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Abstract—Identification of building façades from digital 

images is one of the central problems in mobile augmented 

reality (MAR) applications in the built environment. 

Directly analyzing the whole image can increase the 

difficulty of façade identification due to the presence of 

image portions which are not façade. This paper presents an 

automatic approach to façade region detection given a single 

street view image as a pre-processing step to subsequent 

steps of façade identification. We devise a coarse façade 

region detection method based on the observation that 

façades are image regions with repetitive patterns 

containing a large amount of vertical and horizontal line 

segments. Firstly, scan lines are constructed from vanishing 

points and center points of image line segments. Hue profiles 

along these lines are then analyzed and used to decompose 

the image into rectilinear patches with similar repetitive 

patterns. Finally, patches are merged into larger coherent 

regions and the main building façade region is chosen based 

on the occurrence of horizontal and vertical line segments 

within each of the merged regions. A validation of our 

method showed that on average façade regions are detected 

in conformity with manually segmented images as ground 

truth.  

 

Index Terms—façade region detection, street view image, 

vanishing point, mobile augmented reality 

 

I. INTRODUCTION 

Recent advances in mobile computing have led to an 

increased demand for visual landmark identification in 

mobile augmented reality (MAR). MAR systems rely 

generally on two separate visual processing components 

[1]: tracking of the real-time video feed is needed to 

coherently co-register graphical augmentation with the 

imagery. Recognition is used to retrieve information 

relevant to the objects identified in the video. The rapid 

development of capable smart phones has recently 

fostered the development of a variety of methods to track 

features in video images. Some of those systems rely on 

motion vector tracking [2] and [3], while others, such as 

the well-known SIFT [4], SURF [5], or CHoG [6] 

methods, retrieve local feature points based on 

histograms of gradients. Current feature point tracking 
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algorithms provide stable and coherent tracking and since 

they are based on recognition and matching of local 

features, they are unaware of the actual scene content. In 

an MAR system to be used in the urban environment the 

recognition component of the system requires 

identification of the most prominent building or façade in 

the current view of the camera (see Fig. 1). Building 

recognition is a challenging task for many reasons. As 

Chen et al. state [7], query images are usually taken 

under very different conditions from the database images. 

Buildings also tend to have few discriminative visual 

features and many repetitive structures and their 3D 

geometries are not easily captured by simple affine or 

projective transformations. We also observe that façades 

are often partly occluded by trees, vehicles or other 

objects. In this work we contribute with an image pre-

processing pipeline for automatic detection and coarse 

segmentation of building façades in street-view images. 

The main objective is to delineate the region of the main 

façade of interest in query images which in a longer 

perspective will serve to restrict the building recognition 

task of an MAR system to such pre-selected façade 

regions in the image. 

 

Figure 1. Concept demonstration of the final AR system in which the 
proposed method will be used 

A. Related Work 

Although not aiming at façade detection, the analysis 

from Korah and Rasmussen [8] about building textures 

provides an insight into the regularly structured nature of 

façades. Wendel et al. [9] pointed out that a single façade 

segment was a coherent area in an image, containing 

repetitive patterns which match in color and texture. The 

approach they proposed can separate one façade from 

8

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing
doi: 10.12720/joig.2.1.8-14



another but cannot separate a façade from non-building 

objects in the scene, which is the goal of this work. To 

our best knowledge, building detection from the street 

view has not yet received much attention. David [10] 

identified façades as planar structures in urban outdoor 

environments. Intersections of edge lines categorized by 

scene vanishing points were used as supports for potential 

planes. Li and Shapiro [11] derived features from outdoor 

scene images by consecutively clustering edge line 

segments according to major colors on both sides of each 

line segment, orientations and locations of the line 

segments. A simple decision-tree classifier was used for 

detecting buildings in those images. Similar to the work 

in [10], Trinh and Jo [12] grouped parallel line segments 

according to vertical and horizontal vanishing points to 

identify façades as meshes of basic parallelograms. 

Delmerico et al. tackled the façade detection problem via 

the assistance of stereo information [13]. They extended 

Boosting on Multilevel Aggregates (BMA) with the 

disparity feature to compute a probability map for an 

image in terms of whether a pixel belongs to a building. 

A double-layer Markov Random Field (MRF) was 

constructed using the probability map, estimated plane 

models and the disparity values to infer whether a pixel is 

a façade pixel and which façade it belongs to if it is. 

Due to human preference, buildings tend to have a lot 

of horizontal and vertical linear elements on their façades. 

Under perspective distortion, the extended lines of these 

elements from a façade converge on two vanishing points, 

one for horizontal lines and one for vertical. Identifying 

these vanishing points provides a strong cue for the 3D 

properties of the façade in the 2D image. Therefore, 

similar to [10] and [12], our method also starts with scene 

vanishing points. However, instead of directly using lines 

incident with the vanishing points to form supports for 

façade planes, we incorporate the repetitive nature of 

façade appearance. After detecting the vanishing points, 

we scan the hue channel of the image along those lines 

incident with the vanishing points. Given a region with a 

repetitive pattern, scanning through it along lines with the 

same orientation should return similar hue profiles. 

Therefore, the image can be divided into several distinct 

regions delimited by some scan lines horizontally and 

vertically. We call these regions homogeneous regions 

henceforth. The image can then be subdivided into 

several regions with coherent contents by intersecting 

these two groups of homogeneous regions. Some non-

building objects such as sky, lawns and pavements, due to 

their uniform nature in appearance, will also yield similar 

hue profiles when scanned through, thus forming 

homogeneous regions. In the final step we introduce a 

criterion to select a coherent image region that is most 

likely to be the façade. The paper is organized as follows: 

Section II to V describe each step of the method in order. 

The experiment for validating the method is covered in 

Section VI. We discuss our method and draw a 

conclusion in Section VII. 

II. SCANLINE GENERATION 

In a pre-processing step we blur the original RGB 

image repeatedly with a Gaussian filter (Fig. 2a) in order 

to eliminate most disturbing edges that result from, e.g., 

tree branches or reflections on windows. Also, after 

conversion of the blurred image into HSV color space 

later for scanning, the hue channel has more coherent 

regions, the benefit of which will be elaborated in Section 

III. Experiments showed that blurring an image around 20 

times yielded superior final results in general so we 

choose to blur images 20 times in this work. A Canny 

edge detector is then applied to the blurred RGB image 

and detected edges are fed into edge linking and line 

segment fitting functions provided by [14]. The end result 

is a set of line segments derived from edges (Fig. 2b). 

A. Two Major Vanishing Points 

Repetitive patterns on a façade mainly occur 

horizontally or vertically. Hence we focus on detecting 

vanishing points in these two major directions. The 

detection process consists of two steps, initialization and 

refinement, which is similar to [15] and [16]. 

The initialization employs RANdom SAmple 

Consensus (RANSAC) [17] to produce initial positions of 

vanishing points. The first two runs of RANSAC will 

return the two major vanishing points and their respective 

incident lines. 

We use the result from RANSAC as the starting point 

for the Expectation-Maximization (EM) algorithm to 

refine the positions of vanishing points. The E step 

computes the membership of line    in terms of vanishing 

point   , which can be expressed as the probability of   , 

given   ,         . Using Bayes’ theorem, we have 

         
             

     
                       (1) 

Assuming a normal distribution for the distance 

between    and   , the conditional probability          
can be modeled accordingly, 

            (
              

  
 )            (2) 

where      denotes distance. The term       is 

initialized according to an equal prior probability and the 

total probability       can be given by 

      ∑                              (3) 

The M step uses the membership to adjust the position 

of each vanishing point according to 

  
            ̅ 

∑               ̅         (4) 

where    starts with   . We also update the prior 

probability in this step using  

      
 

 
∑                         (5) 

where   is the total number of inlier lines returned by 

RANSAC. Fig. 2c and Fig. 2d show the line segments 

from Fig. 2b whose extended lines are incident with two 

vanishing points found in this section. 
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(a) (b) 

     
(c)                                                          (d) 

Figure 2. (a) Blurred color image; (b) Detected line segments from 
edges; (c) Horizontal line segments; (d) Vertical line segments 

B. Scan Lines 

After establishing the vanishing points, we construct 

two sets of scan lines across the entire image. For each 

horizontal or vertical line segment in Fig. 2c and Fig. 2d, 

we form a line using its center point and the 

corresponding vanishing point. Not all line segments are 

used for this purpose. Firstly, because some line segments 

are collinear. In this case, we choose the longest one 

among them since it is more reliable. Secondly, some 

regions end up with very dense scan lines. Since the 

scanning results are very similar from these lines, we 

reduce the density by imposing such a constraint as 

neighboring scan lines should have at least 10-pixel 

interval between their starting points. Fig. 3 shows 

constructed scan lines overlaid on the hue channel of Fig. 

2a. 

 

Figure 3. Horizontal and vertical scan lines 

III. HOMOGENEOUS REGION DETECTION 

The newly constructed scan lines form the basis for the 

subsequent detection of homogenous regions. We scan 

the hue channel along those lines because hue values are 

often consistent on objects of the same type but vary 

between different types. This characteristic makes for 

more reliable scanning results. As introduced in Section I, 

homogeneous regions are delimited by scan lines which 

produce dissimilar profiles. We convert these profiles 

(1D signals) into the frequency domain by Fast Fourier 

Transform (FFT) and use the first 20 frequency 

components as a descriptor to characterize profile shapes. 

All profiles are re-sampled to have the same length to 

ensure the same fundamental frequency. The similarity is 

defined element-wise as 

                ∑ [         
       (   

 )    

     (   
 )      (   

 )  ]                    (6) 

where    and    are the two profiles in question and 

        and         represent the real and the 

imaginary part of a complex number while   represents a 

descriptor and   is the     element of the descriptor. We 

then normalize the similarity value to the range between 0 

and 1 and set the threshold for similar profiles to 0.3 after 

experimenting with different values. 

With the similarity measure defined, the next step is 

applying comparison results to the detection process of 

homogeneous regions. Here horizontal scan lines are used 

as example to convey the main idea and the vertical case 

can be carried out similarly. We start with the first scan 

line    on the top of a hue image and compare its profile 

with the ones of subsequent scan lines. If a scan line    is 

encountered whose profile is different from the one of   , 

we have found a possible homogeneous region delimited 

by    and     . However, since a single scan line cannot 

delimit a region, we label a new homogeneous region 

only if      and    are not the same line (this could 

happen when    and    are neighbors). This process is 

then repeated starting with    until the last scan line at the 

bottom of the image is reached. The results for both 

directions are shown in Fig. 4 (left and middle) 

respectively. These two groups of regions are then 

intersected with one another, which leads to a subdivision 

of the image into rectilinear patches shown in Fig. 4 

(right). As can be seen in Fig. 4 (right), coherent regions 

in the image are not well represented by one single 

rectilinear patch. Instead, they are fragmented. For 

instance, the sky, the façade and the flower bed all consist 

of multiple patches. Consequently, we introduce a 

fragment merging process, which will be discussed in 

Section IV. 

 

Figure 4. The white regions are (left) horizontal homogeneous 
regions; (middle) vertical homogeneous regions; (right) 

intersections of the two 

IV. MERGING FRAGMENTS 

In order to remedy the fragmented result, we need to 

detect patches of the same coherent region and merge 

them. Any two patches detected in Section III are 

considered to be fragments if they are from the same 

scene object. This definition entails two criteria that 

dictate the merging process: first, the image contents of 

two patches must be similar; second, they need to be 

neighboring. In this section we present features to 

determine if two patches have similar contents. 

Subsequently, we describe the merging process itself 

taking the second criterion into consideration. 
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A. Patch Description and Similarity Measure 

Due to the assumption that façades usually exhibit 

repetitive patterns, we use texture properties as 

descriptive features. Ohanian and Dubes [18] reported 

that co-occurrence features performed very well with 

small image patches. Such features are derived from a co-

occurrence matrix, which comprises the occurrence 

frequencies of different pixel pairs in a gray-level image 

given a direction and a distance measured in pixels. In 

this work, we choose the distance to be 1 pixel (namely, 

neighboring pixels) and the directions to be east, 

northeast, north and northwest. Hence, there are 4 co-

occurrence matrices. We then derive four features from 

each matrix: contrast, correlation, energy and 

homogeneity. For each rectilinear patch found in Section 

III, we thus construct a 16-dimension feature vector as 

the descriptor. 

The straightforward Euclidean distance between 

feature vectors is employed to measure patch similarity. 

The challenge is, however, to set a threshold for the 

comparison, since a constant threshold for all images is 

assumed to perform poorly. Through studying a set of 

testing images, we observed that the center part of an 

image most likely contained complete scene objects, 

including façades. For example, in the middle portion of 

each row in Fig. 4 (right) we find sky, a façade and a 

flower bed from top to bottom. Similarly, in each column, 

from left to right we have trees, a façade and trees. Hence, 

we can assume if there are multiple patches in the center 

part of a row or a column, they are very likely to be 

fragments. Based on this assumption, we designed an 

algorithm to adaptively compute a threshold for each row 

and column of the patches. The detailed steps of 

computing a row threshold is listed in Algorithm 1. It 

starts with two distance values between three central 

patches in the row (see line 10 and 11). The branching 

logic between line 12 and line 23 is introduced to 

determine which distance value should be used to derive 

the threshold. The basic criterion is a range of possible 

threshold values bound by        and       . These 

bounding values were derived from observed distance 

values between pairs of fragments as well as non-

fragment patches in a set of testing images. The threshold 

  is acquired by increasing the candidate distance value 

(   or   ) by a little amount   so that the center patches 

can be merged due to our aforementioned assumption. 

After running this algorithm for all the rows, we replace 

those zero thresholds with the mean of non-zero 

thresholds. If all thresholds are zero, a default value   is 

assigned. At last, we relax the thresholds by adding a 

little value   (   ) to them. The column thresholds can 

be found similarly. In that case, line 6 and line 7 become 

the patches above and below       . Table I lists values 

for various parameters used in this work. 

TABLE I. PARAMETER VALUES FOR COMPUTING THRESHOLDS 

                    

0.1 0.3 0.75 0.5 0.05 

 

Algorithm 1.  Compute a row threshold 

B. Merging Process 

As discussed earlier in this section, one of the criteria 

of two patches being fragments is that they need to be 

neighbors. Therefore, the merging process will always 

operate on adjacent patches. Meanwhile, in view of the 

grid layout of patches (e.g., Fig. 4 right), we split the 

merging process into two passes. The first pass merges 

neighboring patches within each row while the second 

pass continues with the results from the first pass and 

merges patches between neighboring rows. Within each 

row, starting from the left, let us assume there are   

patches and they are denoted    ,   , …,   . We take    

and test if its content is similar to the one of its neighbor 

   to the right. If they have similar contents, we merge   , 

   into a new patch     and compute the feature vector of 

    and then compare     with its neighbor    to the right. 

On the other hand, if    and    have different contents, 

we move on to    and compare it with   . This process is 

repeated until    is processed. Fig. 5 (left) displays the 

result of this pass. 

In the second pass, beginning with the result of the first 

pass, we try to merge between rows. Given a patch in a 

row, denoted     , we compare it with patches in the 

immediate row below     , namely,       . If two 

patches from these two rows are similar, we merge them 

and then move on to process the next patch in      until 

the last one. After that, the process starts in        and is 

repeated until it reaches the last row. The result after the 

second pass is shown in Fig. 5 (right). 

V. FAÇADE REGION SELECTION 

After the merging process, we obtain a few coherent 

image regions which approximate various objects in the 

scene. Given our objective, which is to delineate the 
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region of the main façade of interest, the last step in our 

method is to identify a trait which is unique to the façade 

region and distinguish it from other regions generated in 

Section IV. As we mentioned in the introduction, most 

horizontal and vertical line segments in a building image 

come from the building (refer to the resulting line 

segment groups in Fig. 2 for an example). Based on this 

observation, a façade region selection criterion can be to 

select the region that scores the greatest number of 

horizontal and vertical line segments. In the example 

image of Fig. 5 (right), region 7 has 158 horizontal and 

vertical line segments, far more than 63 within region 10, 

which has the second most such line segments (Fig. 6 

right). The final look of region 7 is displayed in Fig. 6 

(left), which overlaps with the façade region well. 

 

Figure 5. (left) patches after the row merging; (right) after merging 

between rows. In both figures, patches with the same number are 
merged. 

  

Figure 6. (left) the final region representing the façade; (right) 
horizontal and vertical line counts (ordinate) of each region (abscissa) 

from Fig. 5 (right) 

VI. EXPERIMENTAL VALIDATION AND RESULTS 

To validate our method, we conducted a two-fold 

experiment. At first, the ground truth for the experiment 

was established by letting a human observer (O1) 

manually delineate the region of the predominant façade 

in street-view images of buildings. To that end, the user 

was provided with a software tool that allowed manual 

editing of a closed polyline contour in the images. The 

user was instructed to identify and coarsely delineate the 

most prominent façade in every image. While the 

polyline tool generally allowed for almost pixel accurate 

drawings of façade borders, regions were typically 

delineated by simple polyline contours with a few control 

points. Examples of manually defined façade regions can 

be seen in the middle column of Fig. 8. 

For the testing data we used images from the ZuBud 

database [19]. This database contains 1005 street view 

images from 201 buildings. Most buildings were taken 

from different viewing angles with a few exceptions 

taken under different lighting conditions or with different 

cameras. To limit workload and to maintain the user’s 

attention during manual segmentation, we chose 201 

images from the database. Each of these selected images 

represents one of the 201 buildings in order to assure full 

coverage of the variations in the different building 

scenarios of the ZuBud image database. The image 

selection criterion hereby is predominance of the major 

façade in an image. This criterion is plausible considering 

the intended use case in an MAR system where the user 

would point the hand-held device towards the building of 

interest (compare Fig. 1). 

In the first part of the experiment another human 

observer (O2) manually delineated façade regions 

according to the same procedure as described above. In 

the second part our algorithm was executed to 

automatically perform the same task. This allows us to 

compare the agreement between our algorithm and a 

human observer against the agreement between two 

human observers. 

Region detection from the previous steps amounts 

essentially to a binary classification. Hence we 

established the confusion matrix for every image by 

counting the number of correctly and incorrectly 

classified pixels (in comparison with ground truth). 

Subsequently, we derived the following metrics from the 

confusion matrix for detection result analysis: accuracy, 

precision, recall and specificity. 

 The box-plots in Fig. 7 give an account on the 

positives and negatives as well as the derived metrics in 

both tests. Exact average numbers for the metrics used in 

both tests are summarized in Table II. Fig. 8 shows some 

images from the dataset along with their corresponding 

ground truth (O1) and automatic delineation. 

 

Figure 7. Summary of false and positive classifications as well as 
various metrics from two tests. (left: human detector (O2) vs. ground 

truth (O1); right: our method vs. ground truth (O1); A: Accuracy, P: 

Precision, R: Recall and S: Specificity) 

VII. DISCUSSIONS AND CONCLUSIONS 

Fig. 8 rows a~e show that the method presented in this 

paper is capable of excluding most non-building objects 

in the scene (e.g., trees and electricity wires) while 

complying with the shapes of the façades. Since we scan 

the image along lines incident with vanishing points, 

another advantage is that it is robust against perspective 

distortions.  

Nevertheless, the algorithm does not result in a crisp 

shape representation of buildings. In contrary, revisiting 

our initial objective of delineating the region of the 

dominant building façade in street view images, we do 

not expect total agreement of our algorithm with an 

observer established ground truth. In fact, even for human 

observers the decision in regard to what constitutes a 

façade region is not always congruent (e.g., in cases of 
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partially occluded buildings). For instance, comparing the 

images delineated by O2 with the ground truth images 

delineated by O1 results in a mean accuracy of 0.8136. In 

light of this the mean accuracy of 0.7229 achieved by our 

algorithm in comparison with O1 seems to be quite a 

promising agreement. Visual inspection of classification 

results in Fig. 8 provides some explanations for 

differences between human delineation and the algorithm. 

Since our algorithm is based on image fragments that are 

bound by the major vanishing lines, in Fig. 8 row a~e, it 

fails to capture façade boundaries that deviate from this 

overall regular façade structure, such as diagonal or 

curved pediments. These structures tend to be either 

partially captured (leading to false negatives) or to be 

contained within rectilinear patches that also contain 

background (leading to false positives). Meanwhile, Fig. 

8 row f and g show other limitations of the automatic 

detection. In row f, the façade does have different types 

of layouts. In this case, our method treats different kinds 

of layouts as different homogenous regions, thus, 

different façades and returns the most evident one as the 

final façade region according to Section V. Some façades 

have more irregular layouts, e.g., the one showed in row 

g. In such case, there will not be many homogenous 

regions detected on the façade region, which can lead to a 

complete misclassification. 

 

 

Figure 8. Examples of the detection results with their respective 
ground truth (left column: original images; middle column: ground truth 

(O1); right column: results from our method) 

Although false positive (FP) and false negative (FN) in 

an ideal classifier should be close to zero, we can still 

accept a higher FN while the FP should be minimal. In 

other words, for any subsequent image recognition 

process, we accept to miss some of the actual façade 

pixels, rather than incorrectly including background into 

the recognition (FP) process, as it contains features which 

are not characteristics of the façade. If we accept manual 

delineations of O1 as a suitable ground truth, this 

characteristic (lower FP compared to higher FN) is 

equally evident for the human classifier and the automatic 

classifier (see Fig. 7 and Table II). Similarly, precision is 

a more relevant metric to look at, which is at clearly 

higher levels than recall in both comparisons. 

TABLE II. MEAN VALUES FOR VARIOUS MEASURES IN BOTH TESTS (A: 

ACCURACY, P: PRECISION, R: RECALL and S: SPECIFICITY) 

 FP FN A P R S 

O2 vs. O1 0.0213 0.1651 0.8136 0.9601 0.7482 0.9338 

Our 

method 

vs. O1 

0.0495 0.2276 0.7229 0.9027 0.6665 0.8709 

 

As discussed above, we are aware of some potential 

for further refined region detection in our method. Given 

the purpose of the development, our ongoing research is 

directed towards evaluating how the façade region 

detection method presented here can help improve 

building identification and localization in the subsequent 

computer vision pipeline. 
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