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Abstract—Visual odometry is the process of estimating the 

motion of mobile through the camera attached to it, by 

matching point features between pairs of consecutive image 

frames. For mobile robots, a reliable method for comparing 

images can constitute a key component for localization and 

motion estimation tasks. In this paper, we study and 

compare the SIFT and SURF detector/ descriptor in terms 

of accurate motion determination and runtime efficiency in 

context the mobile robot-monocular visual odometry. We 

evaluate the performance of these detectors/ descriptors 

from the repeatability, recall, precision and cost of 

computation. To estimate the relative pose of camera from 

outlier-contaminated feature correspondences, the essential 

matrix and inlier set is estimated using RANSAC. 

Experimental results demonstrate that SURF, outperform 

the SIFT, in both accuracy and speed.  

 

Index Terms—SIFT, SURF, essential matrix, RANSAC, 

visual odmetry 

 

I. INTRODUCTION  

In the last decade, visual odometry has emerged as a 

novel and promising solution to the problem of robot 

localization in uncharted environments. The key idea of 

visual odometry is that of estimating the robot motion by 

tracking visually distinctive features in subsequent images 

acquired by an on-board camera [1]. Ego-motion 

estimation is an important prerequisite in robotics 

applications. Many higher level tasks like obstacle 

detection, collision avoidance or autonomous navigation 

rely on an accurate localization of the robot. All of these 

applications make use of the relative pose of the current 

camera with respect to the previous camera frame or a 

static world reference frame. Usually, this localization 

task is performed using GPS or wheel speed sensors.  

In recent years, camera systems became cheaper and 

the performance of computing hardware increased 

dramatically. In addition, video sensors are relatively 

inexpensive and easy to integrate in mobile platforms. 

Hence, high resolution images can be processed in real-

time on standard hardware. It has been proven, that the 

information given by a camera system is sufficient to 

                                                           
Manuscript received January 4, 2013; revised May 5, 2014. 

estimate the motion of a moving camera in a static 

environment, called visual odometry [1]. These properties 

make visual sensors especially useful for navigation on 

rough terrain [2], such as in reconnaissance, planetary 

exploration, safety and rescue applications, as well as in 

urban environments [3], [4]. Since its early appearance, 

visual odometry has been based on three main stages: 

feature detection, feature tracking, and motion estimation. 

However, several particular implementations have been 

proposed in literature [5], [6], which mainly differ 

depending on the type of video sensors used, i.e. 

monocular, stereo or omnidirectional cameras, on the 

feature tracking method, and on the transformation 

adopted for estimating the camera motion.  

A variety of feature detection algorithms have been 

proposed in the literature to compute reliable descriptors 

for image matching [7]-[11]. SIFT [10] and SURF [11] 

detectors and descriptors are the most promising due to 

good performance and have now been used in many 

applications. For visual odometry as a real-time video 

system, accuracy of feature localization and computation 

cost are crucial. Different from matching image 

applications with large viewpoint changes such as 

panorama stitching, object recognition and image retrieval, 

visual odometry is a video sequence matching between 

the successive frames. When the latter produces a number 

of false matches that significantly affect localization 

accuracy. This is mainly due to the fact that many features 

from an image may have no match in the preceding image. 

The essential matrix estimation is one of the stages of 

Visual odometry: this is where a robot’s motion is 

computed by calculating the trajectory of an attached 

camera, this matrix encoding the relative orientation and 

translation direction between the two views, and it is used 

to estimate the relative position from features matched 

between two images (‘feature correspondences’). 

Normally some features will be incorrectly matched, so a 

robust estimation to these outliers must be used. 

RANSAC (RANdom SAmple Consensus) [12] is a 

commonly used approach to achieve accurate estimates 

also in presence of large fractions of outliers. The use of 

RANSAC allows for outliers rejection in 2D images 

corresponding to real traffic scenes, providing a method 

for carrying out visual odometry onboard a robot. One the 
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application is for simultaneously finding the fundamental 

matrix (or essential matrix in the case of calibrated 

cameras) relating correspondences between two images, 

and to identify and remove bad correspondences [13].  

In this paper, we offer a substantive evaluation of SIFT 

and SURF to find the most appropriate detector and 

descriptor to estimate the accurate motion in visual 

odometry. We have selected the two popular detectors and 

descriptors which have previously shown a good 

performance in visual odometry. 

The following sections are organized as follows: 

Section II, we briefly discuss the working mechanism of 

SIFT and SURF followed by discussion of matching 

algorithm. After, we present the essential matrix, how to 

estimate the relative pose of two cameras from this matrix 

and robust motion estimation by RANSAC. In section III, 

we thoroughly compare matching performance of the two 

detectors and descriptors and present our evaluation 

criterions. Finally, we conclude in Section IV. 

II. BACKGROUND 

A. Features Description and Matching 

One of the most important aspects of visual odometry is 

features detection and matching. Two well-known 

approaches to detect salient regions in images have been 

published: Scale Invariant Feature Transform (SIFT), 

Lowe [10], and Speeded Up Robust Features (SURF), 

Bay et al [11]. Both approaches do not only detect interest 

points or so called features, but also propose a method of 

creating an invariant descriptor. This descriptor can be 

used to (more or less) uniquely identify the found interest 

points and match them even under a variety of disturbing 

conditions like scale changes, rotation, changes in 

illumination or viewpoints or image noise. Exactly this 

invariancy is most important to applications in mobile 

robotics, where stable and repeatable visual features serve 

as landmarks for visual odometry and SLAM.  

The Scale Invariant Feature Transform (SIFT): Lowe 

proposed a SIFT detector/descriptor [10], is a local feature 

extraction method invariant to image translation, scaling, 

rotation, and partially invariant to illumination changes 

and affine 3D projection. The extraction of SIFT features 

relies on the following stages: 

 Creation of scale-space: The scale-space is created 

by repeatedly smoothing the original image with a 

Gaussian kernel. 

 Detection of scale-space extrema (interest point 

detection): This is done to find peaks in the scale 

space of image (pixel) positions p = [x, y], and the 

scales σ. This is done by searching the (x,y, σ) 

space for extrema, which are filtered using 

stability criteria (step 4). 

 Accurate interest point localization: In the 

previous step, the interest points were detected in 

a discrete space. This step determines the location 

of interest points with sub-pixel and sub-scale 

accuracy. 

 Rejection of weak interest points: All interest 

points that have low contrast and are lying on an 

edge are removed. 

 Orientation assignment: To obtain rotational 

invariance, each interest point is assigned an 

orientation determined from the image gradients 

of the surrounding patch. The size of the patch is 

determined by the selected scale. 

The SIFT descriptor is a 3D histogram of gradient 

location and orientation. The magnitudes are weighted by 

a Gaussian window with sigma equal to one half the width 

of the descriptor window. These samples are then 

accumulated into orientation histograms (with eight bins) 

summarizing the contents over 4x4 sub-regions. The 

feature vector contains the values of all orientation 

histograms entries. With a descriptor window size of 

16x16 samples leading to16 sub-regions the resulting 

feature vector has 16x8 = 128 elements. A calculation of 

descriptor histogram: Given the position, scale and 

orientation of each interest point, a patch is selected where 

magnitude and orientation of gradient is used to create a 

representation which allows, to some extent, affine and 

illumination changes. 

Speeded Up Robust Features (SURF): The SURF 

detector-descriptor is proposed by Bay et al. [11]. Like 

SIFT, the SURF approach describes a keypoint detector 

and descriptor. This section gives all details on the 

following step of SURF algorithm structure: 

 Computation of the integral image of the input 

images. 

 Computation of the Box Hessian operator at 

several scales and sample rates using box filters; 

 Selection of maxima responses of the determinant 

of the Box Hessian matrix in box space  

 Refinement of the corresponding interest point 

location by quadratic interpolation; 

 Storage of the interest point with its contrast sign. 

The SURF descriptor encodes the distribution of pixel 

intensities in the neighborhood of the detected feature at 

the corresponding scale. To extract the SURF-Descriptor, 

the first step is to construct a square window of size 20σ, 

(σ is scale) around the interest point oriented along the 

dominant direction. The window is divided into 4x4 

regular sub-regions. Then for each sub-region the values 

of ∑  , ∑  , ∑|  | , ∑|  |  are computed, where ∑   

and ∑   refer to the Haar wavelet responses in horizontal 

and vertical directions in relation to the dominant 

orientation. This leads to an overall vector of length 

4x4x4=64, which corresponds to the scaled and oriented 

neighborhood of the interest point. 

Features Matching: After detecting the features (key-

points), we must match them, i.e., determine which 

features come from corresponding locations in different 

images. The described descriptors constitute the features 

used for matching images. Consider two images,    for 

frame a, and    for frame b. For both images, local 

features are extracted (using one of the methods described 

71

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing



 

above), which results in two sets of features,    and   . 

Each feature F = [x, y], H comprises the pixel position [x, 

y] and a histogram H containing the SIFT or SURF 

descriptor. The similarity measure      is based on the 

number of features that match between,    and   . The 

feature matching algorithm calculates the Euclidean 

distance between each feature in image    and all the 

features in image   . A potential match is found if the 

smallest distance is smaller than 60% of the second 

smallest distance. 

The matching strategy was to find the descriptor from 

the initial image that had the smallest Euclidean distance 

to a given descriptor in one of the secondary images. It 

guarantees that interest points match substantially better 

compared to the other feature pairs. In addition, no feature 

is allowed to be matched against more than one other 

feature. If a feature has more than one candidate match, 

the match with the lowest Euclidean distance among the 

candidate matches is selected. Note that the number of 

matched features will depend on the order that the features 

are matched, that is, if each feature in    is instead 

matched with all features in    the number of matches 

may differs. This can be avoided if the matching is done 

in both ways, where a match is only considered valid if 

the match occurs twice. The feature matching step results 

in a set of matched feature pairs     , with a total number 

of     . 

B. Monocular Visual Odometry 

Given that a set of features has been tracked 

successfully from the previous set of frames, it is now 

possible to estimate the new location of the camera rig. By 

five corresponding points, it’s possible to recover the 

relative positions of the points and cameras, up to a scale. 

This is the minimum number of points needed for 

estimating the relative camera motion from a calibrated 

camera and it is called five-point algorithm. Using the 

five-point algorithm with five correspondences, one can 

obtain the essential matrices [1]. For each essential matrix 

four combinations of possible relative rotation R and 

translation T of the camera can be easily extracted. In 

order to determine which combination corresponds to the 

true relative movement, the constraint that the scene 

points should be in front of the camera for both the two 

views is imposed. 

In this work, we assume that the camera used in the 

visual odometry is fully calibrated, i.e., intrinsic matrix K 

is given.  

Motion estimation by Essential matrix: The essential 

matrix, E, is a 3×3 matrix encoding the rotation and 

translation direction between two views. If the rotation is 

expressed as a matrix, R, and the translation as a vector, t, 

then E is defined by: 

   [ ]                             (1) 

where [ ] is the matrix-representation of the vector cross-
product, with the property that [ ]  x ≡ t × x. As [ ]  has 
rank 2 in general, E also has rank 2. From two images 

alone, the length of t cannot be determined, therefore E is 
only determined up to scale. A matrix can be decomposed 
into a rotation and translation in this way when it’s 
Singular Value Decomposition (SVD; [10]) has the form:  

   (
   
   
   

)                         (2) 

where U, V are orthonormal matrices. Due to the sign and 
scale ambiguity in E, U, V can always be chosen to be 
rotation matrices, and s can be chosen to be 1. 

If a 3D point X is viewed in two images at locations X 

and X' (where X, X' are calibrated homogeneous image 

coordinates), then E has the property that: 

        

Expanding this equation gives a single linear constraint 

in the nine elements of E for every correspondence. From 

N correspondences, these equations can be stacked to 

form a 9×N matrix, with the essential matrix lying in the 

null space of this matrix. To estimate E the 5-point 

algorithm is used. 

The essential matrix has five degrees of freedom and 

the minimal set is five point matches. A number of 

practical algorithms have been proposed [14], [15], the 

most prominent of which (due to its efficiency) is the 5-

point algorithm, proposed by Nister [16]. 

The least-squares fit to (3), is only an essential matrix if 

it can be decomposed into a rotation and translation as per 

(1). The essential matrix is given by its SVD (4): 

   (
   
   
   

)  

E can be decomposed by SVD, to give its 

corresponding rotation and translation direction, however 

two rotations and two (opposite) translation directions 

satisfy (Eq.1), for any given E. The correct R, t pair is 

identified by reconstructing a 3D point for each possible R, 

t; the reconstructed point will fall in front of both cameras 

only for the correct R, t [17]. 

Robust motion estimation using RANSAC: The 

RANSAC (RANdom SAmple Consensus [12]) robust 

estimation framework enables Essential matrix to be 

estimated from a set of point correspondences 

contaminated with outliers. RANSAC works by 

repeatedly choosing small random subsets of five 

correspondences (‘hypothesis sets’), fitting an essential 

matrix to each hypothesis set, then counting the total 

number of correspondences where Sampson’s error is 

below a threshold. 

Eventually an essential matrix compatible with many 

correspondences will be found, usually because the 

hypothesis set contained only inliers. RANSAC 

effectively finds essential matrices which are 

approximately correct, and inlier sets consisting mostly of 

inliers (typically about 90%), but can be very slow to find 

more accurate solutions [18], because of the large number 

of iterations needed to find a hypothesis set containing 
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only inliers, and because 5-point algorithm solvers are 

sensitive to point localization errors [19]. As a result, 

inlier sets tend to contain nearby outliers, and to miss 

some inliers. Raising the inlier/outlier threshold generally 

increases the numbers of both inliers and outliers, and 

reducing it reduces the number of both.  

The monocular visual odometry scheme operates as 

follows: 

 Extract the features from the images using the 

SIFT or SURF features detection and descriptor 

scheme. 

 Match interest points over two frames using 

Euclidian distance. 

 Randomly chose a number of samples each 

composed of 5 matches between the first and the 

second frame. Using the five-point algorithm 

generate a number of hypotheses for the essential 

matrix. 

 Search for the best hypotheses using RANSAC 

and store the correspondent inliers. The error 

function is the distance between the epipolar line 

Eq.3 associated with X and   . 

 Extract from the resulting essential matrix E the 

relative motion (rotation R and translation T) 

between two frames.  

 Repeat from Point 1. 

III. IMPLEMENTATION AND EVALUATIONS 

The visual odometry algorithm relies on accumulating 

relative motions, estimated from corresponding features in 

the images acquired while the robot is moving. Thus to 

achieve a reliable estimates of the camera pose it is very 

important to have a set of salient features that are well 

tracked successfully from the previous images.  

Out of the many available detectors/descriptors we 

wanted to test and compare the most frequently used and 

best performing for visual odometry. In the class of 

popular detectors/descriptors which have proven to be 

effective, and tackle issues such as scale, rotation, 

viewpoint, or illumination variation are SIFT [10] and 

SURF [11].  

We thoroughly compare the performance of the two 

detectors/descriptors. To ensure our work is compatible 

with existing analyses, we have chosen to use images boat 

dataset, for evaluating the performance of the descriptors, 

facing the challenges of changes zoom and rotation, and 

tests are based on matches that are found between two 

images. 

With chosen the two types of detectors SIFT and SURF, 

now it is of interesting to compare them and evaluate 

them for their robustness under different conditions. For 

SURF we have used the author’s implementation 

available at [11], and for SIFT feature 

detectors/descriptors, the extract_features.ln package 

available at [20].  

We will display in Fig. 1 and Fig. 2, an example of 

image matching with SIFT and SURF. This example 

based on pictures from the aforementioned ‘boat-

database’.  

 
Figure 1. Matching correspondences by SIFT detector/ descriptor. 

Green lines in the figure correspond to inliers and red lines correspond 

to outliers. 

 

Figure 2. Matching correspondences by SURF detector/ descriptor. 

Green lines in the figure correspond to inliers and red lines correspond 

to outliers. 

A. Detectors Evaluation  

In the first experiment we extracted interest points at 

each image of the sequences using the methods described 

in Section II. Next, we computed the numbers of 

correspondences for each sequence. The result is shown in 

Fig. 3. The SURF detector gives the maximum number of 

correspondences than SIFT. 

The most important measure that is used for comparing 

the detectors is the repeatability rate. The number of 

correspondences found is a raw measure and gives 

additional information about the results of repeatability 

comparison. The repeatability measurement tends to give 

better results if the number of correspondences is higher. 

 

Figure 3. The number of correspondences with viewpoint angle 

changes 
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We computed the repeatability rate using (5). The 

numbers of correspondences in both images is compared, 

and the smaller of the numbers is used as minimum when 

calculating the repeatability. In this case only the features 

that are present in the scene in the both images after the 

transform are considered. 

 

Figure 4. The Repeatability rate of a boat sequence with viewpoint 
changes.  

                     
                              

                    (           ) 
    (5) 

In most of the cases, the SURF detector shows the best 

results. For example, in Fig. 4, it achieves a repeatability 

rate above 0.65 when image rotated by 50° against SIFT 

which gives 0.45. The results showed that the SURF 

detector has demonstrated a high stability under changes 

in scale and viewpoint angle in most of the experiments. 

B.  Descriptor Evaluation  

Various evaluation metrics have been proposed in the 

literature for analyzing matches. The metric which is 

widely used for performing such analysis is based on 

measuring recall and precision. To compute the precision 

and recall parameters for the matching of descriptors, 

which are defined as [18]: 

         
                                        

                                     
        (6) 

           
                                        

                                 
   (7) 

In the expressions above (6) and (7), recall expresses 

the ability of finding all the correct matches, whereas 

precision represents the capability to obtain correct 

matches when the number of matches retrieved varies. 

The boats scene is used for evaluating scale and viewpoint 

angle changes; this ranked list of images produces 

different sets of retrieved matches, and therefore different 

values of recall and precision. The number of correct 

matches retrieved is measured by comparing the number 

of corresponding points obtained with the ground truth 

and the number of correctly matched points. The ground 

truth is a homography that projects points to the reference 

frame. 

In a precision versus recall curve, a high precision 

value with a low recall value means that we have obtained 

correct matches, but many others have been missed. On 

the other hand, a high recall value with a low precision 

value means that we have obtained mostly correct 

matches but there are also lots of incorrect matches. For 

this reason, the ideal situation would be to find a 

descriptor that obtains high values of both parameters 

simultaneously, thus having values located at the upper-

right corner in the precision versus recall curve.  

Our comparison of these descriptors has been focused 

on the assessment of their precision and recall measures 

under changes of viewpoint angle. 

 

Figure 5. The Recall versus Precision curve with changes in viewpoint 
angle. 

Fig. 5 show the results obtained in viewpoint and scale 

changing images by boat scene. The figure represents the 

recall and precision curves for each descriptor. The results 

are presented in Fig. 5, the figure leads us to the 

conclusion that SURF is a better descriptor than SIFT. 

C. Executing Time Evaluation  

As the visual odometry is a real-time application, we 

also compare the executing time for different detectors 

and descriptors using the same hardware and software 

platform. We record the average executing time of each 

detector/ descriptor in one frame. 

TABLE I.  AVERAGE RUN-TIME OF THE TWO FEATURE DETECTORS/ 
DESCRIPTORS IN ONE FRAME. 

 SIFT SURF 

TIME (MS) 2.212 1.019 

It can be seen from Table I, that the computational cost 

of SURF is an average of 2.17 times lower than SIFT. 

Consequently, in order to obtain a comparable level of 

accuracy, a robot utilizing the SIFT algorithm would be 

required to travel much slower than a robot utilizing 

SURF respectively. 

The performance evaluation of two popular 

detectors/descriptors is presented in this section, to find 

the best among them that would allow us to perform 

Visual Odometry. The experimental results suggest the 

SURF detector/descriptor may be a proper solution for 

monocular visual odometry, when considering the 

robustness, accuracy and executing time in all. 
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D. Testing Visual Odometry 

The experimental results have been focused on the 

accuracy of the proposed algorithm. The wheel odometry 

is also compared to the visual odometry using SIFT or 

SURF features. We consider wheel odometry as the 

ground truth of the robot motion. Fig. 6 shows the 

trajectories estimated by the proposed algorithm (red and 

blue line for SIFT and SURF features, respectively) for 

this trial. The wheel odometry (green line) is also drawn 

in the figure. We have writing a matlab program to 

compute visual odometry of the first 1001 images of 

"Flr3-2" dataset, to produce 1000 camera rotations or 

differential heading changes (dθ). With the rotation 

information, assuming a robot linear velocity of 0.022 

m/image (dx = 0.022), derive and plot the robot trajectory 

by integrating visual odometry over time. On the same 

figure, plot the robot trajectory from the wheel odometry 

in the data set as a reference. 

As it is drawn in the Fig. 6, the visual odometry obtains 

a reliable estimate of the robot displacement, more similar 

to the trajectory given by the wheel odometry, and 

improving the internal odometry at the end of the 

experiment.  

It can be clearly seen that SURF is more efficient than 

SIFT and produce the best trajectory estimation. There are 

small differences between the real trajectory of robot and 

estimated trajectory obtained using SURF-visual 

odometry. So, although the quality and total number of the 

detected features and their descriptors are influenced to 

the trajectory estimation by visual odometry. 

 

Figure 6. Trajectories estimated by visual (SIFT, SURF) and wheel 
odometry(red, green and blue lines, respectively). 

IV. CONCLUSION 

In this paper we describe a framework for presentation 

and comparison of visual odometry with a monocular 

camera. We focus on evaluating two features detectors/ 

descriptors which are commonly used in lots of computer 

vision algorithms are Scale-Invariant Feature Transform 

(SIFT) and Speeded-Up Robust Feature (SURF), to find 

the most appropriate solution in monocular visual 

odometry. 

Experimental results proved that SURF 

detector/descriptor outperformed SIFT in all the situations 

analyzed in this paper. It increased the accuracy 

percentage which means more reliability in image feature 

detection and description, yet SURF has a considerably 

lower computation time. It should therefore be clear that 

SURF is better suited for the task of visual odometry, but 

this is only when one considers the matching technique 

used in this paper. In fact, we believe that SURF might be 

useful for doing ‘coarse’ motion estimation, there are 

cases when SURF does not return a sufficiently high 

number of correspondences in order to allow precise pose 

estimation. In these cases, SIFT, which in general returns 

a higher number of correspondences, might be a better 

choice. 

In our future work, we will test using complex images 

scenario with more hard conditions like motion blur. We 

suggest taking advantage of the benefits provided by 

omnidirectional images, which is advantageous as it 

captures in a single image the whole surrounding structure, 

and then to evaluate which detector/ descriptor may be the 

most suitable solution to the visual odometry using an 

omnidirectional camera. 
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