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Abstract—With the continuous progress of human computer 

interaction, face detection as well as facial expression 

recognition is gaining the attention of researchers from the 

fields of security, psychology, image processing, and 

computer vision. In this area the most challenging thing is to 

recognize accurate facial expression with minimum time 

requirement. In this work, our main focus is to minimize the 

time using fusion based Independent Component Analysis 

(ICA). Research studies show ICA has significant success on 

face image analysis. Among several architectures of ICA we 

mainly used here Gaussian kernel based FastICA algorithm 

due to time efficiency. We apply FastICA on whole faces to 

recognize facial expressions. Also we apply FastICA on 

different facial parts, by proposing two algorithms namely 

WAPA-FastICA and OEPA-FastICA, to analyze the 

influence of different parts for several basic emotions. Our 

experiment shows OEPA-FastICA and WAPA-FastICA 

outperforms existing predominant FastICA algorithm. We 

also compared these proposed algorithms with our previous 

PCA based facial expression recognition work. 

 

Index Terms—OEPA: optimal expression specific parts 

accumulation, WAPA: weighted all parts accumulation 

algorithm, ICA: independent component analysis, FER: 

facial expression recognition, LS-ICA: locally salient ICA 
 

I. INTRODUCTION 

In this work our main target is to increase the correct 

recognition rate of facial expression and at the same time 

decrease the recognition time. As ICA works for higher 

order derivatives, and facial expression data in images lie 

on high dimensional data matrix, so ICA is a good choice 

for facial expression recognition. Among different 

architectures of ICA algorithm, we use here FastICA 

algorithm for time efficiency. Our first contribution here 

is to implement several kernels, like Tangent, Gaussian 

and Cubic for FastICA and compare among them for 

independent component extraction. We find FastICA with 

Gaussian kernel is more efficient. Our second 

contribution is we propose two algorithms namely 

WAPA-FastICA and OEPA-FastICA for part based facial 

expression recognition. These algorithms are discussed in 

corresponding section. We also implement LS-ICA 

because of its robustness to partial occlusion and local 

distortion. For LS-ICA 8x8 window is applied to perform 

scanning process and finding ICs. Our main target is to 
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analyze the influence of different parts for facial 

expression recognition. 

II. RELATED WORK 

The work from [1] claims that the structural 

information of sensory inputs stays in the redundancy if 

the sensory input system. PCA and ICA are the most well 

known methods for redundancy as well as finding useful 

components for attaining distinguishable properties. This 

redundancy provides information to develop a factorial 

system and independent components (ICs) develop from 

this representation. Complex object of higher order 

dependencies need such representation to be encoded. 

Independent component representation from this sort of 

redundant data is a general coding strategy for the visual 

systems [2].  

The most prominent subspace learning algorithms are 

PCA, ICA, NMF, LDA etc. For feature extraction from 

the facial expression images, most of the early FER 

research works extracted useful features using Principal 

Component Analysis (PCA). PCA is a second-order 

statistical method, which creates the orthogonal bases. 

These orthogonal bases provide the maximum variability. 

These variables are good source fro distinguishing 

features in image analysis. It is also commonly used for 

dimension reduction. [3] and [4] employed PCA as one of 

the feature extractors to solve FER with the Facial Action 

Coding System (FACS). We previously investigated PCA 

on facial expression recognition [5] and [6]. The work in 

[5] and [6] shows applying PCA on face parts rather 

whole face gives more accuracy to recognize expressions 

from facial image data. 

In this work, we investigate ICA on facial data to 

recognize basic facial expressions. Independent 

Component Analysis (ICA) has the ability to extract local 

facial features [7], [8]. In recent years ICA has been 

extensively utilized for FER [7]-[9]. As much of the 

information that distinguishes different facial expressions 

stays in the higher order statistics of the images [9], ICA 

is a better choice for FER than PCA. In [10], Bartlett et al. 

implemented ICA to recognize twelve different facial 

expressions referred to FACS. In [11], Chao-Fa and Shin 

utilized ICA to extract the IC features of facial expression 

images to recognize the Action Units (AU) in the whole 

face as well as the lower and upper part of the faces. In 

[8], Buciu et al. proposed ICA for the emotion-specified 

facial expression recognition and applied ICA on the 
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Japanese female facial expression database [12]. In [13], 

Bartlett et al. again introduced ICA on the PCs for face 

recognition in two different architectures where the first 

architecture finds the spatially local basis images and the 

second one the factorial face codes. 

III. INDEPENDENT COMPONENT ANALYSIS 

The principal component analysis (PCA) performs by 

the Karhunen-Loeve transformation and produces 

mutually uncorrelated features y (i), i=0,1…N. When the 

goal of image or data processing is to reduce the 

dimension as well as to minimize the mean-square error, 

Karhunen-Loeve transformation is a good solution. 

However, certain applications, such as the one depicted in 

Figure 1, the mathematical or analytical solution does not 

meet the expectations. In addition the more recently 

development of Independent Component Analysis (ICA) 

algorithm seeks to achieve much more complicated 

features than simple decorrelation of data or image 

analysis. Then ICA task is defined as follows: Given the 

set of input samples x, determine an M x M invertible 

matrix W such that the entries y (i), i=0, 1…M-1, of the 

transformed-vector are mutually independent. The 

uncorrelatedness required by PCA is less important 

feature than the statistical independence which 

independence can be implemented by ICA algorithms. 

Only for Gaussian random variables, this two conditions 

are equivalent to each other.  

Wxy                              (1) 

Seeking for statistical independence of data gives the 

mean of exploiting a lot more information, which lies in 

the higher order statistics of the data. 

Before developing the techniques for performing ICA, 

we need be confident that such as a solution and under 

specific conditions. For this we have to assume that our 

input random data vector x is principally generated by a 

linear combination of statistically independent sources, 

which is. 

Ayx                              (2) 

Now the task is to exploit the information of x to 

define under what conditions the matrix W can be 

computed so as to recover the components of y from 

equation of (2). Usually A is mixing matrix and W is the 

demixing matrix.  

The first condition is all independent components y (i), 

i=1,2…N, must be non-Gaussian and the second 

condition is that matrix A must be invertible. It means, in 

contrast to PCA, ICA is meaningful only if the random 

variables are non-Gaussian. And mathematically for 

Gaussian random variables, statistical independence is 

equivalent to the uncorrelatedness nature of PCA. So we 

have to assume that the obtained Independent 

Components y (i),i=1,2…N, are all Gaussian, then by 

using any unitary matrix, a linear transformation will be a 

solution [7]. On the other hand, by imposing a specific 

orthogonal structure onto this transformation matrix, PCA 

achieves a unique solution. 

IV. PROBLEM SPECIFICATION AND POSSIBLE SOLUTION 

Here, in the following figures, Fig. A should match 

with Fig. B as they both are of same facial expression, 

anger (from CK dataset). But when we apply ICA on 

whole faces, our system shows close match with Fig. C. 

This is because same person’s faces are in both train and 

test dataset. In this situation, ICA decomposition finds a 

close match with same person than similar expression. It 

may happen for same hair style, same cheek size or same 

face pattern (fat or this face). This situation happens in 

two cases: firstly, when same or similar test face (same 

person’s face) is present in train image set as well as 

similar (not exactly same) test expression is in the train 

image set. For this reason, the overall recognition rate 

decreases.  

 

Figure 1. Problem specification 

To overcome this situation we focus on only facial 

parts like, eye, nose and mouth. These parts are more 

prone for expressing any facial emotion. Our part based 

system (WAPA and OEPA-FastICA) shows better 

performance than whole face FastICA. The general 

scheme of the method is shown in figure. 
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Figure 2. Proposed solution 

V. ICA ALGORITHM 

A. ICA by Maximization of Non Gaussianity 

Non-Gaussian components are Independent [1]. 

Maximization of non-Gaussianity is the simple principles 

for estimating ICA model. Under certain conditions, the 

distribution of a sum of independent random variables 

tends towards a Gaussian distribution, which is the 

concept of central limit theorem. By finding the right 

linear combinations of the mixture variables, independent 
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components can be estimated. The mixing can be inverted 

as,  

XAS 1                            (3) 

Now it becomes, 

ASbXbY TT                (4) 

Here b stand for one of the rows
1A , but this linear 

combination XbT
 actually stands for one of the 

independent components. But as we have no knowledge 

of matrix A, we cannot determine such ‘b’, although we 

can find an approximate estimator. Non- Guassianity has 

two different practical implementations. 

Kurtosis: Kurtosis or the fourth order cumulant is the 

classical measure of non-gaussianity. It is stated by  

224 }){(3}{)( yEyEyKurt        (5) 

We should assume variable y to be standardized, so it 

can say 

3}{)( 4  yEyKurt              (6) 

The normalized version of the fourth moment  4yE  is 

defined as Kurtosis. The fourth moment is equal to 3 For 

the Gaussian case implementation and hence 

0)( yKurt . So it means for the gaussian variable 

kurtosis is zero but it is non-zero for the nongaussian 

random variables. 

Hence the kurtosis is simply a normalized version of 

the fourth moment. For the Gaussian case the fourth 

moment is equal to 3 and hence .0)( yKurt  Thus for 

gaussian variable kurtosis is zero but for nongaussian 

random variable it is non-zero. 

Negentropy: An alternative very important measure of 

nonguassianity is negentropy. From mathematical 

analysis, the measure of non-gaussianity is zero for a 

Gaussian variable and always non negative for a non 

Gaussian random variable. We can use a slightly 

modified version of the definition of differential entropy 

as negentropy. Negentropy J is defined as  

)()()( yHyHyJ gauss                (7) 

where gaussy  is a Gaussian random variable of the same 

covariance matrix. 

B. Negentropy in Terms of Kurtosis 

The largest entropy among all the random variables is 

the Gaussian variable. The negentropy for the random 

variables is zero if and only if it is a Gaussian variable, 

otherwise it is always positve. Moreover, the negentropy 

has an extra property that it is invariant for invertible 

transformation. But the estimation of negentropy is 

difficult, as it requires an estimate of the probability 

density function. Therefore in practice using higher order 

moments approximates negentropy. 

223 )(
48

1
}{

12

1
)( ykurtyEyJ               (8) 

Another approach is to generalize the higher order 

cumulant approximation in order to increase the 

robustness. Again the random variable y is assumed to be 

a standard variable. So that it uses expectations of general 

non-quadratic functions. To make it simple, we can take 

any two nonquadratic functions G1 & G2 such that G1 is 

odd & G2 is even & we obtain the following 

approximation [equation 9].  

2

222

2

11 )())(())(()( UEGyEGKyEGKyJ   (9) 

where K1 & K2 are positive constant & U is standardized 

Gaussian variable.  

VI. FAST FIXED POINT ALGORITHM FOR ICA 

(FASTICA) 

Assume that we have a collection of prewhitened 

random vector x . Using the derivation of the preceding 

section, the following steps show the fast fixed point 

algorithm for ICA. 

  

    

 

The final vector w(k) stands for one of columns of the 

(orthogonal) mixing matrix [ B ]. This means that w(k)  

separates one of the non-Gaussian source signals. The 

most dominant property of this algorithm is that it 

requires a very small number of iterations; normally 5-10 

iterations seem to be enough to obtain the maximal 

accuracy allowed by the sample data set. This is due to 

the cubic convergence property of the algorithm. 

A. Performance Index 

A well-known formula for measuring the separation 

performance is Performance Index (PI) which is defined 

as  
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(

)1(

1
)(

   (10) 

where jiA ,][  is the (i,j)th-element of the matrix [A]. As 

because, the knowledge of the mixing matrix [A] is 

required, the smaller value of PI usually mentions the 

better performance evaluation for experimental settings. 

B. Proposed Algorithm  

As pre-processing we did differentiation on whole set 

of images. Then we applied ICA on whole faces and on 

different facial parts, which hold the prominent 
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1. Take a random initial vector w(0) of norm 1.Let

k =1.

2. Let. 3( ) { ( ( 1) ) } 3 ( 1)Tw k E x w k x w k    Byusing a

large sample of x vectors, the expectation can be

estimated.

3. Divide w(k)by its norm.

4. If ( ) ( 1)Tw k w k  is not close enough to 1,let

k = k+1and go back to step 2. Otherwise, output the

vectorw(k) .



characteristics for expression detection. In [5 & 6], we 

implemented PCA on whole and part based faces. In this 

paper we implemented ICA incorporating (i) Weighted 

All Parts Accumulation (WAPA) algorithm and (ii) 

Optimal Expression-specific Parts Accumulation (OEPA). 

We consider four parts left eye, right eye, mouth and nose 

and we found better results.  

 In first option, we consider all the 

four parts to train an expression and utilize their weighted 

value in order to identify the expression from the test data. 

Weighted All Parts Accumulation (WAPA) 

algorithm 

Step: Apply the relevant equation to identify an 

expression 

--Ehap = W1.LEhap + W2.REhap + W3.Nhap + 

W4.Mhap 

--Eang = W1.LEang + W2.REang + W3.Nang + 

W4.Mang 

--Edis = W1.LEdis + W2.REdis + W3.Ndis + 

W4.Mdis 

--Efear = W1.LEfear + W2.REfear + W3.Nfear + 

W4.Mfear 

--Esur = W1.LEsur + W2.REsur + W3.Nsur + 

W4.Msur 

--Esad = W1.LEsad + W2.REsad + W3.Nsad + 

W4.Msad 

LE=Left eye, RE=Right Eye, M=Mouth, N=Nose In 

these equations, we calculate the weighted average of the 

four parts of faces, eye (left, right), nose and mouth. 

 
Sometimes a subset of all the four parts of the face is 

optimal in terms of processing time and accuracy for 

identifying an expression. In second approach, we adapt 

similar approach and named it as Optimal Expression- 

specific Parts Accumulation (OEPA). In case of 

identifying an expression, if more than one subset of four 

parts give almost equal accuracy within a threshold value, 

this algorithm picks the subset of minimal number of 

parts in order to reduce the processing time. It increases 

the efficiency of the program in terms of time and as well 

as accuracy. 

Algorithm of Optimal Expression-specific Parts 

Accumulation (OEPA) 

Initialization: First we initialize the random 

population. 

Evaluation: 

Step 1: Assume I = [i1, i2, i3, i4] is the vector of 

different segments of facial region, like: both eyes, mouth 

and nose.  

Step 2: Evaluate fitness f (I (i)) representing the 

accuracy of detection based on a particular instance of I 

(i), where i = 1to 4.  

Step 3: Assume E = [e1, e2, e3, e4, e5, e6] is the vector 

for six basic emotions, like: happy, sad, disgust, anger, 

fear and surprise. For each expression E (j), we need to 

run step 4 and step 5, where j = 1to 6.  

Step 4: Assume P = I (i) for each region, where i = 

1to4 and K1 = max (f (P)), accuracy value for detection 

of expression E(j). 

K2 = max (f (P1 + P2)), accuracy value for detection of 

region P1 and P2 for the expression E(j), where  1  = P2. 

K3 = max (f (P1 + P2 + P3) =accuracy value for 

detection of P1, P2 and P3 expression where  1  =  2  = 

P3. 

K4=max (f(P1+P2+P3+P4)=accuracy value for detection 

of P1,P2,P3 and P4 expression where  1  =  2  =     = P4.  

Step 5: Get the facial region  iP ,  

for which L = max (Ki)| here L is the final accuracy value 

for the particular expression.  

VII. LOCALLY SALIENT ICA 

The LS-ICA method imposes additional localization 

constraint in the process of the kurtosis maximization. 

Thus it creates component based local basis images. Each 

iterative solution step is weighted. And it becomes 

sparser by only emphasizing larger pixel values. This 

sparsification contributes to localization. Let V be a 

solution vector at an iteration step, we can define a 

weighted solution, W where 
iii VVW |)(|  and W = W 

/|| W ||. β > 1 is a small constant. The kurtosis is 

maximized in terms of W (weighted solution) instead of V 

as in equation 11. 

224 ))((3)()( bEWEwKurt 
          (11) 

By applying equation 12, which is a update rule we can 

derive a solution for equation 11. 

31 ))(( QtSVQVES T

ii

t 
         (12)

 

Here (in equation 12) S is a separating vector and Q 

contains whitened image matrix. Then the resulting basis 

image is .)( i

T

i

i QSVW


  Then according to the 

algorithm LS- ICA basis images are created from the ICA 

basis images selected in the decreasing order of the class 

separability P [11], where 
within

betweenP



 . Thus both 

dimensional reduction and good recognition performance 

can be achieved. The output basis images contain 

localized facial features that are discriminant for change 

of facial expression recognition. 

VIII. DATASET 

For experimental purpose we benchmark our results on 

Cohn Kanade Facial Expession dataset. e Nearly 2000 

image sequences from over 200 subjects are in this 

dataset. All the expression dataset maintain a sequence 

from neutral to highest expressive grace. We took two 

highest graced expressive image of each subject. As we 

took 100 subjects, so the total image becomes 1200. 100 

subject x 6 different expression x 2 of each expression. 

SO it becomes 100 x 6 x 2=1200. There is a significant 

variation of age group, sex and ethnicity.  

The following figure (Fig. 3) shows a portion of the 

dataset of our experiment. The first row is the frontal 

faces from CK dataset. Second, third, fourth and fifth 
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rows show mouth, left eye, and right eye and nose 

respectively. 

 

Figure 3. Original dataset from CK database and the four parts of 
every image obtained from our algorithm and used as data. 

IX. EXPERIMENTAL SETUP 

A. Face and Facial Parts Detection 

In CK dataset, the background is large with all the face 

images. First we apply the Viola-Jones algorithm to find 

the faces. For eyes, nose and mouth detection we applied 

cascaded object detector with region set on already 

detected frontal faces Fig. 4. This cascade object detector 

with proper region set can identify the eyes, nose and 

mouth. Actually it uses Viola-Jones Algorithm as an 

underlying system. This object uses a cascade of 

classifiers to efficiently process image regions for the 

presence of a target object. Each stage in the cascade 

applies increasingly more complex binary classifiers, 

which allows the algorithm to rapidly reject regions that 

do not contain the target. If the desired object is not found 

at any stage in the cascade, the detector immediately 

rejects the region and processing is terminated. 

   

Figure 4. Finding face and face parts 

B. Training and Testing Data 

We used here 100 subjects 1200 images and four face 

parts of the images. For every case (whole face, eyes, 

nose and mouth) we used 65% of the images for training 

and 35% for testing. We make separate face spaces for 

six different facial expressions. Then after ICA 

decomposition on the test images Euclidian distance is 

used for recognizing the closely match. When we applied 

ICA on whole faces, it happens that the system finds 

similar faces rather than similar expression when the 

same or similar person’s face is in the both the train and 

test folder. For this reason part based analysis, WAPA, 

OEPA and also LS-ICA performs better than whole face 

ICA decomposition.  

X. RESULT ANALYSIS 

A. FastICA 

We performed differentiation on the vector of images 

as a preprocessing step. Fig. 5 shows the filtered mixed 

signals after differentiation. Different source images are 

depicted in Fig. 6. Independent components of the images 

are shown in Fig. 7. Fig. 8 Shows global 3D matrix of 

Performance Index. As described before Performance 

Index is a well-known formula for measuring the 

separation performance which is defined in equation [10]. 

Finally Fig. 9 shows the estimated Inverse matrix. 

 

Figure 5. Filtered mixed signals (differentiation) 

 

Figure 6. Source images 

 

Figure 7.  Independent components 
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Figure 8. Global matrix 3D- performance index=0.0375 

 

Figure 9. Estimated Matrix Inverse (W) 

B. FastICA with Different Kernels 

We implemented FastICA with three kernels: Hyper 

Tangent, Gaussian and Cubic kernels. Our experiment 

clearly shows the Gaussian kernel needs the less time 

compared to other kernels of FastICA. So for the next 

step we choose the FastICA algorithm with Gaussian 

kernel. 

C. Influence of Different Parts 

As described before we detected facial parts like eyes, 

mouth and nose and applied FastIca with Gaussian kernel 

and calculated the weighted accuracy. Sometimes a 

subset of all the four parts of the face is optimal in terms 

of processing time and accuracy for identifying an 

expression. As for example from the following table 

(Table I) we can see that to find the highest accuracy for 

fear both eyes and mouth are needed whereas only mouth 

is enough to achieve the highest accuracy of surprise 

expression. The other results are shown below. 

TABLE I.  EFFECTS OF FACIAL PARTS FOR EXPRESSION RECOGNITION. 
LE=LEFT EYE, RE=RIGHT EYE, N=NOSE, M=MOUTH, OEPA=OPTIMAL 

EXPRESSION-SPECIFIC PARTS ACCUMULATION 

Facial 

Parts 
Surprise Anger Sad Happy Fear Disgust 

LE 82% 65% 66% 70% 40% 55% 

RE 82% 65% 66% 70% 40% 55% 

LE+RE 82% 65% 66% 70% 40% 55% 

N 15% 15% 50% 15% 30% 55% 

M 98% 50% 55% 90% 80% 50% 

LE+RE+
N 

60% 55% 50% 75% 56% 85% 

LE+RE+
M 

98% 80% 70% 100% 96% 80% 

N+M 69% 50% 50% 60% 50% 70% 

LE+RE+

N+M 
85% 90% 86% 85% 85% 78% 

WAPA-
FastICA 

92% 88% 82% 88% 90% 82% 

OEPA-

FastICA 

98% 

(M) 

90% 
(LE+RE+

N+M) 

86% 
(LE+RE+N

+M) 

100% 
(LE+RE

+M) 

96% 
(LE+RE

+M) 

85% 
(LE+RE

+N) 

D. LS-ICA 

As described before the Locally Salient ICA (LS-ICA) 

has the ability to identify locally distorted parts more 

accurately. So we choose here LS-ICA to compare 

against FastICA methods even with the WAPA and 

OEPA based FastICA to understand which algorithm 

plays better role for specific applications of Facial 

Expression Recognition. Fig. 10 shows a set of LS-ICA 

components after performing the LS-ICA decomposition 

over the images of facial expression. 

XI. COMPARISON AMONG ALL THE PROPOSED 

METHODS 

The following table (Table II) shows the comparison 

among Whole face based ICA, Weighted All Parts 

Accunulation based FastICA, Optimal Expression 

Specific Parts Accumulation based FastICA, and Locally 

Salient ICA. For some expressions the LS-ICA 

outperforms the conventional FastICA and WAPA-

FastICA methods. This is because LS-ICA algorithm has 

the strength to identify the local distortion more 

accurately. But the OEPA based FASTICA outperforms 

LS-ICA methods as we are choosing here only that facial 

parts which has the influence for specific facial 

expressions rather than choosing all the four face parts. 

 

Figure 10. Locally Salient Independent components based on 8-by-8 
windows and 40 dimensions. 

TABLE II.  COMPARISON AMONG PROPOSED ALGORITHMS. (W-
FASTICA: WHOLE FACE ICA, WAPA: WEIGHTED ALL PARTS 

ACCUNULATION, OEPA: OPTIMAL EXPRESSION SPECIFIC PARTS 

ACCUMULATION, LS-ICA: LOCALLY SALIENT ICA.) 

 Happy Anger Sad Surprise Fear Disgust 
W-FAstICA 

(FastICA with 
Gaussian Kernel 

on whole face) 

58% 60% 65% 70% 50% 55% 

WAPA-

FASTICA 
82% 68% 72% 82% 70% 72% 

OEPA-
FASTICA 

90% 80% 78% 88% 80% 85% 

LS-ICA 82% 70% 72% 82% 68% 70% 
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XII. CONCLUSION 

In this research work, we investigate FastICA and LS-

ICA on CK facial expression images. We apply FastICA 

with Gaussian kernel on whole faces and different facial 

parts, like: eyes, mouth and nose. When we apply ICA on 

whole faces, the system finds similar faces rather than 

similar expression. This happens when the same or 

similar person’s face lies in both train and test folder. So 

the overall recognition rate decreases. To overcome this, 

we apply part based analysis, WAPA, OEPA and LS-ICA. 

This WAPA-FastICA, OEPA-FastICA and LS-ICA 

outperform the prevalence FastICA method on whole 

face.  
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