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Abstract—This paper presents a framework to segment and 

extract key features automatically in Optical Coherence 

Tomography (OCT) scans. One of the main features to be 

detected is the Lamina Cribrosa (LC), which is an optic 

nerve head structure believed to play a crucial role in 

glaucomatous optic neuropathy. Detection of the LC aids in 

understanding pathogenesis and detection of glaucoma. 

Automatic segmentation allows a quick and objective way of 

identifying the LC. In previous work, LC segmentation has 

been manual; hence, the aim is to achieve automatic and 

accurate segmentation. Automatic detection is a novel 

approach, and very important as it provides an objective 

and fast way to identify the features. The method consists of 

three steps: automatic detection of the Bruch’s membrane 

opening, definition of LC Region of Interest (ROI), and 

feature detection in the ROI using local and inter-frame 

information. The best-fit curve representing the anterior LC 

was obtained by optimizing parameters to minimize the 

inter-frame gradient and local gradient change. The 

algorithm was applied to OCT images captured by 

Spectralis OCT machine (Heidelberg Engineering GmbH, 

Heidelberg, Germany). The results were compared and 

verified against manual segmentation of the key features, 

coefficient of 0.74. The generally accurate results indicate 

that the approach is highly promising, and could potentially 

be expanded across detection in other image types.  

 

Index Terms—automatic segmentation, Bruch’s membrane, 

feature detection, lamina cribrosa, optical coherence 

tomography 
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I. INTRODUCTION

Glaucoma is an eye disease in which high fluid 

pressure within the eye damages delicate fibers of the 

optic nerve. It is the leading cause of irreversible 

blindness worldwide. The global prevalence of glaucoma 

among those above 40 years old is 2.65% [1].

The LC is a thin, sieve-like portion of the sclera at the 

base of the optic disc through which retinal nerve fibers 

leave the eye to form the optic nerve (Fig. 1). It helps to 

maintain the gradient between the inside of the eye and 

the surrounding tissues. It bulges slightly outwards due to 

intra-ocular pressure. It has been shown that defects and 

changes in the LC are possible indicators of glaucoma 

progression [2], as the LC may be displaced. The idea 

was first proposed in 1981 [3]. The visual field loss 

occurs due to optic nerve damage. The pattern and degree 

of visual field loss has a correlation with glaucoma. Other 

studies also indicate that the biomechanics in the sclera 

and strain in the LC play a role in glaucoma progression

[4]. We propose a framework to perform automatic 

feature detection using OCT, in particular the 

segmentation of the anterior LC. In previous studies of 

the LC, the identification was done using manual 

methods [5], [6]. Our method allows for automatic 

segmentation based on landmarks present in the image in 

our method. One of the main challenges is the general 

lack of details available in OCT images. The visualization 

of LC is often difficult due to artifacts, shadows and low 

contrast of the images. We perform shadow removal and 

contrast enhancement to improve the image quality as a 

pre-processing step [7].

with a Root-Mean-Square (RMS) error of 9.89 and Dice 



 

Figure 1.  Location of lamina cribrosa in the optic nerve. 

II. PROPOSED FRAMEWORK 

The proposed framework consists of three main steps 

(Fig. 2): (1) automatic detection of Bruch’s membrane 

opening; (2) ROI identification and (3) lamina cribrosa 

detection. 

 

Figure 2.  Proposed framework. 

A. Automatic Detection of Bruch’s Membrane Opening 

The LC lies below the Bruch’s membrane opening. 

The Bruch’s membrane is the innermost layer of the 

choroid, and comprises of five layers [8]. In the OCT 

image, the layers of the Bruch’s membrane can be 

identified from their gray levels. Among the five layers, 

one particular layer appears distinctly as a brighter line. 

The line is disjointed around the location of the Bruch’s 

membrane opening for slices in the OCT where the 

membrane opening is visible. This is an important and 

distinct landmark to determine the location of the Bruch’s 

membrane.  

For each layer in the Bruch’s membrane, the gray level 

and texture is generally homogeneous. Hence, the vertical 

mean gray level for each column across the Bruch’s 

membrane would yield a similar value. The region within 

the Bruch’s membrane opening has a significant change 

in texture and gray level, so the mean gray level 

computed vertically would provide a very different value.  

First, the dark and uniform region above the Bruch’s 

membrane is discarded from the original image. This can 

be done automatically by obtaining the average gray level 

across rows of the image, and excluding rows with low 

gray level mean. Subsequently, mi, the mean gray level of 

each column i is calculated. The change in consecutive 

mean column value, ∆mi = |mi+1−mi| is tabulated. ∆mi 

measures the gradient of the mean. The greatest change in 

∆mi is detected from two directions– one from the left 

and one from the right. In Fig. 3(a), the first major peaks 

from the left and right of the plot represent the Bruch’s 

membrane opening point. The selected peaks are marked 

by ‘x’. The corresponding columns are highlighted in Fig. 

3(b). 

 

Figure 3.  Identifying Bruch’s membrane using ∆mi, selected peaks 
marked in crosses. 

B. ROI Identification 

The region bounded between the two columns 

representing Bruch’s membrane opening is then extracted. 

There are 3 major anatomical structures present in the 

ROI- the nerve fiber, LC and optic nerve. This process is 

a fast and accurate way to estimate the general region 

where the anterior LC can be detected. 

The first step is to separate the regions outside the 

nerve fiber, and the combined areas comprising the nerve 

fiber, LC and optic nerve. Noise and general artifacts 

were first removed by smoothing and down-sampling. K-

means clustering was then applied to the ROI with k = 4 

to give four main clusters. The value was selected 

experimentally by comparing the clusters to manual 

labels. The four clusters can be approximated to represent 

the background, nerve fiber, LC and optic nerve. Basic 

morphological operations were applied to remove small 

clusters and noise, ensuring smoothness and continuity. 

The result obtained using k-means is sufficient to 

differentiate the layers and each cluster is shown to 

represent a good estimate of the anatomy. 
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C. Lamina Cribrosa Detection 

An estimate of where the LC can now be determined. 

A seed curve is based on the demarcation between the top 

2 cluster layers. The local gradient for points across the 

seed curve was computed. The gradient, g, is computed 

by: 

1 2

1
2

R R

R

-a a
g =

+S R

                            (1) 

R1 and R2 are regions above and below the tangent line 

with respect to the point on the curve (Fig. 4). The radius 

of the mask for R1 and R2 is fixed at 10 pixels to ensure 

that the gradient is localized. The gradient is computed 

for points with horizontal intervals of 15 pixels in (1). 

SR1+R2 refers to the total number of pixels in regions R1 

and R2, and a is the average gray value in the region. If 

the value of g is close to 0, the point is discarded as it 

may indicate that the region is homogeneous and does not 

provide much information on the LC. Lack of gradient 

change will occur at regions of low contrast or shadows. 

 

Figure 4.  Determining R1 and R2. 

 

Figure 5.  Comparison of manual labels and segmentation results 

between frames. 

Based on the new points obtained, a best-fit curve is 

plotted. The curve is optimized by 

1 2 3x x x

x

w d w c w f                         (2) 

The neighborhood to be searched is within 15 pixels 

from the reference point. α will be minimized for the set 

of all detected points x. ∆dx is the change in distance from 

the current point to the updated point. ∆dx ensures that the 

proximity of the updated point is not too far from the 

previous point.  

+1
Δ

t t
c = g - g                                (3) 

It is the change in gradient between the current point 

and the updated point. t in (3) refers to the iteration 

number.  

+1
Δ

i i
f = g - g                                (4) 

It is the change in gradient between the current point in 

the reference frame and the current point in the next 

frame. i in (4) refers to the frame reference where i + 1 is 

the next frame. The value of w1 and w2 are set as 0.45, 

while w3 is set at 0.1. The inter-frame comparison in (4) 

is given a lower weight as the orientation and scaling 

factors between frames may sometimes cause the value of 

f to be higher. This can be seen in Fig. 5 where the best-

fit curve of the current frame and next frame are slightly 

different. 

III. EXPERIMETNS AND RESULTS 

The data used was from the Singapore Eye Research 

Institute (SERI). ONH raster scans were performed on the 

right and left eyes of 20 subjects on the Spectralis OCT 

machine (Heidelberg Engineering GmbH, Heidelberg, 

Germany). The Enhanced Depth Imaging (EDI) feature 

was chosen to improve image contrast and visualization 

of deep ONH structures [9], [10]. 2 scans were performed 

per eye for 2 visits. Each set of images comprised 72 

serial horizontal sectional scans covering a rectangular 

region of 15×15 degrees centered on the optic nerve head. 

To reduce speckle noise, each sectional scan was also 

averaged from 20 captured frames. Not every frame 

contains details of the LC and Bruch’s membrane 

opening; hence for each scan session, only 2 consecutive 

frames were selected for segmentation. The data were 

manually labeled by 2 experienced clinicians, with the 

Bruch’s membrane opening and points along the anterior 

LC identified. These labels were taken as the ground truth 

for comparison.  

In addition, shadow removal and image contrast 

improvement was performed on the Spectralis data set 

using Reflectivity 3.2 [11]. Often, the OCT images have 

parts of the ROI occluded due to shadows from blood 

vessels. Reflectivity successfully removes most of these 

shadows. The parameters used for shadow removal and 

compensation were fixed at default values for all images 

processed to ensure image comparability.  

Based on the data used, the mean distance of points on 

the final fitted curve obtained from the ground truth was 

points considered was 9.89 pixels. An example of a good 

detection result is shown in Fig. 6(a). The RMS error and 

mean distance is within acceptable range for an accurate 

detection of the major landmarks required to trace the 

anterior LC. The black points represent the points 

detected automatically, while the white points indicate 

manual labels. 

The result was further broken down to consider the 

ROI as three sections (Fig. 6(c)). The ROI was divided 

into three equal columns for each image, representing the 

left (L), center (C) and right (R) regions. The average 

distance of the detected point from the ground truth for 

each region was computed. For the left region, the mean 
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distance was 8.32, center region was 13.18 pixels and 

right region was 5.62 pixels. The results can be attributed 

to the presence of shadows mainly occurring close to the 

center region, hence there was more ambiguity in the 

detected points due to poor contrast and shadows present. 

In addition, some of the discrepancies were due to the 

detection of the change in gradient close to the edge of a 

vertical shadow (Fig. 6(b)). For image samples that do 

not have major artifacts or shadows present, the results 

were close to the ground truth. 

The Dice coefficient was also computed. The region 

considered was based on the areas within 10 pixels from 

the manual best-fit curve and the anterior LC boundary 

obtained through automated segmentation. The overlap in 

the regions can be visualized on the OCT (Fig. 6(d)). The 

overall Dice coefficient within the ROI was 0.74. 

Furthermore, the Dice coefficients of the left, center and 

right regions of the ROI were determined to be 0.73, 0.68 

and 0.75 respectively. The Dice coefficient provides an 

indicator of the segmentation results, and as with the 

RMS error the agreement was lower in the center region 

than the left and right regions. 

 

Figure 6.  Results of automatic segmentation. 

IV. DISCUSSION AND CONCLUSION 

We have introduced a new framework that 

automatically segments features in OCT optic nerve head 

images, in particular the anterior LC. The identification 

of the features was based on the location of the Bruch’s 

membrane opening. The determination of the ROI and 

anterior LC detection was automatic and based on seed 

points identified. The optimization is performed based on 

minimizing the inter-frame gradient and local gradient 

change. With an objective method of segmentation, the 

results can be compared with manual segmentation. The 

segmentation outcome based on the RMS error and Dice 

coefficient is promising, with RMS error of 9.89 and Dice 

coefficient of 0.74. It is shown that the curve obtained is 

in close agreement with the manual curve. 

We hope to extend the framework to account for 

scaling between frames, and include more data from 

different clinical studies to compare the results.  
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