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Abstract—The background estimation is often required in 

video surveillance applications. This paper presents some 

new techniques for background estimation in very high 

traffic conditions, where the background is visible for a very 

small fraction of the time. The algorithm exploits the fact 

that regions containing the background (assumed stationary) 

in the video sequence would always show a stable content, as 

opposed to the moving foreground which is highly transient, 

and presents an approach to eliminate the frames containing 

the foreground. Moreover, our proposed formulation of 

block wise stability provides a better estimate than a pixel 

wise approach. Results show that the obtained background 

comes very close to the actual background. 
 

Index Terms—background estimation, requantization, 

spatial consistency, temporal consistency 

 

I. INTRODUCTION 

This Video surveillance systems aim to identify people, 

objects or any events of interest occurring in different 

environments. These systems consist of a module which 

performs background subtraction, for separating 

background pixels, which need to be ignored. Tin all such 

situations, a background model is required before this 

subtraction can be done. Background estimation has 

several problems explained in [1]. In this paper, we 

concentrate on the Bootstrapping problem, in which a 

training period absent of foreground objects is not 

available. This is a common scenario in traffic 

surveillance applications, especially when the traffic 

density is high as shown in Fig. 1. Hence we require an 

automatic background estimation algorithm, to estimate 

the background in such situations, even though it has 

never been available as such. 

 

Figure 1.  A sample frame of the background occluded by heavy traffic. 

                                                           
Manuscript received January 15, 2014; revised May 13, 2014. 

II.PREVIOUS WORK AND OUR CONTRIBUTION FOR 

PAPER SUBMISSION 

A previous approach to background estimation was to 

use pixel-based average filter over a large number of 

frames. Zheng et al. [2] employed all incoming gray 

values of a pixel (including background and foreground 

object) to construct the Gaussian mod-el. However this 

algorithm is applicable for very low traffic and the 

resultant back-ground is very easily biased towards the 

foreground in case of high traffic. Kumar et al. [3] 

utilized a method to monitor the gray values from several 

frames without any foreground object for a few seconds. 

But in heavy traffic conditions it can be difficult to find 

enough foreground-free frames to build a reliable 

distribution of the back-ground image. Another way is to 

apply a median filter instead of aver-aging filter as 

illustrated in [4], but this also requires the background to 

be seen in at least in 50% of the cases. Hence all these 

algorithms are not applicable to background estimation 

where the traffic density is high, about 90%. In recent 

years Gaussian mixture model (GMM) based approaches 

to obtaining reliable background images have been 

developed [5], [6]. GMM-based methods feature effective 

background estimation under environmental variations 

through a mixture of Gaussians for each pixel in an image 

frame. However, this approach has an important 

shortcoming when applied to vision-based traffic 

monitoring systems (VTMS). For urban traffic, vehicles 

will stop occasionally at intersections because of traffic 

light. Such kind of transient stops will increase the weight 

of non-background Gaussian and seriously degrade the 

background estimation quality of a traffic image sequence. 

In such cases, we follow a different approach. Firstly, we 

seek to separate the input frames into foreground and 

back-ground regions. Periods of background content are 

identified by searching for the subset of frames with 

stable background content. The background, though 

available in only 10% cases, always shows similar and 

stable values. Finally, the background is estimated by 

applying the averaging filter over the background 

containing frames. A similar approach was introduced in 

[7]. It forms a block similarity matrix by plotting the 

difference of block values at different instants of time. It 

then uses this matrix to classify the frames into 
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foreground and background, by minimizing a cost 

function. However, this technique is quite complex. It 

recursively minimizes the cost function, which is time 

consuming. Moreover, it begins with an assumption that 

the pixel at the topmost left corner always contains the 

background, which is not valid in all cases. A much 

simpler and lesser computational approach to use the 

stability of the background is to plot pixel-wise 

histograms with the given data frames, as explained in 

[8]-[10]. The gray value with maximum frequency of 

occurrence is assigned as the background. This approach 

is robust to transient vehicle stops at road intersections, 

since, in the histogram, the weight due to this vehicle stop 

would be lesser than that obtained due to the stationary 

background for a decent amount of data. However, due to 

noise, even our stationary background may have a 

slightly different gray value every time. Moreover, it is 

possible that more than one gray value may have the 

same frequency of occurrence. An approach to overcome 

these two problems is illustrated in [11], where it forms 

Group-Based Histograms. In the Group-based histogram, 

a group based frequency is assigned to each gray value. 

This is an accumulative frequency, generated from its 

own frequency and the frequencies of the neighboring 

levels. The gray value corresponding to the highest group 

based frequency is assigned as the background. However, 

there is a shortcoming, if we have homogeneously 

colored traffic, the algorithm may give an erroneous 

result. In our work, we propose a new and yet simpler 

method of modifying the histograms to overcome the 

above problems. In Section 3 we propose to plot block-

wise histograms which are more accurate than pixel-wise 

and discuss the consequences. We then propose to Re-

quantize our data, which is a major contribution of our 

work. Instead of our 8-bit data, we re-quantize our data to 

be represented in 4 or 5 bits. We then plot histograms for 

our re-quantized data. This Re-quantized histogram will 

have lesser gray levels than 8-bit histograms, and thus 

have lesser computations. Also, it takes care of noise, as 

the adjacent gray levels due to the same background are 

merged into one value and contribute to the same peak. 

The Consistency Algorithm introduced takes care of the 

condition when many vehicles are of the same color.  

 

Figure 2.  The background estimate from median filtering. 

 

Figure 3.  The background obtained by our algorithm: in this example, 
we use pixel wise 4-bit requantization on 600 frames. 

III.BACKGROUND RECONSTRUCTION ALGORITHM 

Our approach towards background reconstruction (Fig. 

3), is applicable in very high density traffic conditions 

(and will of course also work in low density traffic too). 

The algorithm is based on the fact that the background, 

though available in very few frames, always shows a 

stable content, as compared to the continuously varying 

foreground. 

A. Pixel Wise Algorithm 

First, we work on gray scale images. We plot a 

histogram for each pixel position. This histogram is a plot 

of the range of gray values (0-255 in our 8-bit images), as 

base values of the histogram, versus the frequency of 

occurrence of these base values for the respective pixel 

position in the entire video. Initially, for the first few 

frames, we don’t get a dominant peak, but gradually, over 

a large number of frames, we get a noticeable peak as 

seen in Fig. 4. The exact number of frames required is 

completely dependent on the traffic density and the 

environmental conditions. We look for the histogram 

peak; the corresponding base value is assigned as the 

estimated background value for the particular pixel 

position. The reason behind choosing the peak is that the 

background remains stable and every time it is seen, it 

contributes to the same base value in the histogram, 

unlike the highly varying foreground. The unstable 

foreground contributes towards different base values 

every time, and hence in the long run, the peak due to 

stable background dominates over all the other smaller 

peaks due to the unstable foreground. Indeed, this is not 

altogether new: this is the principle that underlies any 

bootstrapping estimation process. The pixel wise 

algorithm applied to 600 frames is shown in Fig. 5. 

B. Block Wise Approach 

The above algorithm utilizes pixel-level stability of the 

background. It has its shortcomings, however. There is a 

finite probability that a set of entirely foreground pixels at 

a location frequently assume the same value (sample 

space has 256 points). Should this happen, they will 

incorrectly pass for the background by causing a false 

peak in the histogram. A better approach in this regard 

would be to look for block wise stability of the 
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background. Applied to a block of N pixels, this 

probability of misrepresentation decreases to the Nth 

power of that of the pixel-wise false peak event. Hence 

such frames that contributed towards a false peak in pixel 

wise algorithm would never contribute to a false peak in 

the block wise approach. On the other hand, the resulting 

sample space has 256
N
 distinct events, so the forming of a 

representative histogram requires much more data. 

 

Figure 4.  The Histogram plot for a pixel. The base value 
corresponding to the peak is assigned as background. 

 

Figure 5.  The pixel wise algorithm applied to 600 frames. A few 

regions where the algorithm is unable to estimate the background is 
shown enlarged. 

 

Figure 6.  The highly occluded surveillance image. 

 

Figure 7.  The estimated background obtained by pixel wise analysis 
on 600 frames. 

C. Block Wise Algorithm 

First we start with 2*1 blocks. Now, each block can 

have 2
8
  2

8
 values. The histogram is plotted combined 

for the 2 pixels in the block. It is a plot of 65536 ‘base 

values’ (0, 0 to 255, 255), versus the frequency of 

occurrence of these values for each respective block 

position in all the frames. Then, as before, we find the 

peak and assign the corresponding gray values (a 2-tuple 

in this case) as the estimated background of the respective 

block position. Similarly, for a 2*2 block, the histogram 

would be plotted for 2
8
  2

8
  2

8
  2

8
 = 2

32
 base values. 

However, plotting a histogram with these many base 

values is practically infeasible. Also, noise is a major 

factor, on which we have not focused yet. Considering 

both the above issues, our algorithms require some 

modification, to become both feasible and effective. We 

will be discussing the solution to both these problems in 

the coming sections. 

IV.REQUANTIZATION 

As we saw in the previous section, implementing the 

2*2 block wise algorithm is computationally expensive, 

because of the large number of bins (2
32

) of the histogram. 

As a solution to this, we propose to re-quantize all the 

input images. Suppose that, instead of 256 grey values (8 

bit images), we re-quantize the images to have just 16 

grey values (4 bit images). The way to do this is to simply 

drop the 4 least significant bits at each pixel. With this 

‘requantization’ the histogram would have only 2
4
  2

4
  

2
4
  2

4
 = 2

16
 base values for the 2*2 blocks in the block 

wise algorithm. This is computationally easier than 

before. 

A. Block Wise Algorithm with Requantization 

We follow the same approach as before and plot the 

histograms for the re-quantized images: therefore, for 

each block position, we have 2
16

 base values (as 

discussed), plotted versus the frequency of occurrence of 

these 4-tuple values for the respective block positions in 
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all the frames. Once we have the peak in the histogram 

for a particular block position, we separate out those 

frames which gave that peak. These frames are supposed 

to contain the stable background information for that 

particular block position. Hence we have separated the 

frames exclusively containing the relevant background 

from the rest. Now, to estimate the exact background 

value for each pixel position, we collect the 8-bit gray 

values of only those frames which were isolated as 

background carriers in the above exercise. The 8-bit gray 

value of the background is given by the weighted mean of 

all these values. Note that all the 4 pixels in a block 

would together contribute a common set of frames for 

estimating the background. As shown in Fig. 7 and Fig. 8, 

both pixel wise and block wise algorithms appear to work 

well on the highly occluded surveillance image shown in 

Fig. 6. However when we compared both in terms of Sum 

Of Absolute Differences from the actual background 

which we obtained by manually combining a careful 

selection of frames, the block wise algorithm proves to be 

significantly better. 

 

Figure 8.  The estimated background obtained by block wise 4 bit 
requantization algorithm on 600 frames using 2*2 blocks. 

B. Noise Immunity Effects of Requantization 

In section 3.1, we assumed that the stable and 

stationary background would always have the same gray 

value. However this is true only for a noise-free system. 

With noise present, it is not necessary that the 

background have zero sample variance over the available 

samples. In its present form, our algorithm would simply 

fail to find any background frames in such a situation. 

Hence, we ought to be looking at the neighborhood of the 

peak for the background, not solely at the peak itself. 

This is essentially what we are doing anyway under 

requantization. For example, in the above case, after re-

quantizing all frames to 4 bits; 110, 108 and 112 would 

all be re-quantized to the same common value and hence 

would contribute to the same peak in the requantized 

histogram. The exact value of the background would be 

given as the weighted mean of all these values which 

contribute to the peak. Another advantage of 

requantization is that it requires less data to predict the 

background close to the actual than that without 

requantization. For example, in the above case, where the 

same background showed values of 110, 108 and 112; we 

would require a greater number of frames to highlight the 

dominant peak out of these. With requantization, they all 

would contribute to the same peak, and therefore, we 

would require fewer frames to get the dominant peak. We 

can simply assign the weighted mean of all these values 

as the estimated background. Fig. 9 & Fig. 10 show the 

improvement in the estimated background obtained by 

pixel wise requantization. 

C. Requantization in Block-Wise Models 

Requantization, which we found highly desirable even 

for the pixel-wise approach, now becomes indispensable 

when we model the background in blocks. In Section 3.2, 

we discussed background estimation by using a block 

wise algorithm with blocks of size 2*1.. Again, this 

approach that collects identical blocks is possible only in 

an ideal noiseless case. In a practical case, due to noise, it 

is almost impossible for a pair of background blocks to 

have exactly the same values as they had at some other 

instant. In the context of block-wise statistical modeling, 

requantization also brings down significantly the bin 

count of the histogram, making the construction of the 

histogram feasible. 

 

Figure 9.  The estimated background obtained by pixel wise modeling, 
without requantization on 200 frames. There are many pixels where the 

algorithm fails to predict the background. 

 

Figure 10.  The estimated background obtained by pixel wise 4 bit 
requantization on 200 frames. It gives much better results than when 

applied without requantization.  

V.LIMITATIONS OF THE BLOCK WISE ALGORITHM 

It may be concluded from our results that, we get more 

accurate background estimates from the block wise 

algorithms as compared to their pixel wise counterparts. 
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Moreover, block comparison with a 2*2 block size proves 

better than that with a 2*1 block size. One might argue 

that we can continue to increase the block size 

indefinitely to get still better results. However there is a 

limitation to the block sizes we can use. To understand 

this, we compare the pixel wise and block wise 

approaches (the latter with blocks of size 2*1). We have 

already mentioned that block approaches require longer 

samples to get reliable statistics out, as the entire pair of 

values in the block needs to occur sufficiently many times 

to contribute to the same peak as compared to the pixel 

wise case. For the same reasons, even larger strings of 

frames are necessary for 2*2 block sizes, since a 4-tuple 

of values needs to occur sufficiently many times. This 

leads to a practical problem: the background conditions 

tend to change gradually over a time span of minutes, 

usually due to illumination or other atmospheric changes. 

The background model’s very validity is thus 

questionable if acquired over longer periods of time. This 

in turn sets a natural limit on the largest number of frames 

that may be gathered of any scene which is inherently 

non stationary unless the frame rate is itself increased. 

For example, with blocks of size 4*4, the duration of the 

required string of frames (at 30fps) exceeds the 

stationarity limits of the scene background. Ultimately, 

this enforces a limit upon block size. Also, the block wise 

approach might not always be better than pixel wise 

algorithm. In our work, we found out that with 

microscopically non-static backgrounds, like those 

containing trees, where the leaves are continuously in 

motion, the pixel wise approach gives better results, since 

in this scenario it is more difficult that a block has exactly 

the same values at two time instants, than for a single 

pixel to do so. To handle this problem, we may ultimately 

need to make the block size space-varying and data-

adaptive. 

VI.BACKGROUND ESTIMATION IN COLORED VIDEOS 

Until now, we dealt only with gray scale images. We 

now see how to exploit availability of color information 

to further improve performance. A colored image has 

three values, R, G and B (each can have a value of 0 to 

255). Therefore we need to look for background stability 

across all these three channels. 

A. Background Estimation in Colored Videos  

In order to look for background stability across these 3 

separate channels, we propose to re-quantize all the three 

channels of the colored images. We then plot 3 separate 

pixel-wise histograms corresponding to each channel of R, 

G and B for each pixel position. Next we look at the peak 

of the histograms. We will have 3 different sets of frames 

contributing to the respective histogram peaks of each 

channel. We take the intersection of these three sets of 

frames and only consider these common frames for the 

estimation. For each channel, the estimated 8-bit 

background value is given by the weighted mean of all 

the respective 8-bit values in the respective channel in the 

common set of background frames for the pixel in 

question. Since we look for background stability across 3 

separate channels, this gives us more accurate results than 

could be obtained from any one of the channels alone, or 

from the gray scale data. Note that requantization is a 

necessity while finding out the common frames through 

intersection of the 3 sets of frames. Without 

requantization, noise will affect the 3 channels differently 

and the histogram peaks might end up being contributed 

by 3 completely disjoint sets of frames: we might end up 

with no common frames at all to construct the 

background estimate with. Fig. 11 & Fig. 12 show the 

estimated background obtained for colored videos. 

 

Figure 11.   The estimated background in color using the color algorithm 

with 4 bit re-quantized images and 200 frames. The enlarged regions 

shows the pixels where no common frames are found across 3 channels 
of R, G, B. 

 

Figure 12.  The estimated background using the with 4 bit requantized 
color algorithm on 600 frames. 

VII.THE TIME- CONSISTENCY PRINCIPLE 

In this section, we propose and exploit another 

property of a stable background. Whenever the 

background is seen in a video, it is likely to be seen 

consistently for a few frames in continuation, this is what 

we call the time-consistency property. Note the difference 

between stability and consistency. By the stability 

property of the background, we expect that every time the 

background is seen, it always has the same content. This 
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could happen in different, possibly temporally distant 

parts of the video. But in the case of time-consistency, we 

are concerned with one or more contiguous strings of 

frames of the video. To implement the time-consistency 

principle, we deal differently with time-consistent frames. 

Unlike the stability principle which assured only a 

proportionate representation for similar background 

frames in the histogram, our time consistency principle 

recommends that the representation of consecutively 

appearing background frames should be more than 

linearly proportionate to their number. We propose 

(tentatively) to square this frequency in case of time-

consistent frames. Therefore, for 10 consistent 

background frames, the frequency of occurrence of that 

gray value would be treated as and not merely 10. 

As we saw in the earlier sections, noise always affects our 

algorithms. In a practical case, even though the 

background might be seen for 10 continuous frames, it is 

usual that that it has slight variations in its value within 

these 10 frames. Therefore, needless to say, we need to 

re-quantize our images. After requantization, the gray 

values of these 10 consistent frames correspond to nearly 

the same value and the same peak in the histogram. 

A. Time-Consistency Algorithm 

In our pixel wise time-consistency algorithm, we 

simply form a new data set which boosts time-consistent 

(consecutive) frames to the square of their actual number 

to get an artificially longer string of data. That is to say, 

every time we get a set of consistent frames for a pixel in 

the re-quantized images, we form a new data set for that 

pixel by simply repeating the entire string of the 

corresponding 8-bit values by as many times as the length 

of the string. Therefore, we have a new data set with 

longer strings of data – and therefore a greater overall 

length as well. Once we have formed the new data set, we 

follow the same procedure as set down in the earlier 

sections to estimate the background. In our work, we 

found out that consistency algorithm works well in videos 

with fast traffic even when the background is seen for 

very few frames in between. It suitably modifies the data 

set and we get a good estimate of the background. 

However, in slowly moving traffic or videos where 

vehicles stop in between, this algorithm doesn’t work 

well, since momentary pauses in the traffic also give rise 

to undesirable manifestations of consistency. 

VIII. RESULTS 

We now compare the pixel wise approach, with and 

without the requantization algorithms. Also we see how 

requantizing to different number of bits changes the 

estimated background. The Fig. 13(a) show the estimated 

background obtained by pixel wise algorithm (without 

requantization) versus pixel wise with 3 bit, 4 bit and 5 

bit requantization shown in Fig. 13 (b), (c) and (d) 

respectively. It is found that Pixel wise 4 bit 

Requantization Algorithm gives the best results for our 

data set as shown in Fig. 15. The choice of requantizing 

to appropriate bits depends on the data set noise levels. 

 

(a) 

 

(b) 

 

(c)  

 

(d) 

Figure 13.   (a) The estimated background obtained by pixel wise 
analysis, without requantization on 200 frames. (b) The estimated 

background obtained by pixel wise analysis with 3 bit requantization on 

200 frames. (c) The estimated background obtained by pixel wise 

analysis with 4 bit requantization on 200 frames. (d) The estimated 
background obtained by pixel wise analysis using 5 bit requantization 

on 200 frames. 
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Figure 14.   Performance comparison. 

 

Figure 15.  The estimated background obtained by pixel wise analysis 
with 4 bit requantization on 600 frames. 

 

Figure 16.   Performance comparison of the block wise and pixel wise 
approaches. Graph shows that after about 550 frames of data, block 

wise analysis begins to give better results than pixel wise analysis. 

TABLE I.  PERFORMANCE COMPARISON IN TERMS OF SUM OF 

ABSOLUTE DIFFERENCE FROM ACTUAL BACKGROUND. THE VIDEO 

FRAME IS SHOWN IN FIG. 1. IT SHOWS THAT FOR LESS DATA, THE 

COLOR ALGORITHM GIVES A HIGH ERROR, HOWEVER FOR LARGE DATA, 
THE RESULT IS MORE ACCURATE THAN OTHER ALGORITHMS. THE 

GBH AND PIXEL WISE REQUANTIZATION ALGORITHMS ALSO PERFORM 

WELL. 

No. of frames 200 700 

GBH Approach 3.5*  1.76*  

4-bit req. pixel wise  3.2*  1.8*  

2*1 block wise 4-bit req.  4.2*  1.75*  

2*2 block wise 4-bit req.  4.6*  1.68*  

TABLE II.  PERFORMANCE COMPARISON IN TERMS OF SUM OF 

ABSOLUTE DIFFERENCE FROM ACTUAL BACKGROUND. WE TOOK A 

DIFFERENT VIDEO WHICH HAD STATIONARY BUILDINGS AND VEHICLES 

IN THE BACKGROUND, AS SHOWN IN FIG. 6, THEREFORE, THE SAD ARE 

IN A LOWER RANGE. FOR LESS DATA, PIXEL WISE ANALYSIS PERFORMS 

BETTER, HOWEVER FOR LARGE DATA, BLOCK WISE ANALYSIS IS 

BETTER. 

No. of frames 500 

GBH Approach 15*  

Pixel wise 10*  

4-bit req. temporal consistency  7.2*  

TABLE III.  PERFORMANCE COMPARISON IN TERMS OF SUM OF 

ABSOLUTE DIFFERENCE FROM ACTUAL BACKGROUND. THE VIDEO 

FRAME IS SHOWN IN FIG. 13, THE FOREGROUND CONTAINED MANY 

WHITE COLORED VEHICLES. THE GBH ALGORITHM GAVE VERY HIGH 

ERROR. THE REQUANTIZATION ALGORITHM IS BETTER. HOWEVER THE 

TEMPORAL CONSISTENCY ALGORITHM OUTPERFORMS BOTH OF THEM. 

No. of frames 200 700 

GBH Approach 5.2*  2.75*  

Pixel wise 5.5*  3.6*  

4-bit req. pixel wise 4.89*  2.8*  

4-bit req. pixel wise color 5.3*  2.65*  

IX. CONCLUSION 

We proposed many new algorithms for background 

estimation for heavy traffic videos. It must be clear at the 

outset that these approaches are meant for situations 

where the background is very scarce indeed. Not much 

work is available for handling such situations, hence 

comparative evaluation is difficult. Since such data is not 

common in standard datasets, we have had to shoot our 

own. This fact also explains our inability to demonstrate 

our proposed approaches on ‘standard’ datasets. As 

compared to previous algorithms that cannot estimate the 

background in such heavy traffic situations, our 

estimation approximates the background reasonably 

closely. In particular, our algorithm is more accurate than 

GBH (Kai-Tai Song, et al. 2008). We introduced 

requantization, to both combat noise and reduce 

computations and applied it with both the pixel wise and 

block wise models and got improved results, though at 

the cost of increased data length requirements, for the 

block wise approach. We showed how to exploit the 

presence of color. We introduced the time-consistency 

principle, which produced significantly superior estimates 

when traffic was in continuous motion but was 

problematic if the traffic became stationary. 
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