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Abstract—Principal Components Analysis (PCA) is one of 

the most frequently used dimensionality reduction methods. 

PCA is suitable in time-critical case (i.e., when distance 

calculations involving only a few dimensions can be afforded) 
[1]

. When it comes to image compression, PCA has its 

significant advantages: good performance in removing of 

correlations, and high compression ratio. Johnson-

Lindenstrauss Lemma is a probability method leading to a 

deterministic statement of dimensionality reduction. This 

paper proposes a image compression algorithm: PCA for 

image compression based on improved Johnson-

Lindenstrauss Lemma.
 
 

 

Index Terms—PCA, johnson-lindenstrauss lemma, image 

compression, euclidean distances preserving, dimensionality 

reduction 

 

I. INTRODUCTION 

With the development of science and technology, now 

we are living in an era of explosion of information, 

including a large number of images. The objective of 

image compression is to reduce irrelevance and 

redundancy of the image data to an acceptable level [2] in 

order to be store or transmit data in an efficient form [3]. 

In this paper, first of all, we revisit PCA and improved 

Johnson-Lindenstrauss Lemma respectively. After that, 

we will give a statement of the proposed dimensionality 

reduction method: a PCA method based on improved 

Johnson-Lindenstrauss Lemma. This method results in a 

minimum-k dimensional data set V of the original data 

set with a relatively high probability, with only 1 （ ） 

Euclidean Distance distortion. 

II. AN IMPROVED JOHNSON-LINDENSTRAUSS LEMMA 

The goal of Johnson Lindenstrauss Lemma is to, for a 

point set P  in pR , find a point set Q  in kR  ( k p< ) 

and a mapping from P  to Q [4]. Johnson Lindenstrauss 

Lemma has been applied to image processing. Since the 

features of images are represented as high dimensional 

vectors. With dimension reduction techniques, we can 

compress the vectors while the similarity between any 

two vectors is preserved. So we can carry out image 

analysis in lower space. 
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The Johnson-Lindenstrauss Lemma is a fundamental 

result in dimensionality reduction that states that any m  

points in high-dimensional space can be mapped to a 

much lower dimension 2

log m
( )k


 

, without distorting 

pair wise distances between any two points by more than 

a factor of (1 ) . In fact, such a mapping can be found 

in randomized polynomial time by projecting the high-

dimensional points onto k -dimensional linear subspaces.    

JAVIER ROJO AND TUAN S. NGUYEN (2010) [5] 

worked directly with the distributions of random distance 

rather than resorting to the moment generating function 

technique, an improvement on the lower bound for k is 

obtained.  

Since the conclusion for lower bound for JL Lemma 

using 2 1-L L  norm in (JAVIER ROJO AND TUAN S. 

NGUYEN, 2010) (Improving Johnson-Lindenstrauss 

Lemma) only works for random matrix with i.i.d. entries 

drawn from Guassian distribution and one of the 

Achlioptas distributions (eq. q=1,2,3 ), this paper only 

discusses the case where 2 2-L L  norm is used. 

A. Lower Bound for JL Lemma using 2 2-L L norm 

2 2-L L  norm means that both of the distance 

measures of the original space and the target space are 

2L
-norm. 

Let k  be an even integer, and 0 1  . Let 

= 1+ /k 1 （ ） 2  and = /d k 2 . Then the decreasing 

function in k  is: 
1

( , )=
( 1)

d

g k e
d

 





 
1 1

 
 

For any 0 1   and integer n , let k  be the smallest 

even integer satisfying
2

1+ 1
( , )g k

n





（ ）

. Then for 

any set V of n  points in
p

R , there is a linear map f : 

p kR R  such that for any ,u v V  
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The lower bound of k  can be obtained by finding the 

smallest even integer satisfying
2

1+ 1
( , )g k

n





（ ）

. 

III. PRINCIPAL COMPONENTS ANALYSIS (PCA) 

Principal Components Analysis(PCA ）  is a 

mathematical procedure that uses an orthogonal 

transformation to convert a set of observations of 

possibly correlated variables into a set of variables into a 

set of values of linearly uncorrelated variables called 

principal components. This transformation is defined in 

such a way that the first principal component has the 

largest possible variance, and each succeeding component 

in turn has the highest variance possible under the 

constraint that it be orthogonal [6].  

Assume that the original dataset X  contains p  

dimensions and n  observations and it is required to 

reduce the dimensionality into k dimensional subspaceY . 

This map is given by 

= TY E X  

where p kE   is the projection matrix containing 

k eigenvectors corresponding to the k  greatest 

eigenvalues. 

IV. AN IMAGE COMPRESSION ALGORITHM: PCA 

BASED ON JOHNSON-LINDENSTRAUSS LEMMA 

(JL-PCA) 

When we apply PCA to reduce the dimensionality of 

the original high-dimensional data, it lacks a standard or a 

measure in terms of the projected dimensions (number of 

features of images). Johnson Lindenstrauss Lemma has 

its inherent advantages in Euclidean distances preserving. 

From the philosophic and dialectic point of view, an 

elaborately formed matrix is a special form of a randomly 

chosen transformation matrix which is the motivation of 

using Johnson-Lindenstrauss Lemma in the process of 

PCA. This paper proposed a similarity preserving 

algorithm for image compression, a PCA method based 

on Johnson-Lindenstrauss Lemma. Given the range of 

toleration of distortion of Euclidean distances after 

dimensionality reduction, we can find out the lower 

bound of the projected dimension, so that we can 

guarantee pairwise Euclidean distances preserving at a 

given probability. Images compressed by this algorithm 

are easier to be analyzed, especially for image search. For 

example, its computational cost will be reduced and 

similarity will be preserved when we carry out image 

search. 

The lower bound of k for case using 2 1-L L  norm only 

holds for Gaussian random matrix and Achlioptas-typed 

random matrix. Obviously, projected matrix made up by 

selected eigenvectors is not random matrix. As a result, 

we can not apply conclusions of this case for PCA. Hence, 

this paper only considers PCA based on Johnson-

Lindenstrauss Lemma (JL-PCA) using 2 2-L L  norm to 

compress images.  

First of all, divide an image into segments. Each row 

acts as an input for ordinary PCA. And we assume that 

each block has the same components. Secondly, we will 

find the lower bound of k  by applying improved 

Johnson-Lindenstrauss Lemma using 2 2-L L  norm. After 

that, we will calculate the eigenvalues of the original 

matrix
p n

X R


 . Thirdly, we will select the top k  

eigenvalues and find out their corresponding eigenvectors. 

Then, form transform matrix TE by combining the 

selected k  eigenvectors. Finally, we can calculate the 

target matrix by = TY E X . Then we can get the principal 

components of the original matrix with only (1+ )  at a 

relatively high probability. 

Image Compression Algorithm : PCA-JL (
2 2-L L  norm) 

Input: original image matrix 
p n

X R


  

Output: 
k n

Y R


  

Divide 
p n

X R


  into several blocks. 

Find out the lower bound of dimensions of projected 

dataset, k : 

0 1  , Let k  be an even integer, = 1+ /k 1 （ ） 2 , 

= /d k 2 , 

1

( , )=
( 1)

d

g k e
d

 





 
1 1 . 

Calculate numerically to find k , the smallest even integer 

satisfying
2

1+ 1
( , )g k

n





（ ） . 

Calculate eigenvalues of
p n

X R


 . 

Find the projection matrix p kE  by selecting k  

eigenvectors corresponding to the top k eigenvalues. 

Calculate = TY E X . 

V. EXPERIMENT  

It carried out experiment on the platform of Matlab 7.0, 

using the 64 by 64 Lena image. It divided the original 

image into 256 blocks of 4 by 4 pixels. Each of the 256 

blocks will be treated as an input of the PCA. Hence, 

each input has 16 dimensions. It set =0.20 , 

=256n , = 1+ = .k k 1 （ ）2 06 , =0.5d k ,

1 0.5 1

0.6 (0.6 )
( , )= =

( 1) (0.5 1)

d k

k k
g k e e

d k

 


 

 

   

1 1 . 

Then  
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k n







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After that, we have to find out k numerically. 

And also, it carried out experiments on several groups 

of 64 by 64 pixels images that is cut from 512 by 512 

pixels Lena image.  It shows that this algorithm does not 

fully satisfy the improved lower bound of Johnson 

Lindenstrauss Lema (JAVIER ROJO AND TUAN S. 

NGUYEN, 2010), that is with a distortion not greater 

than  under a probability of 2

1

n
（1- ）

, but with a 

relatively high probability that is very close to this 

probability. This provides a way to determine how many 

principle components to retain when we are applying 

PCA to compress a group of images under certain 

distortion of pairwise Euclidean distances. 

VI. CONCLUSIONS 

The images compressed with Euclidean distances 

preserving characteristics benefit image analysis and 

image search. 

For this algorithm, we have to carry out more 

experiments to verify it and improve it. And there is a 

drawback that we have to find out the lower bound of 

k numerically. These problems are what we are going to 

solve in the recent future. 

It deserves some working to find a precise expression 

of the probability of this algorithm. 
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