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Abstract—In order to investigate the effective circular image 

analysis method, a class of Haar functions defined on the 

unit disk, named as disk Haar Functions (DHFs), is 

introduced in this paper. Compared with traditional 

bivariate tensor product orthogonal functions (TPOFs), 

DHFs have great advantages in handling the circular images. 

Experimental results demonstrate that DHFs is more 

suitable for representing images on circular region than 

TPOFs.

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I. INTRODUCTION 

Spectral analysis method based on orthogonal 

functions has been successfully used in signal processing. 

The common way for representing two-dimension (2D) 

signals such as digital image is tensor product orthogonal 

functions(TPOFs)[1]. In this paper, circular images are 

referred to such a class of images whose effective region 

is circular area. There are lots of circular images in 

practical applications, such as interference patterns in 

optical physics, impact crater images on celestial surface 

and many trademark logos. Before these circular images 

are applied to orthogonal transforms using 2D TPOFs, 

they have to be extended to rectangular region by means 

of regional extrapolation [2]-[4]. The edge error called 

edge effect will be occurred in reconstruction images. 

Fig.1 shows the results that a binary image was 

represented by FFT. It can be seen that there are obvious 

edge effects in reconstructed images.                

Haar functions is a class of complete orthogonal 

functions set in  2 0,1L , which take values of 1,-1 and 0 if 

the standardization coefficients are not taken into 

consideration. As a typical complete discontinuity 

orthogonal functions set, Haar functions have the 

important theory significance and practical application 

value[5]. 

In order to efficiently represent the circular images, a 

class of orthogonal Haar functions on the unit disk, 

named as disk Haar functions (DHFs) were constructed in 

this paper. The definition domain of DHFs is the unit disk 

denoted as   = , ,0 1,0 2D         . By an equal-area 

partition on D , a one-to-one mapping relationship 

between D  and the 2D tensor product Haar 

functions(TPHFs) is established and then DHFs could be 

obtained directly.       
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The organization of this paper is as follows. Section 2 
briefly reviews the singer variable and 2D tensor product 
Haar functions; Section 3 presents the derivation of the 
DHFs; Section 4 presents the algorithms of 
decomposition and reconstruction for circular images 
under DHFs, i.e. DHFs transform; Section 5 demonstrates 
the effectiveness of DHFs by two typical examples, and 
section 6 provides the conclusions and future works. 

       
(a)                          (b)                    (c)                      (d) 

Figure 1.  Original image(a) and Reconstructed images by FFT with 

number of coefficients of 50,100 and 500, respectively (b~d). 

II. DISK HAAR FUNCTIONS 

A. Traditional Haar Functions 

Haar functions were introduced in 1910 by A.Haar[6], 

denoted as   | =0,1,2, .0 1ih x i x  . The first 16 Haar 

functions are displayed in Fig. 2. 

Bivariate tensor product Haar functions (TPHFs) on 

planar domain (denoted as   = , ,0 , 1S x y x y  ) are defined as 

     , = , =1,2, ,2 , =1,2, ,2m n
ij i jH x y h x h y i j   . The first 64 TPHFs are 

displayed in Fig. 3. 

 

Figure 2.  Haar functions(1D)  

 

Figure 3.  Haar functions(2D) 
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B. Disk Haar Functions(DHFs) 

1) Equal-area partition on unit disk 

Haar functions are piecewise constant which take 

values of 1,-1 and 0 if the standardization coefficients are 

not taken into consideration. Through the equal-area 

partition on D  (   = , ,0 1,0 2D         ), a one-to-one 

mapping relationship between D  and 2D TPHFs is 

established and the DHFs could be obtained directly.  

We will use the following rules to divide the unit disk [7]: 

  The unit disk is uniformly divided along the 

radial direction   into U sections, with the 

separating circles located at  , =1,2, ,u U u U , and U  

is set 2 ,L=0,1,2,L  .  

 The thu ring-shape section is equally divided into 

 4 2 -1u  sectors by radii starting from the origin. 

It can be shown that the unit disk D  is divided into 24U   

sub-regions denoted as   | =1,2, , , =1,2, ,4 2 -1uv u U v u   , each 

of which has an area of 24U . The partition result when  

=8U is illustrated in Fig. 4.  

  

Figure 4.  Equal-area partition on unit disk 

2) Disk haar functions（DHFs） 

After the equal-area partition on D  in accordance with 

the above rules,  24U  sub-regions are generated. Discrete 

2D TPHFs are denoted as   , | =1,2, ,2 ; =1,2, ,2m n
ijH x y x y  . 

When 2 =2 =2m n U , i.e, 2= =log +1m n U , the planar domain  is 

also divided into 2 2U U  square sub-regions. We could 

establish a one-to-one mapping relationship between sub-

regions in D  and S . DHFs are denoted as 

   , | =1,2, , ; =1,2, ,4 2 -1ijDH u v u U v u  . The pseudo code that 

mapping  ,ijH x y  to  ,ijDH u v  is as follows. 

input :    ,ijH x y  

output :  ,ijDH u v  

for u = 1 : U 

v = 1 ; 

for k = 1 : u 

   
2

, = - +1, +ij ijDH u v H U k U u


; 

v = v + 1 ; 

end 

for k = 1 : 2u – 1 

   2
, = - +1, + -

ij ij
DH u v H U u U u k


; 

v = v + 1 ; 

end 

for k = 1 : 2u – 1 

   2
, = - + +1, - +1

ij ij
DH u v H U u k U u


; 

v = v + 1 ; 

end 

for k = 1 : 2u – 1 

   2
, = + , - + +1

ij ij
DH u v H U u U u k


; 

v = v + 1 ; 

end 

for k = 1 : u – 1 

   2
, = + - , -

ij ij
DH u v H U u k U u


; 

v = v + 1 ; 

end 

end 

 

 

Figure 5.  Mapping 

Fig. 5 shows the one-to-one mapping relationship 

between  ,ijH x y  and  ,ijDH u v  when =2U . The first 64 

DHFs are displayed in Fig. 6. 

 

Figure 6.  The first 64 DHFs 

The set of   ,ijDH u v is orthogonal over D  : 

   , , , =ij pq ipjqDH u v DH u v   

where  is the Kronecker symbol, i.e. =1ipjq if  = =i p j q and 

0 otherwise. 

III. DHF TRANSFORM 

A. Preprocessing 

We have seen in previous sections that the structure of 

DHFs consists of a certain polar sectors. However, a 

digital image is usually defined by a set of square 

Cartesian pixels. It can be easily verified that the 

locations of the polar pixels do not coincide with those of 

Cartesian pixels. Therefore, we have to derive the polar 

counterpart of a given Cartesian image. This issue can be 

resolved by applying an image interpolation procedure. In 

our simulation studies the image value at a polar pixel is 

calculated based on bicubic interpolation which has the 

third order accuracy. With this pattern of polar pixels, 

image is expressed as     , , =1,2, , ; =1,2, ,4 2 -1f u v u U v u  . 
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B. Image Representation by DHFs 

After preprocessing, the image  ,f u v   which is defined 

on unit disk has the following representation in terms of 

DHFs 

   , = ,ij ij
i j

f u v C DH u v  

where the coefficients ijC  are given by 

   
 4 2 -1

=1 =1

= , ,
uU

ij ij
u v

C f u v DH u v   

IV. APPLICATION EXAMPLES 

A. Interference Pattern Reconstruction 

Interference pattern is the output from interferometer, 

and interference fringes are the traces of points which 

have the same optical path difference. The processing and 

analysis for interference pattern is directly related to the 

parameters we want to measure. The effective region of 

interference pattern is usually circular. A considerable 

error near the edge called edge effect in reconstruction 

result will be introduced by traditional 2D tensor product 

orthogonal functions.  

This section presents an actual interference data and 

results used to validate the theoretical framework 

presented above, and we establish the feature 

representation capability of DHFs through image 

reconstruction. A comparative analysis between DHFs 

and FFT is given. 

An optical interference image in Fig. 6(a) is used, 

which is expressed as     , , =1,2, , ; =1,2, ,4 2 -1f u v u U v u   after 

preprocessing. Fig. 7 (b)~(e) show the reconstructed 

results by DHFs with different numbers of coefficients. 

With the same numbers, reconstructed results by FFT are 

shown in Fig. 7(f)~(i). Comparing these corresponding 

images, we can conclude that by DHFs, the quality of 

reconstructed images are much better than those by using 

usual tensor product functions for disk images.   

     
(a)                             (b)                     (c) 

 
                                  (d)                      (e) 

 
(f)                      (g)                      (h)                         (i) 

Figure 7.   (a) Original optical interference image. (b)~(e) Image 

reconstruction from DHFs up to items of 100, 200, 500 and 1000, 

respectively. (f) ~ (i) Image reconstruction from FFT up to same items 

with DHFs, respectively. 

To compare more objectively the performances of the 

two approaches in terms of image reconstruction, we 

have experimented on more different numbers of 

decomposing coefficients for image recovery. 

Specifically, coefficients up to  , =1 8000i i  were used to 

reconstruct the image respectively. The quality of each 

reconstructed image is measured in terms of peak signal-

to-noise ratio (PSNR). The test results are shown in Fig.8, 

from which an important conclusion can be drawn that 

DHFs has better performance than FFT in circular image 

representation. 

 

Figure 8.  Quality of reconstructed images 

B. Spectrum Analyses of Lunar Craters 

Celestial craters are greatly small bunches of ring pit 

structures on the surface of moon, Mars and other planets. 

They are the most significant features on the surface of 

planets and are of the windows to study the planets 

internal material. Study on the craters can provide a large 

amount of information for celestial status, evolutionary 

history, cratering mechanism and knock-on effect. For 

example, the relative age and surface characteristics of 

the planets could be inferred through the scale frequency 

distribution and space statistical data of craters. The study 

of crater morphology could promote the researches of 

celestial geomorphology such as natural erosion process, 

regional difference of geological material and distribution 

of sub-surface volatile matter[8]-[10].   

As most of craters are circular, it is suitable for craters 

analysis by DHFs. 10 typical CCD images of lunar 

craters captured by Chang'e-1 are selected shown in Fig. 

9. 

 
Compton           Plato          Copernicus        Gartner         Jackson 

 
Jamie Nast         Kriksz             Ohm         Tsiolkovsky  Satsuma Phil 

Figure 9.  10 CCD images of lunar craters from Chang'e-1 

These crater images were represented by DHFs, and 

the energy of each crater could be calculated by the 

formula of 2

=1

=
n

i
i

E c , where ic  denotes the decomposition 

coefficient and n  remarks the number of coefficients. 
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Energy of each crater as a function of n  from 1 to 8000 is 

shown in Fig.10, from which two conclusions can be 

drawn. Firstly, for small numbers, approximately <500n , 

the energy of each crater increases significantly. After 

this point, all crater energies tend to be stable respectively. 

Secondly, each crater has its different energy. As a kind 

of feature, energy can reflect the differences among 

craters. It is helpful to classify and recognize the craters 

which are very useful in crater analysis. Fig. 11 illustrates 

the energy of each crater when =500n . 

 

Figure 10.  Energy of each crater 

 

Figure 11.  Energy of craters ( =500n ) 

V.  CONCLUSION AND REMARKS  

We construct a class of Haar functions defined on the 

unit disk named as DHFs. It is obtained through the 

equal-area partition on unit disk and mapping to the mesh 

of 2D tensor product Haar functions. The construction 

method is simple and intuitive, and the computing 

complexity of decomposition and reconstruction are 

lower. The results of examples show that DHFs has more 

advantages over traditional TPOFs for circular image 

representation. The program for processing data in this 

paper provides the base in classification and recognition 

of lunar craters. In the following works, we will 

investigate and study the applications of DHFs in lunar 

craters analysis, especially the relationship between 

frequency spectrum and geological attributes such as ages 

of craters. 
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