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Abstract—In computer stereo vision, the fundamental 

matrix is the algebraic representation of the epipolar 

geometry that relates two images of a scene observed from 

two different viewpoints. The most important feature of the 

fundamental matrix is its independence of the scene 

structure. Different methods have been proposed to derive 

the fundamental matrix equation. 

This paper reviews one of 

these methods and reveals that it is based on flawed 

statements to conclude the existence of a homography 

between the points on the two images. This derivation of the 

fundamental matrix equation is based on the existence of a 

homography between the two images. 

 

Index Terms—computer vision, stereo vision, fundamental 

matrix, homography 

 

I. INTRODUCTION 

The main objective of stereo vision is to recover a 3D 

structure of a rigid scene which has been imaged from 

two different positions. For the purpose of solving such a 

problem, researchers have succeeded in defining the 

epipolar geometry that relates the points on two views of 

a rigid scene. In this context, the cameras that capture the 

views are characterized by intrinsic and extrinsic 

parameters. The intrinsic parameters include coordinates 

of the principal points, pixel aspect ratio, and focal 

lengths. The extrinsic parameters are the position and 

orientation of the camera with respect to the world 

coordinate system. The cameras are indicated by their 

centres lC  and rC , and their image planes l and r  

(Fig. 1). To each camera is associated a reference system. 

The motion between the two positions of the cameras is 

given by a translation vector t  from lC  to rC  followed 

by a rotation matrix R .  

In the classical route, the intrinsic camera parameters 

are known. Such knowledge is used to calculate the 

epipolar geometry by extracting the essential matrix E  

[1]. When neither intrinsic nor extrinsic camera 

parameters are available, the problem is classified as 

uncalibrated and the fundamental matrix F  is the 

algebraic representation of the epipolar geometry.  
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The two camera centres and a 3D point on the scene 

define an epipolar plane П (see Fig. 1).  

For a world point on the scene ),,( ZYXM  , the pair 

of points  rl mm ,  which are the left retinal image and 

the right retinal image of the point M , respectively, are 

called corresponding points.  

The fundamental matrix encapsulates the parameters 

relating a world point to its images. The relation between 

a pair of corresponding points  rl mm ,  through the 

fundamental matrix is given by 0l
T
r Fmm . Such a 

matrix can be calculated by providing eight or more pairs 

of corresponding points from the two views of the scene 

[2].  

The eight-point algorithm is a frequently cited method 

for computing the fundamental matrix from a set of eight 

or more point matches [3].  

 
 

Figure 1.  Epipolar geometry 

Different methods have been proposed to derive the 

fundamental matrix [4], [2], [5], [6] and [7]. This paper 

reviews one of these methods. Such method asserts that 

the image points on the two views are projectively 

equivalent and concludes the existence of 2D 

homography mapping the corresponding points on the 

two views. The existence of a homography mapping the 

points lm  and rm  leads to the equation of the 

fundamental matrix, 0l
T
r Fmm  [2].  

The remainder of the paper is organized as follows. In 

section 2 we remind the derivation of the essential matrix. 

Section 3 introduces the derivation of F  that assumes the 
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existence of a homograph between the corresponding 

points on the two images. Section 4 reveals the flaws in 

the current derivation method. Finally, the paper 

concludes in section 5.  

II. DERIVATION OF THE ESSENTIAL MATRIX  

Longuet-Higgins [1] introduced the essential matrix to 

the computer vision community and proposed the eight-

point algorithm for its calculation. He defined the image 

coordinates lm  and rm  of the world point M  in the two 

cameras’ coordinates systems as 
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Given the translation vector of the right camera with 

respect to the left one ][ zyx tttt  and the rotation 

matrix of the right camera coordinate system with respect 

to the left coordinate system R , the relation between the 

three-dimensional vectors representing the world point 
M  may be written as  

)( tMM  lr R     (2) 

The rotation R  satisfies the relation   

1 RRRR TT  and 1)( Rdet    (3) 

The author [1] defines the essential matrix as  

  RSE        (4) 

where S  is the skew-symmetric matrix  
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He adopted the length of the vector t  as the unit of 

distance  

12222  zyx tttt      (6) 

The author [1] then constructs the expression 

l
T
r EMM  and used (2) to (6) to conclude the 

equation 0l
T
r EMM . He then divided by rlZZ  to 

establish the equation of the essential matrix that relates 

the image points lm  and rm  

0l
T
r Emm

                          (7) 

While the essential matrix cannot be a transformation 

matrix, it is the product of a rotation matrix and a rank 

deficient matrix; RSE   [1].  

l
T
rl

T
r RSE MMMM )(

      (8) 

The right hand side of (8) is the associative vector-

matrix product of T
rM , RS , and lM . It is equivalent 

to   l
T
r SR MM  .  

By definition, the transpose of the rotation matrix is 

equal to its inverse IRRT  . This means that if R is the 

rotation of a left coordinate system to a right coordinate 

system, TR is the back rotation of the right coordinate 

system to the left one. Therefore, the term 

 Tr
TT

r RR MM   is the vector rM  expressed in the left 

coordinate system. Thus, both vectors )( RT
rM  and lM , 

involved in (8), are defined in the left coordinate system.  

In addition, the matrix multiplication is associative,  

  l
T
rl

T
r SRSR MMMM  )(  

Thus, the expression 0l
T
r EMM  is well defined and 

so are the equations of the essential and fundamental 

matrices 0l
T
r Emm  and 0l

T
r Fmm .  

III. INTRODUCING THE NEW DERIVATION METHOD  

The following terminology is used to describe the 

epipolar geometry [2]:  

 The epipole is the point of intersection of the line 

joining the camera centers with the image plane. 

Equivalently, the epipole is the image in one view 

of the camera centre of the other view.  

 An epipolar line is the intersection of an epipolar 

plane with the image plane. All epipolar lines 

intersect at the epipole. An epipolar plane 

intersects the left and right image planes in 

epipolar lines, and defines the correspondence 

between the lines.  

 The baseline is the line joining the camera centers.  

 The two camera centers and a given world point 

define the epipolar plane П. All epipolar planes 

contain the baseline (Fig. 1).  

Hartley and Zisserman [2] presented a geometric 

derivation of the fundamental matrix based on the 

existence of a homography between the two views: “The 

mapping from a point in one image to a corresponding 

epipolar line in the other image may be decomposed into 

two steps. In the first step, the point lm  is mapped to 

some point rm  in the other image lying on the epipolar 

line rl . This point rm  is a potential match for the 

point lm .  

In the second step, the epipolar line rl  is obtained as 

the line joining rm  to the epipole re .  

Step 1: Point transfer via a plane. Consider a plane П 

in space not passing through either of the two camera 

centers. The ray through the first camera centre 

corresponding to the point lm  meets the plane П in a 

point M . This point M  is then projected to a point rm  

in the second image. This procedure is known as transfer 

via the plane П. Since M  lies on the ray corresponding 

to lm , the projected point rm  must lie on the epipolar 

line rl  corresponding to the image of this ray.  

The points lm  and rm  are both images of the 3D point 

M  lying on a plane. The set of all such points lm  in the 

first image and the corresponding point rm  in the second 
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image are projectively equivalent, since they are each 

projectively equivalent to the planar point set M . Thus 

there is a 2D homography H  mapping each lm  to rm .  

Step 2: Constructing the epipolar line. Given the point 

rm  the epipolar line rl  passing through rm  and the 

epipole re  can be written as   rrrrr memel  . Since 

rm  may be written as lr mHm  , we have 

  llrr FmmHel     where we define   HeF r   the 

fundamental matrix.”  

IV. FLAWS IN THE CURRENT DERIVATION METHOD  

In the current derivation method, Hartley and 

Zisserman [2] assert the existence of a homography 

mapping every pair of corresponding points on the two 

views. This assertion is the result of the statement: “The 

set of all such points lm  in the first image and the 

corresponding point rm  in the second image are 

projectively equivalent, since they are each projectively 

equivalent to the planar point set M .”  

The following points demonstrate the flaws of the 

authors [2] assertions that led to the current derivation of 

the fundamental matrix.  

The first observation comes from the definition of a 

homography. It is a relation between two figures, such 

that to any point of the one corresponds one and only one 

point in the other, and vice versa [8].  

An outstanding natural feature of a 3D scene is some 

of its parts hide some other parts. A 3D scene generally 

contains salient features. Consequently, some 3D points 

are exposed to one camera and are not seen by the other. 

Imaging 3D scenes cannot escape from occlusion. 

“Occluded regions are spatially coherent groups of pixels 

that can be seen in one image of a stereo pair but not in 

the other” [9]. The rounded rectangle of Fig. 2 shows 

points in the first image without correspondent points in 

the same region of the second image.  

 

 

Figure 2.  Points in one view without correspondent in the other 

“The homography matrix is a corresponding matrix 

between two images, based on which the one-to-one 

relationship between the feature points of two images can 

be identified” [10]. This definition does not allow the 

existence of a homography between a selected set of 

points from the first image and a selected set of points 

from the second image while ignoring points that have no 

correspondents.  

The authors [2] clearly deduce the existence of a 

homography that is mapping the projective points in the 

two views: “Thus there is a 2D homography H  

mapping each lm  to rm .” This one-to-one mapping is 

only valid when no-occlusion occurs which is a severe 

assumption that excludes all 3D scenes but concave ones, 

i.e. all points of the scene are exposed to the two cameras. 

The no-occlusion fact can be empirically (not 

theoretically) assured whenever the baseline is very small 

with respect to the distance between the camera and the 

scene. Fig. 3, Fig. 4, Fig. 5, and Fig. 6 from [11] and [12] 

are examples of such a case. They are carefully selected 

with small baseline with respect to the distance between 

the camera and the scene, i.e., the scene depth. These 

cases were used to assess the performance of estimation 

methods of the matrix F .  

 

Figure 3.  View1 and view2 of scene1 

 

Figure 4.  View1 and view2 of scene2 

 

Figure 5.  View1 and view2 of scene4 

 

Figure 6.  View1 and view2 of scene5 

A mapping YX   is called injective if distinct 

elements of X have distinct images in Y . It is called 

surjective of every element of Y is the image at least of 

one element in X . A mapping which is simultaneously 

injective and surjective is called bijective [13].  
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Suppose that the camera is at the origin  0,0,0 . The 

ray from the origin represented by homogeneous 

coordinates  zyx ,,  is that passing through the 3D 

point ),,( zyx . The 3D point ),,(),,( zyxzyx   , 

where 0  also lies on (represents) the same ray [14]. 

So, all 3D points which belong to the same ray passing 

through the point  ZYXM ,,  and the origin  0,0,0  

are projected on the same projective point )1,,(
Z

Y
Z

X . 

That class of 3D points which is projected onto one single 

point in one view will be projected onto more than one 

point in the other view. This means that the relation 

between the points in the two views is not injective and 

by definition it is not bijective. By consequence there is 

no homograph between the points of the two views. 

The last point is the authors’ assertion: “The set of all 

such points lm  in the first image and the corresponding 

point rm  in the second image are protectively 

equivalent.”  

Capturing a 3D scene from two viewpoints means 

exposing a set of world points 1P  of the scene to the left 

camera and exposing another set of world points 2P  to 

the right camera. In general, the two sets of points 1P  and 

2P are different from each other. 

The set of image points lm  are projectively equivalent 

to the set of world points 1P  that are visible to the left 

camera. And the set of image points rm  are projectively 

equivalent to the set of world points 2P  that are visible to 

the right camera. And because the two sets 1P  and 2P are 

not necessarily the same, the two sets of points lm  and 

rm  are not projectively equivalent. Therefore, there is no 

projectively equivalence between the image points on the 

two views and consequently there is no homograph that 

maps the points lm  and rm .  

V. CONCLUSION 

The current derivation of the fundamental matrix is 

based on asserting misguided propositions:  

 Stating that the world points of a 3D scene are 

planar. 

 The image points on the two views as projectively 

equivalent.  

Literally, the world points of 3D scenes are not planar 

unless the scene under analysis is a plane. 

The set of image points on the left view are 

projectively equivalent to the world points exposed to the 

left camera. And the set of image points on the right view 

are projectively equivalent to the world points exposed to 

the right camera. The world points of a 3D scene exposed 

to one camera are not necessarily exposed to the other 

camera, consequently the two sets of image points on the 

two views are not projectively equivalent.  

The projective equivalence between the points on the 

left view and the points on the right view is the condition 

of the existence of 2D homograph mapping the left view 

to the right one.  

The estimation of the fundamental matrix was a 

flourishing theme, especially, in the nineties. The current 

work proves that, in general, there is no 2D homograph 

that maps the points on one image plane onto the points 

on the other image plane. Thus, the current derivation of 

the fundamental matrix is flawed.  
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