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Abstract—Digital image acquisition and processing 

techniques plays important role in clinical diagnosis. 

Medical images are generally corrupted by noise during 

their acquisition and transmission. Removing noise from the 

original medical image is still a challenging problem for 

researchers. Ultrasound imaging is widely used for 

diagnosis over the other imaging modalities like Positron 

Emission Tomography (PET), Computed Tomography (CT) 

and Magnetic Resonance Imaging (MRI) due to its 

noninvasive nature, portable, accurate, harmless to the 

human beings and capability of forming real time imaging. 

The presence of signal dependant noise known as speckle 

degrades the usefulness of ultrasound imaging. The main 

purpose for speckle reduction is to improve the visualization 

of the image and it is the preprocessing step for 

segmentation, feature extraction and registration. Over a 

period, a number of methods have been proposed for 

speckle reduction in ultrasound imaging. While using 

techniques for speckle reduction as an aid for visualization, 

certain speckle contains diagnostic information and should 

be retained. The scope of this paper is to give an overview 

about despeckling techniques in ultrasound medical 

imaging. 

 

Index Terms—speckle noise, speckle filters, wavelet 

transform, curvelet transform, contourlet transform 

 

I. INTRODUCTION 

Ultrasound imaging plays major role in medical 

imaging due to its non-invasive nature, accurate, low cost, 

capability of forming real time imaging, harmless to the 

human beings and continuing improvement in image 

quality [1] and [2]. It is used for imaging soft tissues in 

organs like spleen, uterus, liver, heart, kidney, brain etc. 

Speckle [3] is found in ultrasound imaging and other 

coherent imaging modalities. It is caused by the 

constructive and destructive coherent interferences of 

back scattered echoes from the scatters that are much 

smaller than the spatial resolution of medical ultrasound 

system. Speckle pattern is a form of multiplicative noise 

and it depends on the structure of imaged tissue and 

various imaging parameters.  

Speckle noise in medical ultrasound images reduces 

the contrast and image resolution which affect the 

diagnostic value of the ultrasound imaging. It obscures 

and blurs image detail significantly, degrades the image 
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quality and hence decreases the difficulty for the observer 

to discriminate fine detail of the image during diagnostic 

examination. It also reduces the speed and accuracy of 

ultrasound image processing tasks such as segmentation 

and registration. Therefore, speckle reduction is always 

an important prerequisite for ultrasound image processing 

tasks. 

In this paper, we do a survey of different image 

processing techniques used in enhancing the quality and 

information content in the ultrasound image. The 

remainder of the paper is organized as follows. Section II 

covers the speckle filtering methods; Section III discusses 

the different parameters for analyzing despeckling filter 

performance. Section IV provides a summary of the 

analysis as well as the conclusions drawn out of the 

survey. 

II. SPECKLE FILTERING METHODS 

Over the years, several techniques have been proposed 

to despeckle ultrasound images. There are two major 

classifications of speckle reduction filters namely 

compounding method and post acquisition method [4]. 

Compounding method improves the target delectability 

but suffer from degradation of spatial resolution and 

system complexity increases due to hardware 

modification. Post acquisition methods include spatial 

adaptive methods and multiscale methods which do not 

require any hardware modification, but improve the 

image details and reduce the speckle noise through 

algorithm implementation. This paper presents survey of 

spatial filtering methods and multiscale methods in 

removing the speckle noise and preserving the 

diagnostics information in ultrasound images. 

A. Spatial Filtering Methods 

Spatial filter is based on the ratio of local statistics, 

which improves smoothing in homogenous regions of the 

B-scan images where speckle is fully developed and 

reduces appreciably in the other regions of the image in 

order to preserve the useful details of the image [4]. 

Spatial filters like Lee and Kuan filter work directly on 

the intensity of the image using local statistics [5]-[7]. 

Different types of filters are used in the applications of 

despeckling in ultrasound imaging. The most commonly 

used types of filters are: 

 Mean filter [8] is a simple filter and does not 

remove the speckles but averages it into the data. 
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This is the least satisfactory method of speckle 

noise reduction as it results in loss of detail and 

resolution. It has the effect of blurring the image. 

This filter is optimal for additive Gaussian noise 

whereas the speckled image obeys a multiplicative 

model with non Gaussian noise. Therefore mean 

filter is not the optimal choice. 

 Median filter [9] are used for reducing speckle due 

to their robustness against impulsive type noise 

and edge preserving characteristics. The median 

filter produces less blurred images. The 

disadvantage is that to find the median it is 

necessary to sort all the values in the 

neighborhood into numerical order and this is slow 

because an extra computation time is needed to 

sort the intensity value of each set. 

 Frost filter [10] is an adaptive and exponentially-

weighted averaging filter based on the coefficient 

of variation which is the ratio of the local standard 

deviation to the local mean of the degraded image. 

The Frost filter replaces the pixel of interest with a 

weighted sum of the values within the nxn moving 

kernel. The weighting factors decrease with 

distance from the pixel of interest. The weighting 

factors increase for the central pixels as variance 

within the kernel increases. This filter assumes 

multiplicative noise & stationary noise statistics 

and follows the following formula. 
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K = normalization constant 


I = local mean 

σ = local variance 


  = image coefficient of variation value 

YoYXoXt  , and  

n = moving kernel size 

 Lee filter [5] and [6] is based on the multiplicative 

speckle model and it can use local statistics to 

effectively preserve edges and features. Lee filter 

is based on the approach that if the variance over 

an area is low, then the smoothing will be 

performed. Otherwise, if the variance is high (e.g. 

near edges), smoothing will not be performed. Lee 

filter can be described by 

W(X,Y) = 1 – (C
2

B / (C
2

I + C
2

B))        (2) 

where W(X,Y) is the adaptive filter coefficient. CI is the 

coefficient of variation of the noised image and CB is the 

coefficient of variation of the noise. 

 Kaun filter [11] is considered to be more superior 

to the Lee filter. Kaun filter is a local linear 

minimum square error filter based on the 

multiplicative model. It does not make 

approximation on the noise variance within the 

filter window. The filter models the multiplicative 

model of speckle into an additive linear form, but 

it relies on the Equivalent Number of Looks (ENL) 

from an image to determine a different weighted 

W to perform the filtering. The weighted function 

W is computed as follows: 

W = (1 – Cu / Ci) / (1 + Cu)                    (3) 

The weighting function is computed from the 

estimated noise variance coefficient of the image, Cu 

computed as follows: 

Cu = ENL/1
 

and Ci is the variation coefficient of the image computed 

as follows: 

Ci = S / Im  

where S is the standard deviation in filter window. The 

only limitation with kaun filter is that the ENL parameter 

is needed for computation. 

 Enhanced Frost and Enhanced Lee filter [12] are 

used to alter the performance locally based on the 

threshold value. Pure averaging is induced when 

the local coefficient of variation is below a lower 

threshold. The filter performs a strict all pass filter 

when the l0cal coefficient of variation is above a 

higher threshold. When the coefficient of variation 

is in between the two thresholds, a balance 

between averaging and identity operation is 

computed. 

 Gamma Map filter [13] is used to minimize the 

loss of texture information. This approach is better 

than the Frost and Lee filter and it uses the 

coefficient of variation and contrast ratio whose 

probability density function will determine the 

smoothing process. The algorithm is similar to 

Enhanced Frost filter except that the local 

coefficient of variation falls between the two 

thresholds; the filtered pixel value is based on the 

Gamma estimation of the contrast ratios within the 

appropriate filter window. The filter requires 

assumption about the distribution of the true 

process and the degradation model. Different 

assumptions lead to different MAP estimators and 

different complexities. 

 Wiener filter [14] and [15] restores images in the 

presence of blur as well as noise. Its purpose is to 

reduce the amount of noise present in a signal by 

comparison with an estimation of the desired 

noiseless signal. Wiener filter performs smoothing 

of the image based on the computation of local 

image variance. When the local variance of the 

image is large, the smoothing is less. When the 

variance is small, Wiener performs more 

smoothing. This approach provides better results 

than linear filtering. It preserves edges and other 

high frequency information of the images, but 
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requires more computation time than linear 

filtering. 

 Diffusion filtering: Perona and Malik [16] 

proposed non linear partial differential equation 

for smoothing imaging on a continuous domain. 

This diffusion is described by  

  IICdiv
t

I





.                       (4) 

I(t = 0) = I0 

where div is the divergence operator, I is the gradient 

magnitude of the image I,  IC   is the diffusion 

coefficient or the diffusitivity function and I0 is the 

original image. In the anisotropic diffusion method the 

gradient magnitude is used to detect an image edge or 

boundary a step discontinuity in intensity. 

An edge sensitive diffusion method called speckle 

reducing anisotropic diffusion (SRAD) has been 

proposed to suppress speckle while preserving edge 

information [17]. A tensor based anisotropic diffusion 

method called non linear coherent diffusion (NCD) used 

for speckle reduction and coherent enhancement [18].  

The above mentioned diffusion methods can preserve 

or even enhance prominent edges when removing speckle. 

Nevertheless, the methods have one common limitation 

in retaining subtle features such as small cysts and lesions 

in ultrasound images. 

B. Multiscale Methods 

Several multi scale methods based on wavelet, curvelet 

and contourlet have been proposed for speckle reduction 

in ultrasound imaging. 

 Wavelet Transform 

For one-dimensional piecewise smooth signals, like 

scan lines of an image, wavelets have been established as 

the right tool, because they provide an optimal 

representation for these signals [19]. Medical ultrasound 

images are not simply stacks of 1-D piecewise smooth 

scan-lines; discontinuity points (i.e. edges) are located 

along smooth curves (i.e. contours) owing to smooth 

boundaries of physical objects. Thus, images contain 

intrinsic geometrical structures that are key features in 

visual information. As a result of a separable extension 

from 1-D bases, wavelets in 2-D are good at isolating the 

discontinuities at edge points, but will not see the 

smoothness along the contours. In addition, separable 

wavelets can capture only limited directional information 

– an important and unique feature of multidimensional 

signals. 

The complex wavelet transform is one way to improve 

directional selectivity and only requires O(N) 

computational cost. However, the complex wavelet 

transform has not been widely used in the past, since it is 

difficult to design complex wavelets with perfect 

reconstruction properties and good filter characteristics 

[20] and [21]. One popular technique is the dual-tree 

complex wavelet transform proposed by Kingsbury [22] 

and [23] which added perfect reconstruction to the other 

attractive properties of complex wavelets, including 

approximate shift invariance, six directional selectivities, 

limited redundancy and efficient O(N) computation.  

The 2-D complex wavelets are essentially constructed 

by using tensor-product 1-D wavelets. The directional 

selectivity provided by complex wavelets (six directions) 

is much better than that obtained by the discrete wavelet 

transform (three directions), but is still limited. These 

disappointing behaviors indicate that more powerful 

representations are needed in higher dimensions.  

 Curvelet Transform 

Candes and Donoho [24] pioneered a new expansion in 

the continuous two-dimensional space R
2
 using curvelets. 

This expansion achieves essentially optimal 

approximation behavior for 2-D piecewise smooth 

functions that are C
2
 curves. The curvelet transform was 

developed initially in the continuous domain [24] via 

multiscale filtering and then applying a block ridgelet 

transform [25] on each bandpass image. Later the second 

generation curvelet transform [26] was defined directly 

via frequency partitioning without using the ridgelet 

transform. Both curvelet constructions require a rotation 

operation and correspond to a 2-D frequency partition 

based on the polar coordinate. This makes the curvelet 

construction simple in the continuous domain but causes 

the implementation for discrete images – sampled on a 

rectangular grid – to be very challenging. In particular, 

approaching critical sampling seems difficult in such 

discretized constructions. 

The curvelet transform is very efficient in representing 

curve-like edges. But the curvelet transform still have two 

main drawbacks: 1) they are not optimal for sparse 

approximation of curve features beyond C
2
 singularities 2) 

the discrete curvelet transform is highly redundant. 

 Contourlet Transform 

The contourlet transform is a 2-D transform technique 

developed for image representation and analysis [27] by 

Do and Vetterli. It was originally defined in the discrete 

domain, but the authors [27] proved its convergence in 

the continuous domain. It was constructed in a discrete-

domain multi resolution and multi direction expansion 

using non-separable filter banks. This construction 

resulted in a flexible multiresolution, local and directional 

image expansion using contour segments, and thus it is 

named the contourlet transform. Contourlets are an 

extension of curvelets. Contourlets are implemented by 

using a filter bank that decouples the multiscale and the 

directional decompositions. The multiscale 

decomposition is done by Laplacian pyramid, then a 

directional decomposition is done using a directional 

filter bank. 

The contourlet transform has several distinguishing 

features. 1) The contourlet expansions are defined on 

rectangular grids, and thus offer a seamless translation to 

the discrete world, where image pixels are sampled on a 

rectangular grid. To achieve this feature, the contourlet 

kernel functions have to be different for different 

directions and cannot be obtained by simply rotating a 

single function. This is a key difference between the 

contourlet and the curvelet systems in [24], [27]. 2) As a 
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result of being defined on rectangular grids, contoulets 

have 2-D frequency partition on centric squares, rather 

than on centric circles for curvelets and other systems 

defined on polar coordinates. 3) Since the contourlet 

functions are defined via iterated filter banks like 

wavelets, the contourlet transform has fast bank 

algorithms and conventional tree structures. 4) The 

contourlet construction provides a space-domain 

multiresolution scheme that offers flexible refinements 

for the spatial resolution and the angular resolution. 

The contourlet transform provides a multiscale and 

multidirectional representation of an image. It is also 

easily adjustable for detecting fine details in any 

orientation at various scale levels [28] resulting in good 

potential for effective image analysis. Moreover, the 

decoupling of multiscale decomposition guarantees a 

flexible structure for image analysis. 

III. PERFORMANCE METRICS 

TABLE I.  PERFORMANCE METRICS 

Performance 
Metrics 

Mathematical Expression 

Mean Square 

Error (MSE) MSE =  
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Square Error 
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To quantify the performance improvements of the 

speckle reduction method and enhancing the useful image 

information various measures are used. The following 

established performance metrics found in literatures [28]-

[31] are calculated in this study and their mathematical 

expression, significance are given in Table I. 

IV. CONCLUSION 

Although all standard speckle filters perform well on 

ultrasound images but they have some constraints 

regarding resolution degradation. These filters operate by 

smoothing over a fixed window and it produces artifacts 

around the object and sometimes causes over smoothing. 

Wavelets perform well for 1-D images and has few 

limitations in the higher dimensions related to 

directionality and anisotropy. Curvelet constructions 

require a rotation operation and correspond to a partition 

of the 2D frequency plane based on polar coordinates. 

This makes the curvelet idea simple in the continuous 

domain but causes problems in the implementation of 

discrete images. In particular, approaching critical 

sampling seems difficult in discretized constructions of 

curvelets. For contoulets, it is easy to implement the 

critically sampling. The key difference between 

contourlets and curvelets is that the contourlet transform 

is directly defined on digital-friendly discrete rectangular 

grids. Since contourlets overcome the limitations of 

wavelets and curvelets it will be better suited for speckle 

reduction of ultrasound medical images. 
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