
 

 

 

 

 

 

  

 

  

64

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing
doi: 10.12720/joig.2.1.64-69

Fusion of Depth and Color Images for Dense 

Simultaneous Localization and Mapping 
 

Dylan T. Conway and John L. Junkins 
Department of Aerospace Engineering, College Station, Texas A&M University, TX, United States 

Email: {dtconway, junkins}@tamu.edu 

 

 

 
Abstract—This paper presents a system for performing 

dense mapping of surface geometry and texture properties. 

Co-registered depth and grayscale images are incrementally 

fused into a global map in real-time as they are collected. 

The resulting dense map can be rendered into a virtual 

depth and grayscale image from any arbitrary pose. 

Comparison of the rendered and observed images provides 

a direct means of computing the sensor pose relative to the 

map allowing new data to be fused into the model. This 

frame-to-map tracking scheme, as opposed to frame-to-

frame tracking, improves system accuracy and robustness. 

Additionally, the use of both surface geometry and color 

texture better constrains the pose solution and reduces the 

risk of tracking failures. This paper describes an 

implementation of the proposed algorithm and provides 

experimental results. 
 

Index Terms—SLAM, data fusion, GPU, dense mapping  

 

I. INTRODUCTION 

Localization of a sensor in an unknown scene is a 

central problem in navigation. Applications range from 

industrial robotics to spacecraft guidance. In order to plan 

safe trajectories and move to regions of interest, a map of 

the scene's surface must be generated. A reference frame 

must be embedded in the scene to perform this task. Then 

all surfaces can be described in this frame and the sensor 

pose relative to this frame can be estimated. Vision 

sensors have formed the front-end of many Simultaneous 

Localization and Mapping (SLAM) systems to solve this 

problem. 

Vision sensors generate measurements that depend on 

both the surface geometry and the sensor pose. The goal 

of the SLAM problem is to solve for the geometry and 

pose given the vision measurements. Many applications 

demand real-time performance in unstructured scenes 

which has been a major challenge to practical systems. 

Many algorithms use either passive cameras or depth 

cameras but little work has been done on optimally fusing 

data for a co-registered pair of the two. The goal of this 

work is to accomplish that task. 

The proposed method builds on earlier advances in the 

SLAM literature. Geometry based methods that use depth 

images and visual feature based methods that use color 

images are combined into a single algorithm that can 

operate in real time. First a brief review of recent 

                                                           
 Manuscript received February 15, 2014; revised June 19, 2014. 

developments in SLAM is given. Then details of the 

proposed algorithm are discussed. Finally, results on 

experiments tailored at spacecraft navigation applications 

are given. 

II. BACKGROUND 

The vision-aided SLAM problem has received an 

enormous amount of attention in the literature. SLAM 

methods estimate the parameters of a map structure 

which can grow over time. Typically images are searched 

for previously mapped features. The estimated map 

locations of those features are used with observation data 

to update sensor pose. Then with an updated sensor pose, 

new features can be initialized into the map and the 

location estimates of existing features can be refined.  

The MonoSLAM implementation which used a single 

passive camera was one of the earlier successes in this 

field [1]. That system used an Extended Kalman Filter 

(EKF) where the sensor pose was augmented by the 

locations of discrete visual feature points in the state 

vector. The augmented EKF lacked robustness because 

incorrect feature correspondences easily corrupted the 

entire state vector. This was addressed in [2] and [3] by 

tracking features independently of one another and by 

using particle filter methods. These algorithms 

significantly improved overall robustness in real world 

scenes and reduced the computational requirements. 

All of these systems relied on discrete feature points to 

populate their maps. This was done largely to fit the 

SLAM problem into a traditional state estimation 

framework. When using discrete points, a visual feature 

tracker or matcher is required to solve the correspondence 

problem. Algorithms like Lucas-Kanade optical flow or 

SURF have been used for this task but often fail to match 

features over widely varying viewpoints [4] [5]. This 

failure is a major hurdle to bounding error estimates and 

closing loops.  

Dense mapping is an alternative to the discrete point 

approach. In these methods a three-dimensional voxel 

grid is embedded in the scene. Methods in this class 

recursively estimate the probability of each cell being 

occupied by a solid surface. One example is a memory 

efficient implementation known as OctoMap which stores 

the grid in a tree structure to prune away finer resolution 

cells covering wholly occupied or wholly unoccupied 

space [6]. Curless and Levoy presented an alternative 

dense method where a Signed Distance Function (SDF) is 



  

 

 

 

 

 

 

 

65

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing

discretized over the voxel grid [7]. The value of a true 

SDF at a given point is simply the distance from that 

point to the nearest surface. Positive SDF values 

represent free space while negative values represent solid 

interiors. The actual surfaces are extracted by locating the 

zero-crossings. The advantage of the SDF over an 

occupancy grid is that the resulting surface resolution is 

much finer than the resolution of the grid cells. Therefore 

more accurate maps can be made with similar memory 

resources. 

Newcombe et al. presented a state-of-the-art 

implementation of dense surface mapping in [8] which 

relied on a Truncated Signed Distance Function (TSDF). 

Their method was demonstrated with a Microsoft Kinect 

sensor. Each voxel of their map contained two values: the 

TSDF and the TSDF weight. This representation is 

convenient for two reasons. First, given a depth image 

from a known sensor pose, the observed data can be fused 

into the map in a recursive fashion. Second, given an 

arbitrary sensor pose and known map, a depth image can 

be rendered from that pose by ray casting into the map. 

Iterative Closest Point (ICP) is applied to a depth image 

rendered from an a priori pose estimate and the observed 

image to find a pose correction. Using this accurate pose 

update, the observed data can be fused into the map. Each 

stage of the algorithm is parallelized onto GPU hardware 

and can operate at the sensor's 30 Hz frame rate. Their 

method directly inspired this paper. 

In [8], an ICP algorithm is used to align the rendered 

and observed depth images [9] [10] [11]. This method 

works well when the pose estimate is close to the truth 

and the scene’s geometry is sufficient constrain the pose. 

However, this may not always be the case. This paper 

proposes the use of co-registered grayscale images to 

incorporate surface texture to better constrain the pose 

solution.  

III. METHOD 

The proposed method has a similar structure to that in 

[8]. The major difference is that the surface texture is 

estimated and used, along with the geometry, to constrain 

the pose solution. Each voxel in the map has an additional 

two values: an albedo and an albedo weight. This allows 

both a depth image and a grayscale image to be rendered 

from an arbitrary pose under the assumption of a diffuse 

lighting model by ray casting into the scene. On the next 

frame, the previous pose serves as an a priori estimate of 

the current pose. A depth image and grayscale image are 

rendered from this pose. The host computer receives the 

latest sensor data and passes a copy of it to a GPU. Then 

two separate host threads are launched that run 

independently of one another.  

The first thread operates entirely on the host and 

computes a pose update based on visual feature matching 

between the rendered and observed grayscale images. 

The second thread manages GPU kernel launches to get a 

geometry based pose update. This thread first passes 

sensor data through a preprocessing stage. Then an ICP 

algorithm aligns the rendered and observed depth image 

to get a pose update. Once both updates have been found, 

the main thread of execution resumes. The two estimates 

are merged in a probabilistic sense and the new pose 

estimate is passed to the GPU. The GPU then performs a 

map update and a surface prediction to be used on the 

next raw data set. The algorithm is outlined in Fig. 1.  

By fusing both data sources the algorithm can 

overcome the failure modes of low texture variation and 

low geometry variation when either is present alone. 

Additionally, the visual-based pose update is better suited 

to perform large updates unattainable by ICP as shown 

below. 

A. Notation 

A notation similar to that in [8] is used for easy 

comparison of the algorithms. Two reference frames of 

interest are defined. A global reference frame is fixed 

in the scene. A second frame is fixed to the sensor. The 

sensor frame at time k is located at position  

relative to the global frame. Note that the subscript 

outside of the brackets indicates the frame in which the 

vector is coordinatized in. The rotation between the two 

frames is represented by the orthogonal matrix . This 

matrix maps vector coordinates from one frame to the 

other:  and  . 

The Microsoft Kinect sensor provides a measured 

depth map  over a two-dimensional pixel domain 

. 

A depth measurement at a given pixel  can 

be converted into a measured three-dimensional point as 

follows. First define the homogenized pixel 

and the camera calibration matrix . 

Then the measured three-dimensional point at a given 

pixel in sensor frame coordinates is 

. Note that the range to the point 

is where . 

Each voxel of the map is located by a position vector 

. If the sensor pose is known, this voxel location can 

be projected on to the pixel array. The sensor-to-cell 

vector in the sensor frame is . 

The projection function  is 

applied to this vector to get a pixel . Then the 

measured cell-to-surface vector can be determined from 

the measured point at . 

                  (1) 

The norm of  is scaled by , where  is the 

angle between the ray and surface normal,  , to give a 

measurement of the cell's SDF. This geometry is seen in 

Fig. 2. 

B. Data Processing 

The proposed method employs a similar processing 

stage as in [8]. A bilateral filtered version of the depth 

image is created to remove noise while preserving depth 

discontinuities. This is then used to compute a surface 

normal map. In this implementation, no map hierarchy is 

required. This is likely due to the more robust pose 

estimation enabled by the fusion of visual data.  

The value of is required 

during the map update. This can be found by taking the 



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

66

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing

numerical gradient of the SDF about the particular cell 

during the map update. However, any added steps to the 

map update are extremely costly because of the number 

of cells that must be processed. Instead, the value of 

 is most efficiently and accurately obtained during 

the normal map computation for two reasons. First, the 

normal vectors will be stored in on-chip registers at that 

time which avoids global memory accesses. Secondly, the 

 computation becomes independent of the pose 

estimate errors: both the normal and ray vector are 

computed directly in the current sensor frame. Therefore 

the proposed method computes  during this stage 

and writes it to an additional array of surface memory 

which is read during the map update function. 

 

Figure 1.  System block diagram. GPU based operations in red. Host 

based operations in yellow. 

C. Map Update 

The  voxel grid is stored in GPU surface 

memory. With the most recent sensor pose update 

available,  kernels are launched. Each kernel has a 

unique  grid location and marches in step with the 

other kernels along the direction. At each cell, the 

estimated  vector is computed using (1). If the norm of  

is greater than the maximum noise of the sensor, , then 

the cell must be occluded by another surface and is 

therefore not updated.  

If the norm of  is less than the negative of , the cell 

is in free space. In this case the measured SDF is simply 

truncated to  and is given a weight of 1.0. Otherwise, 

the cell is within  of the observed surface.  

In this case the SDF is computed by scaling the norm 

of  by  as shown in Fig. 2. Note that the pixel ray 

is assumed to pass through the cell and hit a surface that 

is planar in the immediate vicinity of the cell. To account 

for poor measurements on surfaces viewed at low angles, 

a weight of  is given to the measurement.  

The map estimate of the SDF is then updated using a 

weighted average between the original and measured 

value. The original SDF is weighted by that cell's weight 

which is then incremented by the weight of the 

measurement (1.0 or ). The cell weight is updated 

simply be adding the weight of the current measurement 

to it. 

The albedo and albedo weight are only updated for 

cells within of the surface because the albedo is 

undefined for cells in free space. The grayscale image 

value at the projected pixel location is used directly as an 

albedo measurement. It is possible to estimate a scale 

factor for each image to remove the effects of exposure 

compensation performed by the camera. However this 

was found to be unnecessary through experimentation. It 

may be necessary when large variations in lighting occur 

throughout the scene.  

The map albedo estimate is updated with the same 

weighted running average scheme used for the SDF 

update. This is computationally efficient and the  
weight reduces the effects of poor measurements on 

glancing surfaces in a similar manner. Essentially this 

part of the algorithm 'paints' the surfaces of the scene. 

 

Figure 2.  Signed distance function geometry. 

D. Rendering 

A simple ray casting algorithm as described in [8] is 

implemented here with a few modifications. The first 

modification is that a grayscale image is rendered in 

addition to the depth image. This is made possible by the 

albedo estimates stored in the map. Second, the sensor is 

allowed to leave the grid map and when it does, the free 

space between the sensor and grid is skipped over in one 

step. To do so, a check is first applied to the estimated ray 

starting location . If any of three components are 

beyond the fixed map, the estimated pose (denoted by a 

hat) is used to compute the unit ray vector through a 

given pixel in global frame coordinates:  

      (2) 

If the  component of  is beyond the  bound 

of the grid , the  component of  must be 

negative in order for the ray to intersect the map. If so, 

the distance skipped to reach the  bound of the grid is 

                       (3) 

where  is the unit vector along the global  direction. 

The sign in front of the  term is flipped if the sensor 

is beyond the  bound and the  component of the ray 

is greater than zero. Once found, a step of  along the ray 

is taken. This is then repeated for the  and  directions. 

The skipping of free space outside the map bounds saves 

a large amount of computation and allows the sensor to 

exit the map without any issue. 

One kernel is launched per pixel of the output image 

pair. The ray either starts in the map because the sensor is 

in the map or it reaches the map edge in one step as 

described above. Steps of  are then taken along the ray. 

On each step, the map SDF is polled at the nearest cell. If 

the SDF is truncated (i.e. equal to ±1), the steps of  



 

 

 

  

67

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing

continue. Note that this step size should be a few times 

larger than the cell resolution. A zero-crossing in the map 

will not be “stepped-over” because all cells within  of 

the surface have a non-truncated SDF.  

Once a truncated cell is hit, the step size is reduced to 

the cell resolution. The smaller steps continue until a 

zero-crossing is passed. If the ray returns to a truncated 

SDF region without hitting a zero-crossing, the step size 

is scaled back up to .  

There are two stopping conditions for the ray 

stepping. First, if the ray exits the map, null values are 

written to the ray’s corresponding pixel of the rendered 

images. Second, if a zero-crossing is reached a trilinear 

interpolation of the SDF is performed to find the zero-

crossing to sub-cell-resolution accuracy. The depth to this 

cell is computed and written to the rendered depth image. 

Also, the SDF weight and the albedo value are written to 

a “weight-image” and grayscale rendered images 

respectively. The weight-image is another unique aspect 

of this algorithm and will be justified in the next section. 

E. Pose Update 

Two solutions to the pose are computed. One is based 

on geometric surface alignment and the other is based on 

visual feature matching. The fusion of these two 

estimates is a key component of this paper. Both methods 

use data rendered from the a priori pose estimate and 

data from the latest sensor image pair. The two resulting 

estimates for the pose between the rendered and observed 

images are first fused and then applied to the a priori 

pose estimate. 

The ICP algorithm is used for the geometry based pose 

update. On each iteration the current pose estimate is 

used to solve the correspondence problem by mapping 

pixels in one image to pixels in the other. Each 

correspondence contributes one equation to a linear 

system. Each measurement is weighted by the 

corresponding “weight-image” mentioned above. The 

effect of this is to give greater weight to rendered depths 

from cells that have more certain SDF values. It reduces 

the influence of cells that have only been seen a few 

times or that have only been seen from poor angles. 

The solution to the system gives a correction to the 

pose estimate. Details of the algorithm can be found in 

[8][9][10]. In this implementation, the components of the 

linear system are partially summed up in parallel on the 

GPU. The result is passed to the host which finishes the 

summation and solves the 6x6 linear system. 

One host thread is instantiated to handle the launching 

of GPU kernels for ICP and the other minor computations 

needed for ICP. A second host thread independently 

performs the visual feature based update.  

The visual feature based update runs entirely on the 

CPU which would otherwise be nearly idle while the 

GPU ICP operations are performed. This thread has full 

access to the host's copy of the rendered and observed 

grayscale image. Distinct features in both grayscale 

images are identified with the SURF detector and then 

described with the FREAK descriptor in OpenCV [12] 

[13]. Then a preliminary set of matches between the two 

sets are found. Since the depth at the features' pixel 

locations can be polled from both the predicted and 

observed depth image, gross outliers based on the a priori 

pose estimate can be quickly eliminated. Additionally the 

drawback of poor matching performance due to large 

variations in viewing angle is largely avoided because the 

predicted image is rendered from the a priori pose 

estimate which is close to the actual pose. In fact, the 

feature matching was found to be far more robust to pose 

errors than the ICP. The result of the feature matching 

process is a set of corresponding vector pairs: the 

coordinates of a set of 3D points coordinatized in each of 

the two reference frames. This set is sent to the Optimal 

Linear Translation and Attitude Estimator (OLTAE) 

algorithm [14]. 

OLTAE provides a direct means to compute the 

relative translation and attitude between two reference 

frames given the set of vector pairs. Since the OLTAE 

solution will be merged with ICP, the same pose 

parameters estimated in ICP will be used here. Given the 

point with predicted position in the previous frame 

 and the corresponding measured point  in 

the current frame, a pose constraint can be generated:  

      (4) 

The top line of (4) is known. In the bottom line, the 

current pose is parameterized as an unknown rotation and 

translation from the previous pose. This parameterization 

is required for ICP and is adopted for OLTAE out of 

convenience. The unknown rotation is represented by the 

three Classical Rodriquez Parameters  which are used 

to form the skew-symmetric cross product matrix . 

Then  where  is the 3x3 

identity matrix. Substituting  into (4) gives (5). 

Rearranging (5) with the definitions provided in (7) and 

(8) leads to (6) where . 

  (5) 

                             (6) 

The other definitions used in (6) are: 

    (7) 

 (8) 

Then the cross product identity  can be 

used where  is the skew-symmetric matrix constructed 

from . This results in the least squares system: 

                             (9) 

The parameter vector  contains the CRP and the 

modified translation update. Its least squares solution is 

the standard pseudo-inverse: . 

Each vector pair has an independent contribution to both 

the  and  term which are summed up and 



 

 

 

 

  

 

 

 

 

68

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing

then used to solve for . Then the actual translation 

update  can be computed to form the unmodified 

update parameters . 

In practice, some false feature matches may seep 
through the initial filter. RANSAC is applied to defend 
against these false matches from corrupting the solution. 
Using an OLTAE hypothesis sample size of 2 for 
RANSAC, a sufficient inlier set is typically found on the 
first iteration. The inlier set is batch processed with 
OLTAE to refine the pose update. 

To merge the geometric and texture based pose 
updates in a statistically near-optimal fashion, the error 
covariance matrices of both pose updates are needed. A 
simple and accurate approximation is to scale the 

matrix by a rough guess of the measurement 
error variances. This is done separately for OLTAE and 
ICP using predefined values for their associated 
measurement error variances. These can be tuned for 
particular scenes but experimentation suggests quality 
pose estimates occur whenever the variances are on the 
same order of magnitude. The merged solution is shown 
in (10) through (13) where the subscript O is for OLTAE 
and I is for ICP.  

                   (10) 

                   (11) 

                 (12) 

            (13) 

Note that even when the variances used in (10) and (11) 
are the same, the resulting pose estimate in (13) is more 
than a simple average. If one of the solutions has week 
constraints about a particular pose parameter, that 
specific parameter will contribute less to the solution. 
This can occur for example when performing ICP on a 
planar surface or for OLTAE if all features lie near a 
straight line edge. 

IV. EXPERIMENTS 

The proposed method was implemented on a laptop 
equipped with Intel i7 processors and a Nvidia GeForce 
GTX 780 graphics card. A Microsoft Kinect provided co-
registered 640x480 pixel depth and color images. The 
current implementation processes this data and updates 
the pose at approximately 15 Hz for 5.6 million map cells. 
The results of two tests are shown below. 

 

Figure 3.  Feature matching (top) between rendered (top-right) and 
observed (top-left) images. The rendered grayscale image (bottom-left) 

and normal map (bottom-right). 

In the first test the sensor was mounted on a tripod and 
pointed at an asteroid model rotating on a turntable at 4

o
/s. 

A sample feature matching set between the predicted and 
observed grayscale image is shown in Fig. 3 prior to 
RANSAC outlier rejection. Over three minutes of data 

was recorded allowing the model to complete more than 
two rotations. The resulting trajectory is shown in Fig. 4. 
As expected, the trajectory is confined to a circle. Note 
that the short arc length between the green and red dots is 
traversed three times and the rest is traversed twice. This 
accurate loop overlap is a direct benefit of the frame-to-

model tracking. 

 

Figure 4.  Trajectory about a rotating asteroid for just over two 

rotations. The loops accurately overlap each other. 

Next a rocket nozzle model was imaged. The nozzle is 

radially symmetric and has little variation in geometry 

along most of its axis of symmetry. An image of the 

nozzle and a rendered normal map are shown in Fig. 5. 

The sensor was moved down the nozzle axis and back up 

to its original starting location. This trajectory is seen in 

Fig. 6. As expected, the starting and ending locations are 

co-located. 

 

Figure 5.  Observed grayscale image and rendered normal map of a 
rocket nozzle model. 

The geometry solution alone is not sufficient to 

constrain the pose in this case. When the visual based 

update was turned off, the sensor pose estimate rolls 

about the axis of symmetry. Mathematically, this appears 

as a rank deficiency in the ICP linear system. 

When the visual based update is turned on, the system 

seamlessly picks up visual cues from logos on the nozzle 

to constrain the pose. The probabilistic fusion of the two 

estimates will inherently weight the visual based update 

much higher along the direction that ICP is uncertain.  



 

 

 

 

 

 

 
 

  

 

 
 

  

 

 

 

 
 

 

 

 

 

 

 

69

Journal of Image and Graphics, Volume 2, No.1, June, 2014

©2014 Engineering and Technology Publishing

 

Figure 6.  Trajectory along a rocket nozzle model. The sensor was 
manually returned to its original starting location. 

V. CONCLUSION 

An algorithm that fuses depth and color sensor data to 

solve the SLAM problem in fixed volume environments 

has been presented. It is a natural extension of the great 

work done in [8] which only used depth data. That work 

relied on geometry alone to constrain the pose solution. 

In this paper, the visual properties of the surface are 

estimated and used to further constrain the pose. The 

advantage of this was demonstrated experimentally for a 

case where surface geometry alone could not fully 

constrain the pose solution. This is critical in many 

applications. 

There are certainly some drawbacks to the proposed 

method. The first is that the computation and memory 

requirements scale linearly with the environment volume. 

Compared to other dense volume representations like tree 

structures, the fixed voxel grid used here reduces the 

computation time per voxel and enables easy 

parallelization at the expense of more voxels being 

required. This is desirable for smaller volumes but 

becomes unmanageable as the number of voxels grows. 

We are currently investigating this tradeoff to extend the 

method to larger environments.  

One immediate area of work in this direction is in 

aerial terrain mapping applications. Unlike complicated 

indoor scenes, the terrain elevation and albedo can be 

represented as a single-valued function over a 2D domain. 

A method tailored to this application can proceed in an 

analogous way to the method presented in this paper with 

two main differences. First, only a 2D map must be 

stored which greatly reduces the computational burden 

and memory requirements. Second, the ray casting can be 

sped up significantly by using the intersection of a ray 

and the ground plane as a starting estimate for an iterative 

routine. 

One motivation of this work is to use it as the vision 

front-end of a sequential filter for vehicle navigation. The 

pose updates can be fused with estimates propagated in 

dynamic models in a traditional state estimation 

framework. This would improve the system accuracy and 

robustness as compared to no state propagation by 

reducing error drift. Work in this area is currently in 

development. 

ACKNOWLEDGMENT 

This work was supported by a NASA Space 

Technology Research Fellowship. 

REFERENCES 

[1] A. Davison, I. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: 

Real-time single camera SLAM,” IEEE Trans. Pattern Analysis 
Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, June 2007.  

[2] M. Pupilli and A. Calway, “Real-time camera tracking using a 

particle filter,” in Proc. British Machine Vision Conf., Oxford, 
U.K., September 2005, pp. 519-528.  

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fast-

SLAM: A factored solution to the simultaneous localization and 
mapping problem,” in Proc. AAAI Nat. Conf. Artificial 

Intelligence, July 2002, pp. 593–598. 

[4] B. Lucas and T. Kanade, “An iterative image registration 
technique with an application to stereo vision,” in Proc. Seventh 

International Joint Conference on Artificial Intelligence, 

Vancouver, Canada, August 1981, pp. 674–679. 
[5] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "SURF: Speeded 

up robust features," Computer Vision and Image Understanding, 

vol. 110, no. 3, pp. 346–359, 2008. 
[6] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. 

Burgard, "OctoMap: An efficient probabilistic 3D mapping 

framework based on octrees," Journal of Autonomous Robots, vol. 
34, no. 3, pp. 189-206, 2013. 

[7] B. Curless and M. Levoy, "A volumetric method for building 

complex models from range images," in Proc. 23rd Annual 
Conference on Computer Graphics and Interactive Techniques, 

New Orleans, LA, August 1996, pp. 303-312. 

[8] R. Newcombe, A. Davison, S. Izadi, P. Kohli, O. Hilliges, J. 
Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, 

“KinectFusion: Real-time dense surface mapping and tracking,” in 

Proc. IEEE Int. Symp. Mixed Augmented Reality, 2011, pp. 127–
136. 

[9] P. J. Besl and N. D. McKay, "A method for registration of 3-D 

shapes," IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol. 14, pp. 239-256, February 1992. 

[10] S. Rusinkiewicz and M. Levoy, "Efficient variants of the ICP 
algorithm," in Proc. 3rd International Conf. on 3-D Digital 

Imaging and Modeling, 2001, pp. 145-152. 

[11] G. Blais and M. D. Levine, "Registering multiview range data to 
create 3D computer objects," IEEEE Trans on Pattern Analysis 

and Machine Intelligence, vol. 17, no. 8, pp. 820-824, Aug 1995. 

[12] A. Alahi, R. Ortiz, and P. Vandergheynst, "FREAK: Fast retina 
keypoint," in Proc. IEEE Conference on Computer Vision and 

Pattern Recognition, New York, 2012, pp. 510-517. 

[13] Open CV library. [Online]. Available: http://code.opencv.org. 
[14] M. Majji, B. Flewelling, B. Macomber, J. L. Junkins, A. B. Katake, 

and H. Bang, "Registration of LiDAR point clouds using image 

features," in Proc. ASPRS 2010 Annual Conf., San Diego, CA, 

April 2010. 

 

 

Dylan Conway

 

is a graduate student in Aerospace Engineering at Texas 

A&M University. He obtained his B.S. degree in Mechanical 

Engineering in

 

2012 at the University at Buffalo, Buffalo, NY. He is 
currently a NASA Space Technology Research Fellow and has a 

research focus on vision-aided navigation.

 

 
 

John L. Junkins is a Distinguished Professor of Aerospace Engineering 

at Texas A&M University where he holds the Royce E. Wisenbaker 
Endowed Chair. He obtained his

 

B.S. in Aerospace Engineering in 1965 

from Auburn University, Auburn, AL. He then obtained

 

an M.S. and 

PhD in Aerospace Engineering from UCLA in Los Angeles, CA. Dr. 
John L. Junkins is a member of the National Academy of Engineering, 

the International Academy of Astronautics, and an Honorary Fellow of 

the American Institute of Aeronautics and Astronautics. His research 
interests include spacecraft navigation, guidance, dynamics, and control.

 




