
GPU Based Fast Non Local Means Algorithm 
 

Daniel Sanju Antony and G. N. Rathna 
Electrical Engineering, Indian Institute of Science (IISc), Bangalore, India 

Email: dsanjuantony@gmail.com, rathna@ee.iisc.ernet.in 

 

 

 
Abstract—Non Local Means (NLM) Algorithm proposed by 

Buades et al., gave remarkable denoising results at expense 

of computational cost. Darbon et al. used the separable 

property of the algorithm to create a faster implementation. 

In this paper, parallelization of this modified Non Local 

Means denoising algorithm using Heterogeneous computing 

platforms like Central Processing Unit (CPU) and 

Graphical Processing Unit (GPU) is developed. The 

algorithm is implemented on GPU with the help of OpenCL 

API. Experimental results show that the GPU based 

implementation is about 25 times faster than the CPU based 

implementation of Buades et al. algorithm and around 85 

times faster than Darbon et al. implementation.  

 

Index Terms—heterogeneous computing, denoising, 

OpenCL, CPU, GPU 

 

I. INTRODUCTION 

Denoising is one of the most important techniques in 

image processing. It is widely used in a variety of areas 

such as computer vision, biomedical image processing, 

3D object detection, satellite imaging etc. Any unwanted 

signal that alters the value of the original signal is called 

noise. Noise degrades the quality of the image and as a 

result efficient noise removal is required in various image 

related applications for getting reliable results. 

The main objective of the image denoising algorithm is 

to remove the unwanted signal while preserving the 

original image as much as possible,  

V ( i ) = U ( i ) + N ( i )                            (1) 

where V ( i )  is the observed image, U ( i )  is the true 

image and N ( i )  is the noise at a pixel 𝑖. The best simple 

way to study the effect of noise on a digital image is to 

add Gaussian white noise [1]. 

Over the years many algorithms have been proposed to 

denoise the image. Even though several methods are used 

for denoising they share a common trait, i.e. averaging. 

This averaging may be performed locally: the Gaussian 

smoothing model (Gabor [2]), the anisotropic filtering 

(Perona-Malik [3], Alvarez et al. [4]) and the 

neighborhood filtering (Yaroslavsky [5], Smith et al. [6], 

Tomasi et al. [7]), by the calculus of variations: the Total 

Variation minimization (Rudin-Osher-Fatemi [8]), or in 

the frequency domain: the empirical Wiener filters 

(Yaroslavsky [5]) and wavelet thresholding methods 

(Coiffman-Donoho [9], [10]). Main drawback of these 

filters is that they do not preserve the edges properly. As 

                                                           
Manuscript received March 15, 2015; revised September 1, 2015. 

a result the finer details present in the image are lost and 

the image appears blurred. In order to avoid this, Buades 

et al. proposed Non Local Means Algorithm for 

denoising in 2005 [1]. It was based on the concept of self-

similarity. This method has shown convincing and 

remarkable results but it was found to be computationally 

intense. As a result the time taken to denoise a single 

image was very high. In order to address this issue, 

Darbon et al. [11] came up with a modified version of the 

algorithm in which they used the separable property of 

the filter to create a faster parallel implementation. But 

even this implementation is slow, so we tried to create a 

parallelized implementation of this algorithm using Open 

Computing Language (OpenCL). 

Rest of the paper is organized into five more sections. 

Section II gives a brief overview about Heterogeneous 

computing and OpenCL. In Section III, we have 

discussed the Non Local Means algorithm and its 

modification. Section IV discusses the implementation 

details on GPU. Experimental results are shown in 

Section V. In Section VI, we give a brief conclusion of 

the paper. 

II. HETEROGENEOUS COMPUTING WITH OPENCL 

Applications possess a number of workload behaviors 

ranging from control intensive (e.g., searching) to data 

intensive (e.g., image processing). They can also be 

classified as compute intensive, where the overall output 

depends on the computational power of the underlying 

architecture [12]. As a result, no single architecture can 

run all the workloads efficiently and the need for multi 

architectural devices increased. Heterogeneous 

computing refers to the process of using multiple devices 

such as Central Processing Units (CPU), Graphical 

Processing Units (GPU), Digital Signal Processors (DSP), 

Field Programmable Gate Arrays (FPGA) etc. to execute 

different modules of the same program. This kind of 

systems allows programmers to select the best 

architecture to execute the task at hand. They also 

increase the computational power and as they have 

different devices, they also allow us to execute different 

kinds of workloads efficiently. OpenCL has been 

developed to ease the programming burden when writing 

applications for heterogeneous devices. 

OpenCL is a framework for writing programs that 

execute across heterogeneous platforms consisting of 

CPUs, GPUs, DSPs, field-programmable gate arrays 

(FPGAs) and other processors [12]. It is an open standard 

maintained by the nonprofit technology consortium 

Journal of Image and Graphics, Vol. 3, No. 2, December 2015

©2015 Journal of Image and Graphics 122
doi: 10.18178/joig.3.2.122-125



Khronos Group. It supports wide range of parallelism and 

efficiently maps to the devices [12]. OpenCL consists of 

two parts, language and Applications Programming 

Interface (API). The language is a restricted version of 

C99 language with extensions appropriate for writing 

kernel (functions executed in the OpenCL devices) codes. 

The OpenCL specification is divided into four parts 

called models.  

A. Platform Model 

This model defines an abstract hardware model used 

by programmers while writing OpenCL functions 

(Kernels). Here on processor is defined as host which 

coordinates the execution of data and transfer between 

other hardware. One or more processors capable of 

executing OpenCL C code are defined as devices and 

they are used by the host to execute different workloads. 

It also defines host-device interaction. A typical scenario 

describes an x86 CPU as a host and a GPU as an 

accelerator (OpenCL Device). 

B. Execution Model 

This model defines how OpenCL environment is 

configured on the host and how kernels are executed on 

the devices. Here an OpenCL context is setup on the host 

and it provides mechanisms for host device interaction. 

C. Memory Model 

In this model, an abstract memory hierarchy is defined 

regardless of the underlying actual memory architecture 

and is used by the kernels. Even though memory model 

vary greatly between different computing platforms, this 

abstract memory model defined by the OpenCL can map 

to different devices. 

D. Programming Model 

Programming model is where the programmer will 

parallelize the algorithm. OpenCL is designed both for 

data and task parallelism. 

III. DENOSING ALGORITHM  

In this section we briefly review non local algorithm 

by Buades et al. [1] and fast non local approach by 

Darbon et al. [11]. 

 

Figure 1.  Self-Similarity in an image. Pixels Q1 and Q2 are more 
similar to pixel P than pixel Q3. 

A. Non Local Means Algorithm  

The concept of self-similarity was first developed by 

Efros and Leung for texture synthesis [13]. Non Local 

Means Algorithm was also based on this concept. This 

concept can be better explained with the help of Fig. 1. 

In the figure, pixels P, Q1, Q2 and Q3 along with their 

neighbourhoods are shown. It can be seen that the pixels 

P, Q1 and Q2 have similar neighbourhoods whereas the 

neighbourhood of the pixel Q3 is dissimilar to the other 

pixel neighbourhood. In NLM method, the denoised 

value at any pixel depends on the similarity between the 

pixel neighbourhoods. Fig. 2 shows the denoising output 

of Non Local Means Filter. 

 

Figure 2.  Image 1 shows the original, image 2 is the noisy image and 

image 3 is the denoised image. 

In Non Local Means Algorithm, the denoised value 

�̂� at any pixel 𝑖 is given by: 

�̂�(𝑖) = ∑ 𝑉(𝑖). 𝑊(𝑖, 𝑗)                          (2) 

where V is the observed or noisy image and 𝑊(𝑖, 𝑗) is the 

family of weights which depend on the similarity 

between pixels at 𝑖  and 𝑗  and it should satisfy the 

conditions 0≤𝑊(𝑖, 𝑗)≤1 and ∑ 𝑊(𝑖, 𝑗) =1.  

The similarity between pixels 𝑖  and 𝑗 depends on the 

similarity between the neighbourhoods N i  and N j  of the 

pixels and the similarity between the neighbourhoods of 

the pixels is calculated as the weighted sum squared 

difference of the neighbourhoods 𝑠𝑠𝑑(𝑖, 𝑗). It is given by: 

𝑠𝑠𝑑(𝑖, 𝑗) = ‖𝑉(𝑁𝑖) − 𝑉(𝑁𝑗)‖
2,𝑎

2
                  (3) 

where a  is the gaussian kernel of variance σ
2
 applied to 

the sum squared difference [14]. The weights associated 

which each pixel is computed using the formula given 

below: 

𝑊(𝑖, 𝑗) =
1

𝑍(𝑖)
e

−𝑠𝑠𝑑(𝑖,𝑗)

ℎ2                          (4) 

where 𝑍(𝑖)  is the normalizing constant and is given by 

𝑍(𝑖) = ∑ e
−𝑠𝑠𝑑(𝑖,𝑗)

ℎ2
𝑗                            (5) 

and h  is the degree of filtering. 

B. Fast Non Local Means Algorithm  

As we know, the most time consuming part of Non 

Local Means algorithm is the weight calculation. In this 

modified algorithm, efficient calculation of weights 

𝑊(𝑖, 𝑗) associated with each pixel is done. For this the 

concept of Sum Squared Image [14] is used. The basis 

behind Sum Squared Image resembles that of Integral 

Journal of Image and Graphics, Vol. 3, No. 2, December 2015

©2015 Journal of Image and Graphics 123



Image used in face detection algorithms [15]. For better 

understanding of the concept we explain the algorithm for 

1D images; extending to higher dimensions is 

straightforward. 

Consider a 1D image with n pixels i.e. Ω=[0, n-1]. 

Consider a new image Vdx and translation vector dx, 

𝑉𝑑𝑥(𝑝) = ∑ (𝑉(𝑗) − 𝑉(𝑗 + 𝑑𝑥))
2

, 𝑝𝜖
𝑝
𝑗=0 Ω          (6) 

where Vdx corresponds to sum of the squared difference of 

image V and its translation by dx [11]. It can be found 

that in the paper, Darbon et al. with proper re-

parametrization made the computation of weights 

associated with each pixel dependent only on the Sum 

Squared Image Vdx and its translation images. 

It is found that the computation of weights associated 

with each pixel is independent and as a result can be 

parallelized. In this paper, we try to make use of the 

inherent parallelism and run it in GPU with the help of 

OpenCL API. 

IV. IMPLEMENTATION  

In this paper we implement non local means algorithm 

suggested by Buades et al. [1] as well as the modified 

algorithm by Darbon et al. [11] using OpenCL. 

Use of GPUs to do highly parallelizable computations 

that are normally handled by CPUs is called General 

Purpose computing on Graphics Processing Units 

(GPGPU) [16], [17]. It is found that GPUs tend to 

outperform CPUs in computing highly parallel codes [18]. 

In GPGPU, we make the sequential code to run on CPU 

and process the highly parallel code using GPU [19]. In 

this paper, we make use of the algorithmic acceleration 

capacity of GPUs without compromising on the denoising 

quality of Non Local Means Filter. 

Aim of this work is to reduce the computational time 

of the NLM algorithm. It is found that the most time 

consuming part of the Non Local Means algorithm and its 

modified version is the computation of weights 

corresponding to each pixel. 

In NLM algorithm, suggested by Buades et al., for 

each pixel in the image it takes L
2
*M

2
 computations, 

where L
2
 denotes the size of the similarity window and 

M
2
 is the size of the search window in the image. So the 

total computation will be L
2
*M

2
*N

2
 where N

2
 is the 

number of pixels in the image. As a result, NLM requires 

minutes to denoise even a single image. Due to this, 

practical application of this algorithm is limited. 

In Fast NLM suggested by Darbon et al., the number 

of computations required to for each pixel in the image is 

reduced to 2
2
*M

2
. So the total computation will be 2

2
*M

2
 

*N
2
. Due to reduction in computational complexity, the 

algorithm is much faster than original algorithm. But for 

higher dimensional pictures the algorithm is still slow. So 

we try to improve its applicability by parallelizing the 

algorithm using GPU. 

First the image is obtained from camera or hard drive 

using OpenCV and is converted into a grey scale image. 

Additive White Gaussian noise is added to the image. 

The noisy image along with denoising parameter is sent 

to the GPU. Denoising algorithm is done on GPU. Here 

the computation of the Euclidean weights for each pixel 

is done on separate work item. So there are different work 

items working in parallel at any time, thereby reducing 

the computation time drastically. After the computation 

of weights for each pixel, the pixel value is modified. Fig. 

3 shows the flow diagram.  

 

Figure 3.  In all experiments additive white Gaussian noise (AWGN) of 
σ=25 is added to the input image and the denoising algorithm is applied. 

Implementation is done on a system with core i5 (2
nd

 

gen) CPU and AMD Radeon 7950 GPU. 

V. RESULTS 

Computation of weights of each pixel is done on 

separate compute units. Since total number of pixels in 

image is more than the number of compute units available, 

hence all the computation cannot be done in parallel. 

Computation of weights associated with each pixel is 

done on GPU. In normal Non Local Means only the input 

image, output image and denoising parameters are 

transferred between CPU and GPU. Whereas in the 

modified algorithm sum squared image is also passed. 

Overheads associated with data transfers are less 

compared to the computational time. 

The performance comparison is shown on Table I and 

Table II. 

TABLE I.  PERFORMANCE COMPARISON FOR NORMAL NON LOCAL 

MEANS 

Image Size 
Time Taken for Denoising  

CPU GPU Speedup 

64 X 64 172 36 4.77 

128 X 128 967 78 12.4 

256 X 256 3866 189 20.45 

512 X 512 15373 615 24.99 

1024 X 1024 61801 2314 26.70 

TABLE II.  PERFORMANCE COMPARISON FOR FAST NON LOCAL 

MEANS 

Image Size 
Time Taken for Denoising  

CPU GPU Speedup 

256 X 256 40 12 3.33 

512 X 512 198 16 12.38 

1024 X 1024 787 18 43.72 

2048 X 2048 2974 36 82.61 

4096 X 4096 11448 132 86.72 

Journal of Image and Graphics, Vol. 3, No. 2, December 2015

©2015 Journal of Image and Graphics 124



Table I shows the performance comparison between 

GPU and CPU implementation of Normal NLM 

algorithm and Table II compares the implementation 

results of Fast NLM algorithm. It can be seen that 

OpenCL implementation in both cases is much faster than 

CPU. Even though the performance improvement is less 

in smaller images, in larger images there is a drastic 

performance gain. In normal case an improvement of 

about 25x times is seen whereas in fast implementation, 

performance gain of around 85x is obtained. 

VI. CONCLUSIONS 

In this paper parallel implementation of Fast Non local 

Means algorithm is done and it is compared with the CPU 

based implementation. Performance gain of about 85x is 

obtained over regular implementation. Real-time 

problems associated with NLM can be tackled using our 

implementation. 

REFERENCES 

[1] C. B. Buades and J. M. Morel, “A non-local algorithm for image 
denoising,” presented at the IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition, 2005. 

[2] M. Lindenbaum, M. Fischer, and A. Bruckstein. “On Gabor’s 
contribution to image enhancement,” Pattern Recognition, vol. 27, 

pp. 1-8, 1994. 

[3] P. Perona and J. Malik, “Scale space and edge detection using 
anisotropic diffusion,” IEEE Trans. on Pattern Analysis and 

Machine Intelligence, vol. 12, pp. 629-639, July 1990. 

[4] L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective 
smoothing and edge detection by nonlinear diffusion,” SIAM 

Journal of numerical analysis, vol. 29, pp. 845-866, June 1992. 

[5] L. Yaroslavsky, Digital Picture Processing - An Introduction, 
Springer Verlag, 1985. 

[6] S. Smith and J. Brady, “Susan-A new approach to low level image 

processing,” International Journal of Computer Vision, vol. 23, pp. 
45-78, 1997. 

[7] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color 
images,” in Proc. Sixth International Conference on Computer 

Vision, 1998, pp. 839-846. 

[8] L. Rudin, S. Osher, and E. Fatemi. “Nonlinear total variation 
based noise removal algorithms,” Physica D, vol. 60, pp. 259-268, 

1992. 

[9] D. Donoho, “De-Noising by soft-thresholding,” IEEE 
Transactions on Information Theory, vol. 41, pp. 613-627, 1995. 

[10] I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, “The dual-

tree complex wavelet transform,” Signal Processing Magazine, 

vol. 22, no. 6, pp. 123-151, 2005. 

[11] J. Darbon, A. Cunha, T. F. Chan, S. Osher, and G. J. Jensen, “Fast 

nonlocal filtering applied to electron cryomicroscopy,” in Proc. 
5th IEEE International Symposium on Biomedical Imaging, 2008, 

pp. 1331-1334. 

[12] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa, 

Heterogeneous Computing with OpenCL, 1st ed., Morgan 

Kaufman, 2011, ch. 2, pp. 16-24. 

[13] A. Efros and T. Leung, “Texture synthesis by nonparametric 

sampling,” in Proc. Seventh IEEE International Conference on 

Computer Vision, 1999, vol. 2, pp. 1033-1038. 

[14] J. Wang, et al., “Fast non-local algorithm for image denoising,” 

presented at the IEEE International Conference on Image 

Processing, 2006. 

[15] P. Viola and J. Michael, “Rapid object detection using a boosted 

cascade of simple features,” in Proc. IEEE CVPR, 2001. 

[16] S. Cuomo, P. D. Michele, and F. Piccialli, “3D data denoising via 

nonlocal means filter by using parallel GPU strategies,” 

Computational and Mathematical Methods in Medicine, vol. 2014, 

2014. 

[17] B. Goossens, et al., “A GPU-accelerated real-time NLMeans 

algorithm for denoising color video sequences,” in Advanced 

Concepts for Intelligent Vision Systems, Springer Berlin 

Heidelberg, 2010, pp. 46-57. 

[18] K. Z. Sun, J. D. Li, and S. Y. Xu, “Gpu-Accelerated non-local 

means super-resolution reconstruction,” in Proc. 3rd International 

Conference on Multimedia Technology, Nov. 2013. 

[19] A. Márques and P. Alvaro, “Implementation of non local means 

filter in GPUs,” in Progress in Pattern Recognition, Image 

Analysis, Computer Vision, and Applications, Springer Berlin 

Heidelberg, 2013, pp. 407-414. 
 

 
 

Daniel Sanju Antony was born in Kerala, 

India in 1989. He received his B.Tech degree 
in Electrical and Electronics Engineering 

(EEE) from National Institute of Technology 

Tiruchirappalli, Tiruchirappalli, India in 2011.  

In 2012 he joined Indian Institute of Science 

(IISc) Bangalore, Bangalore, India where he is 

currently doing his MSc (Engg.) in Signal 
Processing.  

His main areas of interest are FPGA Design, 

OpenCL and Image Processing.  
 

 

 
Rathna G. N. received her B.E degree from 

Bangalore University in 1982, and the MSc 

(Engg.) and Ph.D. degrees from Indian 
Institute of Science (IISc) Bangalore, 

Bangalore, India in 1990 and 1998 

respectively. 
She is currently working as Principal 

Research Scientist in Indian Institute of 

Science Bangalore, Bangalore, India. Her 

current areas of research include Embedded 

Systems, Image Processing and Sensor Networks. 

Rathna G. N. was the recipient of Tata Rao Medal and Pt. Madan 
Mohan Malaviya Awards. She is also a lifetime member of Advanced 

Computing and Communications Society. 

 

Journal of Image and Graphics, Vol. 3, No. 2, December 2015

©2015 Journal of Image and Graphics 125




