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Abstract—Tracking-based video surveillance approaches 

use a pipe line of processes from capture of frames up to 

video analysis. All these processes consume too much 

computational cost and generally it is concentrated in the 

last step of this framework. Particularly for this step, our 

paper proposes a method for abnormal motion analysis that 

ensures efficiency in the inferences with less computational 

effort. For this, we use a region-based model that uses a 

mobile grid of subregions constructed from scene's ROI 

(region of interest). In order to avoid the implementation of 

the complete framework, we have replaced the previous 

steps with annotated datasets from the real world. From 

these annotations, we seek a size of subregion that produces 

the best result in the abnormal motion detection using 

GMM (Gaussian Mixture Models) and ROC (Receiver 

Operating Characteristic) curves. The method proved 

efficient and useful for abnormal motion analysis, especially 

in tracking-based approaches. 
 

Index Terms—motion analysis, abnormal motion detection, 

pattern recognition, video surveillance 

 

I. INTRODUCTION 

Automated surveillance has received much attention in 

recent years especially to support the tedious work of 

those who operate traditional systems. In this aspect, the 

motion analysis is one of the most explored research lines 

nowadays [1]. The region-based or clustering-based 

approaches using spatio-temporal probability models are 

appearing as the most effective approaches for motion 

analysis. The inherent uncertainty of the observations in 

video scenes is a characteristic problem, which reinforces 

the use of probabilistic reasoning in the events modeling. 

Some proposals had to determine constraints on their 

models in order to reduce the computation workload 

involved in every process part [2]-[5]. Several authors 
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developed complete video surveillance systems, from the 

capture of video frames up to the behavior analysis of 

moving objects in a category called tracking-based, 

where the robust tracking of multiple objects is still an 

open problem. Fig. 1 shows a taxonomy of the main lines 

of research in the abnormal motion analysis. Our work is 

in the branches outlined with an ellipse. 

 

Figure 1. Abnormal motion analysis taxonomy. 

The research seeks strategies that require lower 

computational cost, in order to make applications 

involving real-world scenarios feasible in different 

contexts [6]. Several papers use a motion-based approach 

for the abnormal motion analysis [7]-[14]. This category 

is attractive because it requires no preprocessing of video. 

The motion-based proposals, advance to other fields of 

research such as crowd, gait, gesture, face analysis among 

others. 

Especially in tracking-based approaches, the large data 

amount required to be processed and the algorithm’s 

complexity are considered as a barrier for the 

computational treatment. In that sense, many approaches 

deal with real-world scenes, but are generally limited in 

flexibility in what concerns scenarios, targets, video 

length and reality. A usual way to work around the 

problems of computational overhead is the adoption of 

models region-based where the analysis is done on 

clusters of pixels. Authors such as Elhoseiny [15] agree 

that it is necessary to use region-based techniques, 

otherwise it is impracticable to apply their ideas in the 

real world. In recent paper [16], we have presented a 
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region-based abnormal motion detection using a fixed 

grid. This work has shown very good results, which 

ensured a best margin of correct abnormal motions 

detection for each type of scenario, even with a 

significant reduction of data samples. Our goal here is to 

keep the same proposal however using a mobile grid 

rather than a fixed grid. 

A. Proposed Approach 

In a tracking-based approach the abnormal motion 

analysis is the last step of a framework. Thus, to take 

faster our goal, we isolate this step and have replaced the 

previous steps with video annotations. This strategy 

avoids the development of all the involved processes 

since the capture of video frames, which are not the 

purpose of this work. We implemented our abnormal 

motion analysis model which takes as reference input, 

data annotated from video dataset. In one round of the our 

training model, the mobile grid is formed, the motion 

model is performed and finally we have the best decision 

threshold to be used in respective scenario until that new 

round will be necessary. Since known the best threshold, 

it can be used for test step or any video of same scene 

while is kept the same behavior and frequency of the 

mobile objects. For motion and learning modeling, we 

adopted similar models proposed by the authors Basharat 

et al. [2], however we use a region-based approach 

instead pixel-based. In our learning model, beyond the 

use of GMM trained by the EM algorithm, we adopted a 

supervised and off-line training model and single-class 

classification to simplify the implementation.  

As a reference dataset, we used two sets containing 8 

to 10 sequences of 30 minutes of the LOST Project 

videos (Longterm Observation of Scenes with Tracks 

Dataset) available by the authors Abrams et al. [17] in 

http://lost.cse.wustl.edu. The LOST dataset comprises 

several videos made from streaming of outdoor webcams, 

captured and organized by numbers (1 to 25) in the same 

half hour every day at various locations around the world. 

The dataset contains metadata geolocation, object 

detection and tracking results. This dataset, met the 

expectations of our work, especially because it provides 

video annotations of objects tracking in different types of 

scenarios. The video sequences chosen are manipulated 

in order to improve tracking filtering quality keeping the 

best tracks and performing complementary annotations 

on video. At the end, they still contain predominantly 

samples of people and vehicle tracks; 

Our interest is only in the position throughout time 

from moving object, then there is a relative decoupling of 

objects with the scene context. Since the dataset already 

offers the type object by annotations, it is unnecessary to 

propose an appearance model.  

1) Scene modeling using mobile grid 

We observed that in the fixed grid [16], the object 

transitions between subregions can result in a confusing 

global trajectory. Aiming to reduce this effect, we have 

different approach. Here, the subregion in the grid is also 

a square area with side measuring  pixels which is 

defined as grid factor. The idea is to use a mobile grid, 

where the leftmost region, starting each grid regions line, 

is positioned over the first frame data cluster by its lower 

right corner. From this position, the grid line is completed 

at the right up to the point where there are no clusters. 

The process is repeated for the next regions below, 

forming the other grid lines up to the point where no 

pixels or no cluster data exist in the frame. The result is a 

grid with a smaller numbers of areas and better 

positioned over the ROI, as shown in Fig. 2. The 

numbering of these regions is also sequential, from left to 

right and top to bottom. However, there is no expression 

to define the numbering. The motion and learning models 

for the mobile grid are the same as for the fixed grid. The 

clusters arrangement is better adjusted only in ROI where 

there are data samples. The clusters amount is less than 

fixed grid if compared with same  value.  

 

 

Figure 2. Mobile grid examples over a generic frame LOST video #17 

when  (top) and  (botton). 

2) Motion modeling 

In the training phase, the 2D centroid coordinates of 

each object’s trajectory are used as a reference for 

identify the current grid’s region where is stored all data 

vectors generated up to a window of  following 

transitions. Since the same region may belong to other 

paths, this region will accumulate an increasing data 

amount. The transitions window defines how long the 

object track should be observed. Here, a transition is 

considered when an object jump to a different region in 

the next observation.  
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The annotated dataset offers a set of  tracks  for 

each video, each one represented as and 
*k  is the set 

of frames k where the object is sampled. Each frame k 

has a well defined timestamp  in the video and t  . 

Then T k

i  represents a set of  observations of the same 

object, T { } 1k k m

i j jO  . Each observation is a set of 

transition vectors
1{ }k j a

j j aO 

  , were ( , , )j a T

j r v t   is a 

sampled trail transition vector that contains the temporal 

continuous record t (timestamp) of object type v, in 

region  of the grid. Fig. 3 shows these future transitions 

observation of any object in frame k. They produce 

additional samples in the region where the object is 

crossing. At any track observed at any frame k, a 

sampling window up to  is performed. All transition 

vectors up to 
j

j

  are associated as samples at the 

region in the observation point Ok

j . 

 

Figure 3. Detail of the motion model proposed by Basharat et al. [2] 
and adapted by us. 

To build the database for training model, it is 

necessary to maintain long-term observation of the scenes 

in order to obtain a sufficient samples of the object types 

and their displacement in the scenario. For this we use 

two videos with different sizes, according to Table I. 

TABLE I.  DATA FROM LOST VIDEOS CORRESPONDING VALUES 

ACHIEVED AFTER TRAINING STEPS DUE TO A GRID FACTOR .  

LOST dataset video #1 video #17 

resolution 480x640 480x640 

hours 4 5 

anormal tracks 37 116 

normal tracks 1190 2990 

transitions 56651 120512 

samples 798048 1604119 

Video #17, of greater length, has been annotated with 

higher normal and abnormal track amounts. The 

scenarios characteristics and resolutions involved were 

purposely chosen. The video #1 has a more sparse 

number of tracks than video #17. Fig. 4(a) are frame 

samples of video #1 and video #17 respectively. Fig. 4(b) 

show the corresponding normalized samples distributions 

reported in Table I. The pixel locations with more intense 

colors are those with the largest number of samples. The 

dispersion observed in the sample videos suggests that 

many areas have insufficient data for the GMM training. 

 

Figure 4. Detail of the scenarios used according to LOST datasets. 

3) Learning modeling 

Any deviation of usual local (next transition) or global 

(all transitions) motion results in significant differences 

when calculating the probability and abnormalities are so 

identified. Considering the data clusters dimensionality 

equal 3, in summary, the probability is determined 

through (1), where  represents the samples quantity in 

each region  and . 

   (1) 

When  our model behaves with a pixel-based 

approach. Then the data in Table I shows the highest 

limits of sample quantities required to train our model. 

Since there is a mathematical relationship between the 

computational cost with the number of samples involved 

in the process, we understand it is sufficient to use the 

total samples as a metric to quantify and compare the 

results. Unlike our approach, the time complexity is much 

more important to motion-based approaches because of 

the processing of each frame subregion is continuous. In 

our case, once the model is trained, the decisions are 

computed in  where  depends on  and the 

number of moving objects in the frame. Thus, since our 

goal to present a more advantageous method in terms of 

computational effort, we need to find the best relationship 

between better performance of the model as the lowest 

computational cost associated.  

Since we are only interested in the highest hit rate of 

true positives (TPR) and the lowest hit rate of false 

positives (FPR), we adopted as reference metric the ROC 

efficiency through (2). For our binary classifier case, 

Powers [18] suggests a goodness performance measure 

for (TPR-FPR), called informedness. A number closer to 

1, indicates better correct ratio for both abnormal and 

normal tracks. The  value represents the number of lost 

tracks, which serves as penalty factor. They are 

represented through the numbers alongside different color 
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segments plotted in the ROC efficiency curves. These 

losses occur for two reasons:  the number of samples in 

all object transition regions was not enough for the 

convergence of the GMM training algorithm (usually the 

clusters require at least 40 samples) and  lack of 

transitions between regions. The track loss distorts the 

real performance of ROC curve values because for its 

interpretation is considered only targets (tracks) that have 

at least one probability calculated from the observed 

transitions. In presented curves, if  is increased, many 

transition vectors are removed of the dataset, thus the 

track loss is increased and consequently the ROC 

efficiency is lower. 

 (2) 

For implementation of our learning model, an iterative 

process is conducted in off-line mode to find the best  

value which ensures the best performance of model. In 

the first step, all tracks annotated as abnormal are 

excluded from the dataset. The sampling for each region 

is performed according to the motion model. Therefore, 

this method is referred to as supervised learning, since the 

training data consists of only one class of normal events 

[6]. In the second step, the dataset contains normal and 

abnormal events so that all tracks have annotations to be 

used as targets to plot ROC curves. The threshold found 

represents the lowest probability of all transitions 

sampled in the scenario.  

The  value is incremented by one from the unitary 

value. The limit of this increase occurs when the analysis 

results begin to reveal loss of original tracks or when 

efficiency becomes uninteresting. We observed these 

situations when . Fig. 5 and Fig. 7 show 

graphically the iterative process result, with an asterisk 

highlighting the best  values for the two evaluated 

videos. In the curves, the best  value is the best 

compromise among: the largest samples amount, the 

smallest tracks losses amount and best samples per 

cluster rate. The red (or darker) curve represents the 

samples quantity effectively used within all clusters.  

 

Figure 5. LOST video #17 analysis using mobile grid. Abnormal 
motion analysis performance (ROC Efficiency) and total samples versus 

 values variation. 

As an example, Fig. 5 shows that the best ROC 

efficiency value occurs when . The asterisk 

character presents the resulting value of the (2). It also 

indicates the point of the best threshold value which is 

determined by the ROC curve. Fig. 6 illustrates the best 

ROC curve point also marked with an asterisk character. 

 

Figure 6. Best ROC curve after training process of video #17. The 
value under asterisk character is the ROC efficiency determined by (2). 

 

Figure 7. LOST video #1 analysis using mobile grid.  

At the end of this process, we will have a searched  

value. This value and respective best threshold ROC 

curve associated will be adopted for the monitored 

scenario. The known threshold in this off-line round will 

be used as a single-class classifier until the necessity of 

another round. Once both  and respective decision 

threshold values are chosen, any size or video sequence 

in the same scenario which contains the annotations on its 

tracking, can be tested.  

As a test model, for each new position of each object 

in each frame, it is estimated the probability of that object 

type to be at the current position and time, originating 

from each of the  previous transitions (high order 

analysis). If any of the  probabilities is less than the 

threshold chosen in the learning phase, then the object is 

identified as describing an unusual trajectory from that 

point until the end of its trajectory tracking in the video. 

In our implementation, we highlight in red color the 

bounding box of the object that had its motion identified 

as abnormal. A screen-shot example is shown in Fig. 8. 
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Figure 8. Screen-shot video #1 during the test phase. The bounding 
box with red color indicates abnormal motion. Green if normal. Track 
number is identified with white color. In Yellow, a owner motion and 

objects types labels. 

In the context of this work, we have compiled the main 

results of the proposed method for two LOST datasets, 

aiming to compare with previous similar works. The 

proposed method was implemented in off-line mode with 

MATLAB, running on a computer Pentium Intel  

Core  i5 CPU M450@ 2.40GHzx4, 6GiB RAM and 

operating system UBUNTU12.04. 

II. RESULTS 

For two datasets, the ROC efficiency is always low 

when  because there is a large amount of the total 

clusters with insufficient samples quantity for training on 

our learning model. This can be solved with more sample 

tracks. The Table II shows a summary of performance for 

proposals with fixed grid proposed by us [16] and mobile 

grid and also in relation to pixel-based model proposed 

by Basharat et al. [2]. In order to establish comparison 

criteria, we consider the optimal  grid factors for each 

LOST video and we use the informedness criteria (TPR-

EPR) [18]. 

TABLE II.  MAIN PERFORMANCE RESULTS REACHED WITH FIXED AND 

MOBILE GRID AND EQUIVALENT PIXEL-BASED APPROACH PROPOSED 

BY BASHARAT ET AL. [2]. 

video #1  total samples TPR-FPR 

mobile grid best pu = 4  567713  0.903 

fixed grid best pu = 4  565608  0.921 

pixel-based pu = 1  816018  0.778 

video #1 7 total samples TPR-FPR 

mobile grid best pu = 4  1199629  0.921 

fixed grid best pu = 2  1492117  0.878 

pixel-based pu = 1  1646275  0.774 

The performance of the mobile grid is better for the 

video #17 even handling a smaller amount of samples. In 

video #1 the mobile grid was slightly lower performance 

than fixed grid, due to the data are more sparse in this 

scenario. In addition both grid types has much better 

performance when compared with pixel-based model, 

which equates reduce  . This behavior shows that 

the motion analysis in cluster of pixels, while reducing 

the computational effort, is much more effective. If we 

extend the comparison with the previous approach 

presented by Basharat et al. [2], the difference is huge 

due to the motion model these authors makes sample 

copies in all pixels of bounding box boundary. In a 

simulation using the dataset available by the authors, with 

video resolution 240x320 pixels and  hours length, we 

observed more than 250 million samples and the ROC 

curve with much lower performance according shown in 

their paper. 

III. CONCLUSIONS AND FURTHER WORKS 

We present a new method for abnormal motion 

analysis using region-based model with mobile grid. We 

used datasets with video annotations aiming to isolate the 

motion analysis step from several pipe lines processes 

generally used in tracking-based approaches. The 

proposed region-based method supported by ROC curves 

and GMM, used scene, motion and learning models 

focused on dimensionality reduction to decrease the 

computational effort without sacrificing performance in 

detecting abnormalities. Using optimal grid size, the 

number of samples decreases exponentially up to ~60% if 

compared with equivalent pixel-based motion models, or 

in others words, when .  

Both grid types modeling revealed similar results, 

however the mobile grid shows to be more accurate. The 

mobile grid requires more computational effort and a 

more elaborate algorithm. However, this additional 

complexity is only required once for each round of 

training. This slight improvement suggests that it is 

worthwhile to use others polygonal area forms strategies 

such as: Gaussianization proposed by Condurache and 

Mertins [19], adaptative triangular grids by Condell et al. 

[20] and superpixel concepts used in image segmentation 

area. 
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