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Abstract—This paper presents a simple and effective multi-

expert approach based on random subspaces for person re-

identification across non-overlapping camera views. This 

approach applies to supervised learning methods that learn 

a continuous decision function. Our proposed method trains 

a group of expert functions, each of which is only exposed to 

a random subset of the input features. Each expert function 

produces an opinion according to the partial features it has. 

We also introduce weighted fusion schemes to effectively 

combine the opinions of multiple expert functions together 

to form a global view. Thus our method overall still makes 

use of all features without losing much information they 

carry. Yet each individual expert function can be trained 

efficiently without overfitting. We have tested our method 

on the VIPeR, ETHZ, and CAVIAR4REID datasets, and the 

results demonstrate that our method is able to significantly 

improve the performance of existing state-of-the-art 

techniques. 
 

Index Terms—person re-identification, multi-experts, 

random subspaces 

 

I. INTRODUCTION 

Person re-identification is the problem of identifying 

the same person that appears in non-overlapping cameras. 

It can find applications in modern surveillance systems, 

either for online tracking of an individual over a network 

of cameras or offline retrieval of all videos containing a 

person of interest. This problem is challenging because 

when matching images of the same person captured with 

non-overlapping cameras, there may exist huge 

discrepancies in terms of human poses, illumination, 

camera views and photometric settings, and so on. In 

addition, the lack of sufficient resolution in surveillance 

cameras makes it infeasible to identify a person using 

face verification.  

There are two major approaches to person re-

identification, namely unsupervised matching of image 

features [2], [3], [4] and training a decision function to 

assess the similarity of features in two images. These two 

approaches are developed for different application 

scenarios. The unsupervised approach is better suited for 

scenarios where it is impractical to obtain training images 

that capture the same group of people from all cameras 

involved. However, whenever such training images can 

be obtained, the second supervised approach is more 
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appropriate since it typically achieves a better 

performance.  

 

Figure 1. Sample images from the VIPeR dataset [1]. Images of the 
same person appear in the same column. 

In this paper we focus on person re-identification 

based on supervised learning. For all methods in this 

category, highly discriminative features, such as LBP, 

Gabor and color histograms, are necessary to achieve 

good accuracy. Such feature descriptors are usually of 

high dimension, and to fully capture the information from 

one image, usually multiple features are combined, 

resulting in a dimension generally higher than 10k [5], [6].  

High-dimensional features are critical to high 

performance [7], but they also give rise to various issues. 

For instance, to learn a Mahalanobis distance metric for 

feature descriptors of n dimensions, O(n2) parameters 

need to be optimized, making the training process both 

time-consuming and susceptible to local minima. More 

importantly, optimizing a large number of parameters 

amplifies the problem of overfitting due to the existence 

of noise and outliers in images, leading to poor 

generalization capability.  

Therefore, dimension reduction methods such as PCA 

and CCA are often applied to aggressively reduce the 

dimension of feature descriptors. However, in this 

process subtle but highly discriminative information may 

be overlooked, especially when many different types of 

features are combined together, which decreases the 

discriminative power of the new features after dimension 

reduction.  
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In this paper, we propose a novel multi-expert 

approach with random subspace to person re-

identification. Considering the high dimension of feature 

descriptors, random subspace is applied because it can 

fully exploit the discriminative information that spreads 

across the feature descriptors. For our approach, we train 

multiple expert functions with each focusing on a subset 

of feature blocks randomly selected from images. In 

addition, we also introduce a weighted fusion scheme to 

combine the opinions of multiple expert functions trained 

together. Although each expert function only focuses on a 

subset of features, our fusion scheme can effectively 

combine individual recommendations to form a final 

conclusion. Thus, our method overall still makes use of 

all features without losing much information they carry. 

Yet each individual expert function can be trained 

efficiently without overfitting. We have tested our 

method on three public datasets, VIPeR [1], ETHZ [8], 

and CAVIAR4REID [9]. Our experimental results 

demonstrate that our method significantly outperforms 

other state-of-the-art techniques for person re-

identification. 

II. RELATED WORK 

Multiple unsupervised learning methods for person 

reidentification have been presented. Farenzena et al. [3] 

exploits the symmetry property of human figures, and 

extracts features from human body parts. These features 

are weighted by their distance to the symmetry axis of the 

human body. Zhao et al. [2] makes use of salient regions 

in pedestrian images and applies a weighted matching of 

salient patches. Kviatkovsky et al. [4] introduces the 

invariant property of the internal structure of a color 

distribution, and applies this signature to matching a pair 

of images.  

With respect to supervised learning, two types of 

methods, metric learning and SVMs, have been 

investigated. Metric learning [10], [11], [12], [13], [5] has 

attracted much attention in recent years as a natural 

choice for person re-identification because it can 

effectively calibrate some of the discrepancies, such as 

illumination and camera photometric settings, among 

multiple cameras. Among the available choices, learning 

a Mahalanobis distance metric is mostly used, and it tries 

to learn a metric which projects extracted feature 

descriptors to a different space using a linear 

transformation. Euclidean distance can then be used in 

the new space to measure the dissimilarity between the 

persons appearing in a pair of images. Dikmen et al. [14] 

has applied Large Margin Nearest Neighbour [10] to 

person reidentification and introduced a uniform 

threshold to determine whether a given image pair is a 

match. Koestinger et al. [12] learns a distance metric 

from equivalence constraints from a statistical inference 

perspective. Mignon et al. [15] introduces pairwise 

constrained component analysis to project high 

dimensional data into low dimensional space, where 

distances between data points complies with a set of 

sparse training pairwise constraints. SVM-based methods 

[16], [6] treats person re-identification as a classification 

of consistent matches against inconsistent matches. 

Prosser et al. [16] reformulates person re-identification as 

a ranking problem and learns a subspace where a correct 

match is given the highest rank. Li et al. [6] learns a 

discriminant function which is equivalent to a second-

order polynomial SVM classifier, which decides whether 

two images match or not by checking the value of the 

discriminant function. In addition to these two types of 

methods, AdaBoost [17] has also been applied to person 

re-identification.  

Random subspaces have been used in a variety of 

computer vision techniques, including image 

classification [18], face recognition [19] and human 

detection [20]. Random subspaces are adopted for 

building a classifier ensemble that is robust against partial 

occlusions in [20]. Random sampling is used in the face 

recognition system in [19], which integrates shape, 

texture, and Gabor responses. Nonetheless, random 

subspaces have not been used in the context of person re-

identification.  

Note that multiple experts have been used to solve 

person re-identification. Li et al. [21] trains multiple 

experts and each expert is trained using subsets of image 

pairs with similar cross-view transforms. In comparison, 

experts in our method focus on different subsets of 

features from all training images, instead of different 

subsets of training images. And experimental results have 

shown the superiority of our method based on random 

subspaces. 

III. FEATURE DESCRIPTION 

We use color histograms and local binary patterns as 

image features. As described by Fig. 2, each image is 

divided into a rectangular grid with the size of each grid 

cell set to 4×4. Two horizontally adjacent grid cells form 

a window with 8×4 pixels. When a window is sliding 

over an image, its corners are always grid points. That 

means the step size of the sliding window is 4 pixels in 

both axes. We further define a block as a 16×8 

rectangular region. As a result, each block contains 2 

rows of windows with 3 overlapping windows on each 

row.  

We use a window as a spatial unit for feature 

extraction. For LBP, the values over a window are 

deposited into a histogram with 35 bins. And for HSV 

and YUV color spaces, we define an 8-bin histogram for 

each color channel. In addition, the moments of each 

color channel are also added as features. This includes the 

mean, standard deviation, and skewness of each color 

channel. Among these, the skewness measures the degree 

of asymmetry of a distribution. Therefore, for each 

window, we have a 35-dimensional LBP feature, and a 

66-dimensional HSV-YUV feature. These two features 

are simply concatenated together to form the feature 

descriptor of a window. The feature descriptor of a block 

is formed by stacking together the descriptors of the six 

windows inside the block. 
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Figure 2. Our feature extraction process 

IV. RE-IDENTIFICATION USING MULTIPLE EXPERTS 

Our multi-expert approach trains a group of expert 

functions, each of which only takes a randomly chosen 

subset of the image features as input, and produces an 

estimated dissimilarity of the persons appearing in a pair 

of images. We use the following scheme to randomly 

choose a subset of features for training and testing every 

expert function. Suppose an input image is completely 

covered by a set of non-overlapping blocks. We randomly 

choose a subset of the blocks. Since there are two types 

of features (color histograms and LBPs) we use, we also 

randomly choose one of these two features to represent 

each chosen block. That is, we might choose different 

features to represent different blocks. Feature descriptors 

of all chosen blocks are stacked together to form a single 

descriptor for the input images. For a given pair of input 

images, every trained expert function returns a 

dissimilarity value. We further introduce weighted fusion 

schemes to combine the dissimilarity values returned by 

all expert functions, and compute a final dissimilarity 

score. 

A. Expert Functions 

Suppose xi and xj are feature descriptors of dimension 

d, an expert function f is a continuous function that maps 

a pair of feature descriptors to a real value representing 

the dissimilarity between them. 

: ( , )d d

i jf x R x R R                    (1) 

Given the feature descriptor x of an image, let x
+
 be 

the feature descriptor of another image of the same 

person, and x
-
 be the feature descriptor of an image of a 

different erson. An expert function should satisfy the 

following inequality since our re-identification results are 

based on ranking the dissimilarity scores returned by the 

expert functions. 

( , ) ( , )f x x f x x                     (2) 

An expert function can take many different forms. In 

this paper we primarily take learned Mahalanobis 

distance metrics or the discriminant function of support 

vector machines as expert functions. When we learn a 

Mahalanobis distance metric to measure dissimilarity, the 

expert function is defined as follows. 

( , ) ( ) ( )T

Mdist i j i j i jf x x x x M x x            (3) 

where M is a positive semidefinite matrix. There exist 

many metric learning algorithms [10], [11], [12], [13] for 

obtaining such a matrix from labeled training data. 

When we train a linear or polynomial SVM to measure 

dissimilarity, the expert function is defined as follows. 

( , ) T

SVM i jf x x c B b                      (4) 

where c and b are respectively the learned coefficient 

vector and bias of the SVM, and B is the polynomial 

basis vector. Let 
1 2 2[ ] [ ... ]T T T

i j dz x x z z z  be a vector 

formed by concatenating xi and xj . Then B = z for the 

linear basis, and  

𝐁 = [z1
2  z2

2  ⋯ z2d
2   z1z2  z1z3  ⋯ z2d−1z2d  z1  ⋯ z2d]

T
 for 

the second-order polynomial basis. In the case of a 

second order polynomial basis, the expert function can be 

rewritten as 

( , ) T T

QSVM i jf x x z Qz a z b                (5) 

where Q is a symmetric 2d ×2d matrix, and , .da b R  

B. Multi-Expert Fusion 

With multiple subsets of features C1, C2, . . . , Cm , we 
train a group of expert functions f1, f2, . . . , fm . We 
introduce a weighted fusion to harness this group of 
expert functions. When they are applied to evaluate the 
dissimilarity between a pair of feature vectors, xi and xj, 
the final dissimilarity score is computed as follows. 

m

i j k k i j

k 1

F(x , x ) w f (x , x )


                (6) 

where wk is the fusion weight of the k-th expert function. 

During person re-identification, given xi, the dissimilarity 

scores between xi and every gallery image are sorted, and 

the pair with the smallest score is regarded as a correct 

match. 
If all experts are considered equally important, all wk’s 

are set to 1. In general, different expert functions should 
be given different weights in the final result. This is 
because different feature subsets have varying 
capabilities in terms of identifying individual people. For 
instance, expert functions trained using features extracted 
mostly from the background of the input image may have 
little discrimination ability [22]. Given this, we have 
made use of visual saliency to assign different weights to 
the expert functions. 

C. Saliency Weights 

Visual saliency has been proven to provide useful cues 
in person re-identification. And many algorithms have 
been developed for estimating pixel-wise visual saliency. 
For our problem, we apply the method in [23] to obtain a 
per-pixel saliency map for every image. Expert functions 
that are trained on features with greater visual saliency 
should be given a larger weight. Suppose a expert f is 
trained using features extracted from a subset of image 
blocks b1, b2, ⋯ , bL . The saliency weight of f  is 
calculated as follows, 

153©2014 Engineering and Technology Publishing

Journal of Image and Graphics, Volume 2, No.2, December 2014



L

ii 1
S(b )

w(f )
L


                             (7) 

where S(bi) is the sum of the saliency value at all pixels 

in block bi . Once the saliency weight of all expert 

functions has been computed, the sum of all weights is 

normalized to one. 

Remark: Although each expert function is trained on a 

random subset of features, our method is not a feature 

selection technique because our method does not evaluate 

the quality of each feature subset and the union of 

features used by all expert functions is likely to cover all 

original features. Our method bears more resemblance to 

boosting [24] and bagging [25], but still maintains 

significant differences from them. This is because the 

new classifier in each iteration of boosting or bagging is 

trained using the complete feature vector of every 

training sample albeit the distribution over the training 

samples may change while each of our expert function is 

trained using only partial feature vectors and the 

distribution over the entire training dataset is kept fixed. 

V. EXPERIMENTS 

We have conducted experiments on three public 

datasets for person re-identification, VIPeR [1], 

CAVIAR4REID [9], and ETHZ [8]. In our experiments, 

we adopted as expert functions two types of learned 

distance metrics, LMNN [14] and KISSME [12], and the 

discriminant function of symmetric quadratic SVM 

(SQSVM) from [6]. We set two goals for our experiments. 

First, verify that our multi-expert approach can bring 

significant performance gain to existing methods for 

person re-identification that are based on a decision 

function. Second, demonstrate that by fusing the results 

from multiple expert functions, our method can 

outperform existing state-of-the-art methods in terms of 

recognition accuracy. 

A. VIPeR 

The VIPeR dataset contains 632 pedestrians, with each 

pedestrian having two 128 × 48 images taken with a pair 

of disparate cameras. The challenging part of VIPeR is 

the difference in the viewing directions, which ranges 

from 45 to 180 degrees. In addition, the variations in 

pedestrian pose, illumination, image quality, and 

chrominance also add extra difficulty to person re-

identification. 

In our experiments, we follow the same protocol as in 

[12], and the dataset is split into training and testing 

subsets each containing 316 pedestrians randomly 

sampled non-repeatedly from the original dataset. For 

each image, we extract a feature descriptor according to 

Section 3. In our method, 30 expert functions are trained 

each using features extracted from a subset of 60 blocks 

randomly chosen from those covering the image, and for 

each block, the type of feature is also randomly chosen. 

Feature descriptors of all chosen block are stacked 

together to form a descriptor for the image. To compare 

results with and without multiple expert functions, we 

also extract features from all blocks of the image and 

train a single decision function. To avoid overfitting and 

speed up the training process, we follow the convention 

that each feature descriptor is reduced to 600 dimensions 

using PCA. To evaluate the performance, we use the 

cumulative matching characteristic (CMC) curve, which 

shows the probability that a correct match is found in top 

n  matches. In this paper, person matching accuracy is 

always reported as an average of ten runs. 

 

Figure 3. Cumulative matching characteristic (CMC) curves for the 

VIPeR dataset 

In Fig. 3, we present the CMC curves of a few methods 

for person re-identification, including BoostMetric [26], 

ITML [11], KISSME [12], SQSVM [6], and our multi-

expert SQSVM. When comparing our technique against 

existing methods, such as KISSME [12], we take the 

feature vector we developed in Section as the input to 

such methods rather than using the feature originally 

designed for them. Also note that, when used for person 

re-identification, the performance of LMNN varies with 

the type of features used [12], [27]. In Table I, we 

compare the performance of our method with existing 

state-of-theart methods, and the results for top 50 ranks 

are shown. As we can see, our method achieves best 

results over all ranks compared with other state-of-the-art 

methods for person re-identification such as SQSVM, 

KISSME, LAFT [21], LF [5], PS [9] and SDALF [3]. 

And in the important range between top 5 and top 10 

ranks, our methods outperform others by more than 4%. 

In addition, we also compare the results from single 

KISSME, LMNN and SQSVM, trained using features 

from all blocks of an image, with the results from their 

respective multi-expert versions. The detailed comparison 

of matching accuracy for top 50 ranks are also given in 

Table II. 

TABLE I.
 

COMPARISON WITH STATE-OF-THE-ART METHODS ON 

VIPER.
 

RANK
 

1
 

10
 

25
 

50
 

Multi-SQSVM
 

30.6%
 

81.7%
 

95.1%
 

98.7%
 

SQSVM
 
[6]

 
27.2%

 
77.2%

 
93.1%

 
97.6%

 

LAFT
 
[21]

 
29.6%

 
69.3%

 
88.7%

 
96.8%

 

LF
 
[5]

 
24.2%

 
67.1%

 
85.1%

 
94.1%

 

PS
 
[9]

 
21.8%

 
57.2%

 
76.0%

 
88.1%

 

SDALF
 
[3]

 
19.9%

 
49.4%

 
70.5%

 
84.8%
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TABLE II. COMPARISON OF RESULTS WITH AND WITHOUT MULTIPLE 

EXPERTS ON VIPER. 

RANK 1 10 25 50 

Multi-SQSVM 30.6% 81.7% 95.1% 98.7% 

SQSVM 27.2% 77.2% 93.1% 97.6% 

Multi-LMNN 30.2% 75.1% 89.8% 96.7% 

LMNN 23.1% 67.5% 85.9% 95.7% 

Multi-KISSME 32.1% 77.4% 91.3% 97.3% 

KISSME 19.8% 66.2% 80.4% 92.3% 

 

We can see that the results of KISSME, LMNN and 

SQSVM have been significantly improved using multiple 

experts. In particular, for KISSME and LMNN, more 

than 7% improvements have been achieved. The reason is 

that with multiple expert functions, although each expert 

knows only part of the information about the pedestrians, 

we can still combine the opinions of multiple experts to 

obtain a more complete understanding, whereas a single 

decision function that is trained using complete features 

overlooks subtle and discriminative information in the 

training process.  

We further verify the performance of the proposed 

weighted fusion scheme, and the results are presented in 

Table III. We can see that our multi-expert approach with 

the proposed weighted fusion schemes outperforms the 

one with uniform weighting because experts that capture 

insignificant information such as the background have 

little discrimination ability, thus negatively affecting the 

accuracy of the fused evaluation of dissimilarity. 

B. CAVIAR4REID 

CAVIAR4REID was extracted from the CAVIAR 

datasets, and consists of 72 pedestrians, 50 of which have 

images from two cameras, and the remaining 22 have 

images from one camera only. For each person, the set of 

images were chosen to maximize variations in resolution, 

lighting condition, occlusion and pose. Different from 

VIPeR, images in CAVIAR4REID have a greater 

variation of resolution, ranging from 17 × 39 to 72 × 144. 

In our experiments, we follow the same protocol as in 

[21]. That is, we do not split the pedestrians into a raining 

set and a testing set because there are too few of them. 

Instead, if a person has images from two camera views, 

we randomly choose one pair of images from different 

cameras for training, and then another random pair of 

images of the same person from different cameras for 

testing. We follow the same feature extraction steps 

specified in Section except that images are resized to 36 

×80 and 50 blocks are chosen for each expert function. 

Both distance metrics learned using LMNN and 

discriminant functions of SQSVM have been tested as 

expert functions on this dataset, and the final 

identification results are an average of ten runs. 

TABLE III. COMPARISON OF MULTI-EXPERT LMNN RESULTS WITH 

AND WITHOUT WEIGHTED FUSION. THE TWO ROWS SHOW 

RESPECTIVELY THE MATCHING ACCURACY OF MULTI-EXPERT FUSION 

WITH SALIENCY WEIGHTS, AND UNIFORM WEIGHTS. 

RANK 1 5 10 15 

Saliency 30.2% 60.7% 75.0% 82.2% 

Uniform 28.8% 59.1% 73.3% 81.3% 

 

Figure 4. Cumulative matching characteristic (CMC) curve on the 
CAVIAR4REID dataset. 

 

Figure 5. Sample image pairs from CAVIAR4REID. Images of the 
same person appear in the same column. Multiwitness LMNN 

can match images from the same column correctly while other 
methods cannot. 

We have compared multi-expert LMNN with a few 

state-of-the-art methods, such as SQSVM, LAFT, PS, 

Boost- Metric and SDALF, as shown in Fig. 4 and Table 

IV. The results show that our multi-expert approach 

achieves significant performance improvements over 

other methods across all ranks. For top 5 and top 10 ranks 

in particular, more than 10 percentage points of 

improvements have been achieved. Fig. 5 shows sample 

image pairs that multi-expert LMNN can match correctly 

while other methods cannot. We have also compared the 

performance of LMNN and SQSVM with and without 

multiple experts on CAVIAR4REID, and reported the 

results in Table V. The substantial improvements 

achieved there further consolidate the effectiveness of our 

approach.  

TABLE IV. COMPARISON WITH STATE-OF-THE-ART METHODS ON 

CAVIAR4REID. 

RANK 1 5 10 30 

Multi-LMNN 16.1% 47.0% 64.7% 92.3% 

LAFT [21] 10.2% 39.0% 59.0% 88.0% 

SQSVM [6] 11.8% 33.6% 51.8% 83.8% 

PS [9] 8.5% 32.0% 48.0% 86.0% 

SDALF [4] 6.8% 25.0% 45.0% 83.0% 
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TABLE V. COMPARISON OF RESULTS WITH AND WITHOUT MULTIPLE 

EXPERTS ON CAVIAR4REID. 

RANK 1 5 10 30 

Multi-LMNN 16.1% 47.0% 64.7% 92.3% 

LMNN 10.2% 37.0% 51.0% 88.0% 

Multi-SQSVM 15.8% 40.4% 55.2% 89.8% 

SQSVM 11.8% 33.6% 51.8% 83.8% 

 

C. ETHZ 

TABLE VI. COMPARISON WITH STATE-OF-THE-ART METHODS ON 

ETHZ. 

RANK 1 2 3 4 5 6 7 

Multi-KISSME 80% 86% 88% 90% 92% 94% 94% 

KISSME [12] 72% 80% 82% 86% 88% 88% 90% 

Pairwise Metric 
[28] 

77% 83% 87% 91% 92% 92% 92% 

PLS [29] 79% 85% 86% 87% 88% 89% 90% 

SDALF[4] 65% 73% 77% 79% 81% 82% 84% 

Boost Metric [26] 63% 74% 77% 78% 79% 80% 83% 

 

Images in the ETHZ dataset were captured from 

moving cameras. The dataset contains three sequences 

which have 4857 images of 83 pedestrians, 1936 images 

of 35 pedestrians, and 1762 images of 28 pedestrians 

respectively. All images were resized to 32×64. We chose 

the first sequence, which contains most people, to 

conduct our experiments. We follow the same steps as in 

Section to extract features for each image, and select 40 

blocks for each expert function. Similar to what we did 

on CAVIAR4REID, we do not split the pedestrians into 

non-overlapping training and testing sets, instead we 

randomly choose one pair of images for each person for 

training, and another pair of images for the same person 

for testing. Multi-expert KISSME has been tested on this 

dataset, and the results are given in Table IV, which 

presents the CMC result for top 7 ranks. The 

experimental results show the superiority of our approach. 

Especially the improvement multi-expert KISSME 

achieves over the original KISSME reinforces the 

advantages of multiple experts with partial information 

over one single expert with complete information. 

VI. CONCLUSIONS 

In this paper we have developed a novel multi-expert 

approach based on random subspace for person re-

identification, where multiple expert functions are trained 

with each function focusing on a subset of features. 

Compared to traditional methods where a single decision 

function is trained based on complete feature information, 

our approach has proven to be able to fully exploit the 

discriminant information in feature descriptors, and bring 

substantial improvements, and achieve higher accuracy. 

Our approach has great applicability, and can be widely 

adopted in methods for person re-identification that learn 

a decision function with continuous value to evaluate the 

similarity between two persons. 
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