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Abstract—The paper presents an efficient algorithm for 

approximating a real world 3D scene captured by a camera 

by a computer generated 3D graphics environment. First, to 

extract the 3D edge from an available 2D stereo image pair, 

straight edges are detected from both the images and a 

correspondence is established between them through the 

fundamental matrix based matching scheme. In the next 

step, we triangulate the end points of the common region of 

this matched edge pair to find the end points of a 3D 

straight edge. Using these, we locate the existence of planes 

between coplanar 3D lines, devising a coplanarity score for 

pairs of 3D lines and finally eliminating non-physical 3D 

planes by SIFT based analysis on the basis of discrepancies 

in depth of SIFT features in those 3D planes. 
 

Index Terms—image to graphics conversion, 3D edges, 

pseudo-plane, epipolar 

 

I. INTRODUCTION 

The background of our work is the field of 3D 

computer graphics which concerns with approximating a 

real 3D scene captured by a camera by computer 

generated 3D models. Most prevalent methods use depth 

maps for evaluation of 3D planes from a stereo image 

pair. They rely on extracting corresponding image points 

from the given stereo image pair and triangulating them 

for estimation of depth (as well as the other two 

coordinates) of 3D points. We have used straight edge 

feature matching instead of point-wise matching and 

establish point correspondences based on edge 

correspondences for depth estimation. The reason for our 

choice is that straight edges are easily available in man-

made environments, more robust against geometric 

distortions, incomplete matching and occlusion, and their 

identification is easier due to contrast change and hence 

offers robust matching. 

Our approach to straight line detection is a slightly 

extended version of fast straight line detection [1] which 

finds the presence of all possible straight lines between 

pairs of corners (found by Rostens fast feature detector) 

and accepts its presence if more than ninety five percent 

of the pixels of these lines lie on the edges. Now 

matching straight lines across a stereo image pair with 

significant base line difference between two cameras is 

difficult because of inherent deficiencies in the straight 

line extraction process, which result in unreliable 
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endpoints, edge lengths as well as edge centers. 

Prevailing line matching approaches (based on number of 

line segments they consider at a time) can be grouped in 

two categories. The first approach [2], [3] matches 

straight lines in a stereo image pair by considering one 

pair of lines at a time and finding match based on 

similarities in their geometric characteristic such as 

orientation, length etc. Employing minimum distance, 

orientation and length together is a very well suited 

approach for very small base line stereo pairs or for 

image tracking purposes where a single camera is 

employed and extracted images (at consecutive time 

instants) are almost similar. The second approach 

matches a bunch of straight lines to a similar bunch in the 

other image and offers an obvious advantage of better 

disambiguating capabilities by exploiting topological 

relationships such as left of, collinear with etc at the cost 

of increased complexity [4], [5]. Paper [6] introduces a 

fundamental matrix based line matching technique which 

exploits the epipolar constraint between two views and 

calculates a correlation based matching score for finding 

the straight line correspondences. This technique is also 

applicable to images taken from a stereo camera pair with 

a significant base line. We found this as the most suitable 

approach for our work. For 3D reconstruction using 

straight lines [7] describes the geometric limitations of 

line based 3D reconstruction algorithms. [8] introduces a 

multiple high-resolution image based model. Another 

method, [9] introduces a plane-sweep based 3D 

reconstruction based on identifying planar surfaces using 

single 3D lines and inter-image homographies. 

However, correlation score calculation over multiple 

views for identification of valid planes from the set of all 

possible planes through a particular 3D line is quite 

expensive in terms of computation time. We have used 

only two views for evaluation of the 3D structure of the 

scene and for disambiguating physically existing planes 

from pseudo planes, we use 3D SIFT points (calculated 

by triangulation of matched 2D SIFT point pairs in a 

stereo image pair). 

II. LINE DETECTION AND MATCHING 

A. Straight Edge Detection 

We first perform Canny edge detection to extract 

binary edge images from both the input stereo images. 

Now to detect straight edges from these binary edge 

images we create a visited point image (initially 
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containing only zeroes as all pixels are as yet unvisited: 1 

represents a visited point and 0 represents non-visited 

point). If a particular pixel of the Canny image is found to 

be non-zero as well as unvisited (found by checking 

visited point image at this particular pixel), select a point 

on the perimeter of a (    )  (    )  square 

centered around the pixel under test. 

Thus there are    perimeter pixels. Consider this pixel 

under test and any chosen point on the perimeter as two 

end points of a hypothetical line. Whether or not this 

hypothesis is valid is now determined by counting the 

number of unvisited Canny edge pixels in it. If the total 

number of such pixels is greater than or equal to a 

threshold (set as      in our work), line hypothesis is 

considered as valid, and the corresponding end points are 

stored and the points on this line are set as visited in the 

visited point image. The above steps are repeated for all 

the points on the perimeter of the square. Thus all 

hypothetical lines joining the perimeter pixels of the 

(    )  (    ) square (see Fig. 1) with the pixel 

under consideration (the centre of the square) are checked. 

The above procedure is repeated for all the pixels of the 

Canny image from top left to bottom right in a sequential 

manner. Detecting edge segments in this way by keeping 

a threshold takes care of possible missing and/or 

misplaced pixels in an edge segment and thus helps in 

dealing with noisy edges. At this point, we have small 

straight edge segments of   pixels (  was set to 8). 

 

Figure 1.       square search region around test pixel (   ) 

Now by looking for neighboring collinear segments, 

we merge these edge segments to get longer edges. Each 

straight edge segment is tested with all the other edge 

segments for similarity of slope. There may never be 

exact equality of slope, so a threshold is again used. 

Consider an edge segment with end points       and 

another edge segment with end points      . Then slopes 

   and    are given as 

    
       

       
                             (1) 

And 

   
       

       
                              (2) 

Thresholding criteria used is 

   (          

      
)                  (3) 

Find the nearest and farthest of these four points. Let 

      be the nearest and       be the farthest points. 

If distance between nearest points is less than specified 

threshold (set as 3 pixels in our work) a hypothetical line 

(see Fig. 2) is assumed between farthest points (i.e. 

between      ) and minimum distances of both nearest 

points with this hypothetical segment (say      ) is 

calculated. 

   |
(       )(       ) (       )(       )

√(       )  (       )
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If    and    both are below a certain threshold, (set as 

2 pixels in our work) then the hypothetical line segment 

is considered as a valid line segment and both smaller 

segments are replaced by it. 

 

Figure 2. Checking the possibility of merging. 

B. Fundamental Matrix Based Feature Matching 

Calculation of fundamental matrix: Let the camera 

projection matrices of the left and right cameras be given 

by 

  [

            

            

            

]                     (6) 

And 

  [

            

            

            

]                    (7) 

Then the fundamental matrix   (calculated from 

camera projection matrices as in [10]) is given by 

  [

|   | |   | |   |

|   | |   | |   |

|   | |   | |   |
]                   (8) 

Epipolar constraint: Let   and    be the 

homogeneous 3×1 column vector representations of 2D 

points    and   , which in turn are projections of a 3D 

point   on the first camera image plane and second 

camera image plane respectively.    is then constrained 

to lie on a certain line in the image plane of the second 
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camera. If the equation of such a line is           

then      and    are given by 

[
 
 
 
]                              (9) 

This line is called the epipolar line of    where   is 

3×3 fundamental matrix. Since    lies on this line, 

[  ]
 
[ ][  ]                    (10) 

The above equation is called the epipolar constraint 

[11] and is vital in solving correspondence problems. 

Matching scheme: Here, we establish a one to one 

correspondence between the members of two sets of 

straight line segments detected earlier. As we know, the 

images under consideration (say Image   and Image  ) 

are un-calibrated stereo images with possibly a 

considerable baseline difference between the two cameras, 

end points of detected straight lines, their lengths, and 

even centers of edges are unreliable. This is why, we 

choose the fundamental matrix based matching scheme 

for line matching. Thus, we have to begin with, two 

images containing many as yet, unmatched straight lines 

and a fundamental matrix using which a point in one 

image can be mapped to its corresponding epipolar line in 

the other image. That epipolar line is, in turn, bound to 

contain the corresponding point of the original point 

selected in the first image. 

Let                 be the   straight edges found in 

first image and let                 be the   straight 

edges found in second image.  

 First, we select the first point    (         ) 

lying on straight line    (the first subscript is used 

for particular edge number, second subscript 

describes the coordinate and third one is used for 

describing a particular point index). 

 For the selection of a particular point on line, we 

check if the line slope is more towards x-axis or y-

axis (i.e. we see whether the line forms a smaller 

angle with the x-axis or the y-axis). 

 For a line inclined more towards x-axis, x is 

incremented (or decremented depending on 

whether or not the x coordinate of the end point is 

greater than that of the start point of the line 

segment under consideration) in steps of one pixel 

at a time (starting from the start point of the edge 

segment) and the corresponding y coordinate is 

computed by using 

  
     

     
( )                    (11) 

where   is for     point and (     ) (     )  are end 

points of line.   ranges from    to   . 

 For a line inclined more towards the y axis, y is 

incremented in steps of one pixel at a time and the 

corresponding x coordinate is computed by using 

  
     

     
( )                     (12) 

where   ranges from    to   . 

Now after selecting the point on the line, we perform 

the following steps for matching the straight lines. 

 We find the corresponding epipolar line 

parameters (          in equation         
 ) lying in Image   by using (9). Denote this line 

by   
 . 

 Find the intersection point (say (     ) of line   
  

with line    (first edge in second image). 

 If (     ) lies within edge segment   , compute 

the matching score   for points    (         ) 

and    (     )  in the     neighbourhood 

(with       in our work) using [12] following 

equation: 

 (     ) 
∑ ∑ [  (             )   (  )][  (         )   (  )] 
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 If the matching score   is greater than some pre-

specified threshold (set as 0.8 in our work) 

increment the score counter corresponding to edge 

   by one. If the score is not greater than the 

threshold, the score is not considered (treated as 

zero) and the counter is not incremented. 

 Repeat the above steps for all the other right image 

edges (i.e.           ). At this point we will 

have   score counters.  

 Repeat the above steps for all the other points on 

edge   . Find the maximum value in array of score 

counters. 

 If the maximum value is greater than the threshold, 

store the right image edge corresponding to the 

score counter holding the maximum value as the 

matched edge. Repeat all the above steps for 

            . 
Thus we have accomplished left to right image edge 

matching. For better accuracy, right to left image edge 

matching is also performed (but now, fundamental matrix 

will be replaced by its transpose) and only edges with 

mutual agreement both ways are considered as matched 

edge pairs. 

III. 3D ENTITIES FROM MATCHED 2D LINE PAIRS 

We first describe the algorithm for finding 3D edges 

from matched 2D line pairs, followed by the algorithm 

for identifying the planes in the 3D scene. 
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A. 3D Lines from Matched 2D Line Pairs 

We need to establish an endpoint wise correspondence 

between the two corresponding 2D line pairs for 

calculating the endpoints of a 3D line. 

First, a 2D straight edge ( ) lying in first image (Image 

 ) is selected from a particular matched edge pair. End 

points of the selected 2D straight edge are converted into 

homogeneous form by adding a third coordinate “1” to 

them. Then these homogeneous end points are pre-

multiplied by the fundamental matrix   to estimate the 

parameters of the corresponding epipolar lines in second 

image. Now, since we have the epipolar lines 

(corresponding to both the end points) in Image  , we 

find their intersection with its matched line  . These 

respective intersection points (lying in the second image) 

are corresponding points of the end points of line  . 

Matching scores of the first end point with its 

corresponding point and that of second end point with its 

corresponding point are now calculated. Since we are 

going to triangulate these end point pairs, which are 

extremely sensitive to pixel matching error, we evaluate 

the matching scores of point pairs, and if the matching 

score is less than 0.95, we select the neighboring point of 

the previously chosen endpoint and start over. If the 

matching score is found greater than 0.95, we triangulate 

end points pairs to calculate end points of the 3D edge in 

space that is represented by this pair of matched image 

lines   and  . 

In an ideal scenario, when both the image points and 

both the camera matrices are measured accurately, we 

could have used the inhomogeneous method of 

triangulation [13] (which presumes the scale factor as 1). 

However due to errors in the measurement process, back-

projected rays do not intersect each other and this method 

fails to give an accurate estimate of the 3D point, or even 

may give no point at all. However, to find the best 

solution for the 3D point in this practical scenario (when 

measured image points are inaccurate, camera matrices   

and   are assumed to be calculated accurately), we use 

minimization of geometric re-projection error [14] as a 

preprocessing block and its output serves as the input to 

the inhomogeneous triangulation algorithm. 

3D edge descriptor: The descriptor (see Fig. 3) used to 

describe a 3D edge, stores all the details of 3D edge as 

follows: 

 First end point of 3D edge, which in turn is a 

structure containing the corresponding points from 

which it is calculated. 

 Second end point of 3D edge, which has similar 

construction as first end point. 

 Pointer to array containing co-planarity scores 

with all the other 3D edges. 

Removal of very small edges: Edges formed by too 

small 2D lines are likely to give wrong results, because 

they are more susceptible to re-projection error caused 

due to pixel mismatch. Moreover, the effect of 

quantization error generated due to analog to digital 

conversion of image is likely to be more dominant for 

these edges. Hence, 3D edges whose 2D endpoints are 

less than 15 pixels apart are rejected in further processing. 

 

Figure 3. 3D edge descriptor (where Im 1 and Im 2 refers to Image   

and Image   respectively) 

B. Calculation of Coplanarity Scores 

For identification of valid planes between any 3D edge 

pair, their endpoints can be checked for planarity. In an 

ideal scenario, the equation of the plane passing through 

any three endpoints can be formed, and planarity of 3D 

edge pair can be accepted or rejected depending upon 

whether or not the fourth endpoint satisfies this plane 

equation. However, end points of 3D edges obtained by 

triangulation of endpoints of the common portion of a 

pair of 2D edges have some noise added during analog to 

digital conversion. Besides, this there are inherent slight 

inaccuracies involved in the determination of the 

projection matrices, so we suggest the following method: 

 Find the least square error plane for the four 

endpoints of the edge pair under investigation. 

 Find the minimum distances of this plane from all 

the four endpoints. 

 Find the largest value of these four minimum 

distances. This is termed as the co-planarity score 

in our work. 

 If the co-planarity score for an edge pair is less 

than the threshold, it is considered as co-planar. 

C. Pseudo Plane Removal 

At this point, we have a (Number of 3D edges) × 

(Number of 3D edges) binary “Planarity matrix”, with a 

‘1’ at location (   )  indicating the presence of a plane 

between the 3D edge pair (   ) and a 0 at location 

(   ) representing absence of such a plane between the 

3D edge pair (   ). But this set might still contain pseudo 

planes, which do not exist physically in space, such as a 

doorway instead of a door. We collect matched point 

pairs using SIFT for separating valid planes from these 

pseudo planes. 

D. Obtaining Matching Points Using SIFT 

Application of SIFT for finding matching points in 

both the images is as follows: 

 SIFT is applied on both images to get two sets of 

point features. 

 These feature sets are matched using a FLANN 

based matcher which finds the minimally distant 

feature pairs corresponding to two images. Overall 

minimum distance of a feature pair is also 

calculated. 

 This overall minimum distance is multiplied by a 

fixed constant (>1) to compute the threshold 

distance. 
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 Now distances of all the feature pairs are 

compared with threshold distance, and key points 

of those feature pairs whose distance is less than 

the threshold distance are considered as matched 

point pairs and stored in an array for further use. 

E. SIFT Matching Points for Pseudo Plane Removal 

At this stage, we have a few matched points in both the 

images and we can triangulate them to get the 

corresponding 3D points. These 3D points can then be 

used for validation of a plane that is believed to exist 

between a pair of 3D edges. 

The algorithm for removing pseudo planes from the set 

of detected planes is as follows: 

 Select a 3D edge pair (   ) having a possible plane 

between them taken from a ‘1’ at (   )  in the 

Planarity matrix. 

 Find the first image SIFT points (from the set of 

matched 2D SIFT point pairs) lying inside 

quadrilateral formed by endpoints of projections 

of 3D edge pair (   ) into first image plane (i.e. 

corresponding lines of edge pair (   )  in first 

image). 

 Triangulate these first image SIFT points with 

corresponding SIFT points of second image to get 

a set of 3D points. Store these 3D points in an 

array (call it checkpoint array). 

 Check for other 3D edges whose projections lie in 

the quadrilateral formed by endpoints of 

projections of 3D edge pair (   ) into first image 

plane. 

 Store endpoints of these 3D edges also in 

checkpoint array. This is done because we may not 

get SIFT points for few edge pairs, and moreover 

these 3D endpoints are calculated on the basis of 

more than 95% matching score and hence are 

supposed to be accurate 

 Obtain the equation of the plane passing through 

the endpoints of edge pair (   ). 

 Calculate the number of elements of checkpoint 

array (which contains the 3D SIFT points as well 

as endpoints of edges lying between edge pair 

(   ) ) which agree with the equation of plane. 

Here also due to digitization of the image, points 

do not exactly satisfy the equation of plane so a 

threshold is used. 

 If more than 50% of the total number of elements 

of the checkpoint array do not satisfy the plane 

equation, the plane hypothesis is rejected by 

overwriting the location (   )of intersection array 

with a 0. 

 The above steps are repeated for all the edge pairs 

scoring a ‘1’ at (   ) in the Planarity matrix. 

IV. RESULTS AND DISCUSSION 

We present here two datasets. The input stereo image 

pair for both the datasets has been shown first, followed 

by the outputs at various stages during straight line 

detection and matching. For the Canny edge detector, we 

select upper and lower thresholds at 100.0 and 10.0 

respectively and an aperture size of 3. The minimum 

length threshold for straight lines is set to 14. 

A. Dataset 1 

Fig. 4 shows the input stereo image pair. This stereo 

pair is then subjected to Canny edge detection (see Fig. 

5(a)). Fig. 5(b) shows 186 straight lines detected in Image 

1 and 198 lines in Image 2 and the matched lines after 

performing fundamental matrix based line matching have 

been shown in Fig. 5(c). 

   

Figure 4. Stereo image pair (Image 1 and Image 2) 

   
(a) Canny edge detector output for stereo image pair 

   
(b) Detected straight lines 

  
(c) Matched lines between Image 1 and Image 2 

Figure 5. Output of various stages during straight line detection and 

matching (dataset 1). 

B. Dataset 2 

Fig. 6 shows the input stereo image pair (taken from 

the University of Oxford website). The Canny edge 

detector output has been shown in Fig. 7(a). Fig. 7(b) 

shows 190 straight lines detected in Image 1 and 198 

lines in Image 2 and the matched lines after performing 

fundamental matrix based line matching have been shown 

in Fig. 7(c). 
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Figure 6. Stereo image pair (Image 1 and Image 2) 

   
(a) Canny edge detector output 

   
(b) Detected straight lines 

   
(c) Matched lines between Image 1 and Image 2 

Figure 7. Output of various stages during straight line detection and 
matching (dataset 2). 

V. CONCLUSION 

We have developed and implemented a novel approach 

for 3D plane estimation from a stereo image pair. In this 

approach, we have used bounded straight line-segments 

as features and have emphasized the use of epipolar 

geometry of two stereo views for matching these line 

features. The straight line extraction method introduced 

here is robust against missing pixels. Fundamental matrix 

based matching is performed here as the end points, 

lengths and centers of the detected straight lines are 

susceptible to possible occlusion, fragmentation and/or 

missed edges. A descriptor storing the location as well as 

co-planarity information of a set of 3D edges is also 

developed. Valid 3D planes are finally separated from 

pseudo planes through a method based upon 3D scale 

invariant feature points which are calculated by 

triangulating matched 2D scale invariant feature points of 

both the stereo images. Due to the inherent robustness 

and sub-pixel level accuracy of 2D SIFT points, and the 

calculated 3D SIFT points, the pseudo plane rejection 

algorithm is accurate and robust to geometric re-

projection error. 
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