation 

are the localisation loss (box loss) and the confidence loss. 

The localisation loss is a combination of the coordinate 

loss, as depicted in Eq. (1), and the size loss, as shown in 

Eq. (2). The confidence loss is a combination of the 

objectness loss, which assesses the probability of an object 

being present in the proposed region, as shown in Eq. (3). 

The absence of an object is calculated using Eq. (4), and 

the class loss is calculated using Eq. (5) [40]. 

 

λ𝑐𝑜𝑜𝑟𝑑  ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗[(𝑥𝑖 − �̂�𝑖)

2 + (𝑦𝑖 − �̂�𝑖)
2]𝐵

𝑗=0
𝑆2

𝑖=0    (1) 

 

𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √�̂�𝑖)
2 + (√ℎ𝑖 − √ℎ̂𝑖)

2]𝐵
𝑗=0

𝑆2

𝑖=0

 (2) 

 

∑ ∑ 1𝑖𝑗
𝑜𝑏𝑗𝐵

𝑗=0  (𝐶𝑖 − �̂�𝑖)
2𝑆2

𝑖=0                       (3) 

 

𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗𝐵

𝑗=0  (𝐶𝑖 − �̂�𝑖)
2𝑆2

𝑖=0           (4) 

 

∑ 1𝑖𝑗
𝑜𝑏𝑗𝑆2

𝑖=0 ∑ (𝑝𝑖(𝑐) − �̂�𝑖(𝑐))2
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠              (5) 

 

where 1𝑖𝑗
𝑜𝑏𝑗

 is an object and 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 is no object. The 

ground-truth coordinates are (𝑥𝑖 ,𝑦𝑖 ,𝑤𝑖 , ℎ𝑖 ), whereas the 

prediction coordinates are (�̂�𝑖, �̂�𝑖, �̂�𝑖, ℎ̂𝑖). 𝐶𝑖 is the ground 

truth bounding box confidence value, while �̂�𝑖  is the 

prediction confidence value and intersection over union 

(IoU). The value pi (c) is the ground truth and 

�̂�𝑖(𝑐) prediction of the class. 

D. Evaluation of the Stomatal Detection Model 

Model evaluation was conducted to measure model 

performance using a confusion matrix, which is a table 

describing the number of bounding boxes correctly and 

incorrectly identified by the model, including True 

Positives (TPs), True Negatives (TNs), False Positives 

(FPs), and False Negatives (FNs). 

• The Average Precision (AP) is a metric used to 

measure the accuracy of stomatal detection. The AP 

measures the difference between the bounding box 

generated by the overlap model and the ground-truth 

bounding box. The AP was calculated for each object 

class and then averaged. The threshold used was 

AP50 (IoU = 0.5). 

• The mean Average Precision (mAP) is the average of 

the AP values for all the object classes. This provides 

an overview of the performance of the model for 

stomatal detection using Eq. (6). 

 

𝑚𝐴𝑃 =
∑ 𝐴𝑃

𝑛
                           (6) 

 

• Precision and recall are the metrics used to measure 

the accuracy and recall of a model, respectively. 

Precision measures whether the bounding box results 

generated by the model are correct, while recall 

measures the performance of the model in detecting 

all actual stomata objects. The formula for 

calculating precision is given by Eq. (7), and recall is 

given by Eq. (8). 

           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (7) 

 

          𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                  (8) 

 

• The F1−Score is a combination of accuracy and 

recall, providing the overall picture of the model’s 

performance. The formula for calculating the 

F1−Score is shown in Eq. (9). 

 

              F1−Score =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (9) 

 

These metrics were used to measure the performance of 

the YOLOv5 model in terms of stomatal detection. The 

evaluation was performed by comparing the model 

prediction with the ground truth and measuring the extent 

to which the model prediction matched the actual object in 

the stomatal image. The higher the F1−Score is, the better 
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the performance of the model in detecting the stomata. The 

next step after the model has successfully detected and 

counted stomata is to analyse the stomatal density using 

the formula shown in Eq. (10). 

 

𝑆𝑡𝑜𝑚𝑎𝑡𝑎 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  
Ʃ 𝑠𝑡𝑜𝑚𝑎𝑡𝑎

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 𝑜𝑓 𝑣𝑖𝑒𝑤
 (10) 

 

To measure the density of stomata, the field of view was 

used at 200  magnification, and the field of view area was 

measured using the following formula: 

Area of the field of view = length × width 

= 661.52 μm × 370.52 μm 

= 0.66152 mm × 0.37052 mm 

= 0.2451063904 mm2 = simplified to 0.245 mm2 

III. RESULTS AND DISCUSSION 

The model was trained using 200 epochs with a 

randomly selected training dataset to determine the 

accuracy of stomata detection in the test data. A 

comparative study was conducted by running the 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv4-CSP 

models. A comparison was made with YOLOv4-CSP 

because it is an improved version of YOLOv4 that 

achieves the optimal balance between speed and 

accuracy [41]. Tests were conducted on a dataset 

comprising 100 and 400 patchouli microscopy images to 

compare the mAP@0.5, precision, and recall values, as 

shown in Table II. 

TABLE II. COMPARISON OF THE TWO DATASETS 

Model 
Dataset 

image 
mAP@0.5 Precision Recall 

YOLOv4_CSP 100 0.874 0.94 0.71 

YOLOv5s 100 0.921 0.88 0.88 

YOLOv5m 100 0.918 0.89 0.86 

YOLOv5l 100 0.916 0.89 0.86 

YOLOv4_CSP 400 0.845 0.87 0.88 

YOLOv5s 400 0.918 0.88 0.87 

YOLOv5m 400 0.913 0.88 0.88 

YOLOv5l 400 0.913 0.88 0.87 

 

YOLOv5s is the lightest variant, providing 

computational advantages with higher mAP@0.5 results 

compared to YOLOv4-CSP and the heavier YOLOv5 

variants YOLOv5m and YOLOv5l, which require more 

computations. YOLOv4-CSP tended to achieve higher 

precision but lower recall values on small datasets, while 

YOLOv5s tended to be more consistent. YOLOv5s is a 

compact model designed to improve speed, making it 

suitable for deployment on devices with limited 

computational resources. YOLOv5 has undergone 

numerous developments owing to its user-friendly nature, 

which has led to its widespread adoption in many research 

studies. Research on YOLOv5s includes the development 

of an attention mechanism for real-time fruit detection and 

counting [42], as well as the detection and counting of 

citrus fruits in plantations [43]. 

Based on the training experiment, the precision and 

recall values were both 0.88 and the F1−Score was also 

0.88 for dataset 100. The precision and recall for the 100 

and 400 datasets are shown in Fig. 6. The model 

performance results indicate that the constructed model 

effectively and accurately detected stomata. 

 

 
(a) 

 
(b) 

Fig. 6. Evaluation metrics of stomatal detection models, (a). Dataset 100 

with YOLOv5s (orange) and YOLOv4-CSP (light blue), (b). Dataset 400 

with YOLOv5s (dark blue) and YOLOv4-CSP (red) 

Another metric used to measure the model’s accuracy is 

the mAP@0.5, which resulted in model accuracies of 

0.923 and 0.920 for 100 and 400 values, respectively, 

based on the precision-recall (PR) curve shown in Fig. 7. 

The PR results indicate that the model can predict 

accurately, as both the precision and recall values remain 

high (above 80%). 

 

Fig. 7. Stomata detection model accuracy (dataset 400). 

 

Fig. 8. Stomata that overlap trichomes and guard cells appear unclear. 

The validation dataset showed a stomatal detection error 

rate of 0.08. This was mainly due to stomata overlapping 

with trichomes or unclear stomatal guard cells, as shown 

in Fig. 8. The yellow arrows indicate stomata overlapping 

with trichomes, while the green arrows indicate unclear 
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guard cells. These results in stomata cannot be detected by 

the model. 

The blue box indicates that the confidence score for 

identifying the stomata should be greater than 0.50. This 

gives a True Positive (TP) value that is used to determine 

the stomatal density, as shown in Eq. (10). A confidence 

value of less than 0.50 will indicate that the stomata are 

non-stomata, as indicated by the green bounding box in Fig. 

9. This results in a False Negative (FN), which will not be 

included in the calculation of stomatal density. 

 

Fig. 9. The green bounding boxes for stomata with confidence scores 

values less than 0.50. 

Another factor that affects the inaccuracy of 

calculations when analysing stomatal density is the 

occurrence of False Positives (FPs), which occur when 

non-stomata are mistakenly identified as stomata. The 

possibility of FP occurs because non-stomatal objects have 

similar features to stomata. Further research is needed to 

develop techniques to enhance the model for detecting the 

unique features of stomata. An example of stomatal 

detection at 200 magnification from a microscopy image, 

resulting in TP, FP, and FN, is shown in Fig. 10. 

The model detects the base of the trichome as the 

stomata because of its similar shape to a stomatal pore, 

resulting in an FP that is included in the calculation of 

stomatal density. This phenomenon occurs in microscopy 

images of objects other than stomata, such as trichome 

objects or leaf hairs, as found in patchouli. Further research 

is needed to address the shortcomings of the model in 

recognising the distinctive characteristics of stomata. 

Attention techniques can be incorporated into the feature-

extraction part of the YOLOv5 backbone. This should 

enhance the accuracy and precision of the model by 

lowering the FPs and FNs. 

 

 

Fig. 10. Stomata that produce TP (blue boxes) were detected. FP (white 

arrow) and FN (black arrow). 

The stomatal density is determined by the number of 

stomata per field of view. An inaccurate reduction in the 

number of stomata affects the density of stomata in 

microscopy images. To improve the accuracy of the 

stomata detection model, it is necessary to employ 

techniques that reduce False Positives (FPs) and increase 

recall by minimising False Negatives (FNs), thus ensuring 

precise stomatal density calculations. The loss-testing 

function metric was utilised to evaluate the performance of 

the stomata detection model by comparing its results with 

the training data from the training datasets. The validation 

loss function was also utilised to assess the model's 

performance on the validation datasets. The results 

obtained during training showed a box loss of 0.031, an 

object loss of 0.128, and a class loss of 0. This occurred 

during both training and validation because only one 

object, the stomata, was labelled and detected. During 

validation, the results showed a box loss value of 0.035 and 

an object loss of 0.187. The loss function results indicate 

that the model can effectively predict stomata and is 

optimally suited for training and validation. Therefore, the 

model was neither overfit nor underfit. The loss function 

metrics for datasets 100 and 400 are presented in the form 

of graphs in Figs. 11 and 12. The loss functions for all the 

stomatal detection models are listed in Table III. 

 

TABLE III. LOSS FUNCTION OF THE MODEL 

Model Dataset image 
Box loss 

(train) 

Object loss 

(train) 

Box loss 

(validation) 

Object loss  

(validation) 

YOLOv4_CSP 100 0.024 0.101 0.034 0.204 

YOLOv5s 100 0.031 0.128 0.035 0.187 

YOLOv5m 100 0.027 0.105 0.035 0.196 

YOLOv5l 100 0.033 0.123 0.037 0.174 

YOLOv4_CSP 400 0.019 0.094 0.032 0.235 

YOLOv5s 400 0.027 0.145 0.032 0.200 

YOLOv5m 400 0.022 0.101 0.032 0.216 

YOLOv5l 400 0.026 0.115 0.034 0.195 
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Fig. 11. Loss function of the model (dataset 100). 

 

Fig. 12. Loss function of the model (dataset 400). 

High stomatal density has been shown to influence 

vulnerability to fungal, bacterial, and pathogenic attacks, 

as observed in Arabidopsis thaliana [44]. High stomatal 

density determines susceptibility to bacterial infection [45]. 

During this study, in addition to stomatal detection and 

counting, a detection and counting model was developed 

for two varieties of patchouli. Additionally, we calculated 

the stomatal density using Eq. (10). We compare stomatal 

detection and calculations between the model’s predictions 

and the manual calculations for 18 test images of Patchouli 

varieties in Fig. 13. 

 

 

Fig. 13. Comparison of the number of stomata in patchouli varieties. 

To evaluate the variance between the outcomes of the 

manual and modelled stomatal counts, we use Eq. (11) to 

determine the accuracy of the stomatal counts. To 

determine the linear relationship between the manual 

calculation by the expert and the automatic calculation by 

the stomatal detection model, the R2 coefficient equation 

for simple linear regression Eq. (12) is used. 

 

𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝑎𝑏𝑠 (𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑖𝑐 𝑐𝑜𝑢𝑛𝑡−𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡)

𝑚𝑎𝑛𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡
          (11) 

                            𝑅2 = 1 −
∑ (𝑥𝑖−𝑦𝑖)2

𝑖

∑ (𝑥𝑖−�̂�)2
𝑖

                           (12) 

 

In this case, xᵢ is the manual calculation, yᵢ is the 

automatic calculation, and ŷ is the average. The test dataset 

has a calculation accuracy of 0.97 and an 𝑅2 value of 0.94, 

as shown in Fig. 14. These results demonstrate a strong 

positive correlation between the manual calculation results 

and the patchouli microscopy image dataset model. The 

accuracy of the calculations for high-contrast and noisy 

images was also high, indicating a strong positive 

correlation. This shows that the detection model can 

accurately identify stomata even when they appear blurred 

or when other objects, such as trichomes or epidermis, are 

present in the microscopy image. The complete accuracies 

and R2 values are listed in Table IV. 

TABLE IV. EVALUATION OF STOMATA COUNT 

# Image Accuracy R2 

1 Image without noise 99% 0.98 

2 Image with noise 95% 0.94 

 

 

Fig. 14. Comparison of the stomata calculations. 

Stomata counting using the stomata detection model in 
noisy images, images with blurred or faint stomata, and 
stomata with a confidence score < 0.5, as summarized in 
Figs. 8 and 9, remains a challenge and an opportunity for 
further research. There is a need for a model that can 
remember stomata even when they are faint, blurred, or 
overlapping with background objects, such as trichomes. 
The results of the YOLOv5s model for stomatal detection 
and stomatal density calculation in noisy images are shown 
in Fig. 15. The figure illustrates the identification and 
quantification of stomata in an image containing noise, 
where there is an increase in the number of stomata 
detected in dataset 400. In general, there was no significant 
difference in the average number of stomata between the 
Sidikalang and Patchoulina2 varieties when manual and 
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model calculations were compared, as shown in Fig. 13. 
Stomatal density was classified as low (<300/mm2), 
medium density (300–500/mm2), or high (>500/mm2). The 
results of the stomatal density calculations using Eq. (10) 
show that both varieties had low stomatal densities. This 
finding is consistent with previous research on the impact 
of high stomatal density on susceptibility to fungal, 
bacterial, and pathogenic attacks. Sidikalang is tolerant, 
while Patchoulina2 is resistant to bacterial wilt, a common 
disease affecting patchouli plants and its production of 
patchouli oil (patchoulol). 

 

 

(a)  

 
(b)  

Fig. 15. Example of object detection in an image with noise, (a). Dataset 

100, (b). Dataset 400. 

IV. CONCLUSION 

Many studies related to stomatal detection have been 
conducted to help researchers measure stomatal quantity 
and density. Each study was conducted on different leaf 
specimens, each of which faced difficulty in obtaining 
microscopy images of the stomata. This study focused on 
two high-yielding varieties of patchouli: Sidikalang, 
known for its ability to produce high-quality patchouli oil 
and tolerance to bacterial wilt disease, and Patchoulina2, 
chosen for its resistance to bacterial wilt disease, which 
can affect leaf production to produce high amounts of 
essential oils. A deep learning approach using the 
YOLOv5 algorithm was developed to create a stomatal 
object detection model, which was used to calculate the 

number and density of stomata in patchouli. The 
performance of the model, as measured by the evaluation 
metrics, yielded precision, recall, and F1−Scores of 88% 
each. The model achieved 97% accuracy for stomatal 
detection in the test dataset. Efforts are required to improve 
the ability of this model to detect stomata that overlap with 
trichomes, guard cells that are not visible, and blurred 
stomata. 
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