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Abstract—The assessment of the stress of an individual 

attracts the attentions of the researchers since it helps to 

provide individualized assistance in managing this 

emotional state. This paper investigates the potential of 

stress recognition using heterogeneous data, where not only 

the physiological signals but also the Reaction Time (RT) is 

used to recognize different stress levels. To acquire the data 

related to mental stress of an individual, we design the 

experiments with two different stressors: 'Stroop test' and 

acoustic induction. We develop the classifier based on the 

Support Vector Machines (SVM) for the stress recognition 

given the physiological signals. Three physiological signals, 

Electrodermal Activity (EDA), Electrocardiography (ECG) 

and Electromyography (EMG), are registered and analyzed. 

An overall high recognition accuracy of the SVM classifier 

is obtained. During the experiments, RT task appears. RTs 

are registered and their statistical analysis shows a generally 

good discrimination between the period of low stress and the 

period of high stress. Results indicate that the data from 

heterogeneous sources, such as physiological signal and 

cognitive reaction can be adopted for stress recognition.  

 

Index Terms—stress recognition, heterogeneous data, 

physiological signal, reaction time, Stroop test, acoustic 

induction 

 

I. INTRODUCTION 

In modern society, the stress of the individual has been 

found to be a common problem. In 2007, the research 

indicated that the stress was the second most common 

work-related health problem in the European Union [1]. 

Continuous stress can lead to various mental and physical 

problems [2] and especially for the persons who always 

face emergency situations (e.g., fireman): it may alter 

their actions and put them in danger, so that it is 

meaningful to provide the assessment of the stress of the 

individual. Based on this idea, we proposed the 

Psypocket project which is aimed at making a portable 

device able to analyze accurately the emotional state of 

the individual based on physiological, psychological and 

behavioural modifications. It should then offer solutions 

for feedback to regulate this state. The system adopts the 

data from heterogeneous sources, such as physiological 

signal, cognitive reaction and behavioural reaction, for 

stress recognition. Besides, in this project, we would like 

to analyze the effects of various stressors that can elicit 

the mental stress and build the psychophysiological 

expertise for stress recognition, i.e. finding out for one 

kind of stressor, which signal is the best indicator to 
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recognize the stress state and the best corresponding 

characteristic features of this signal for stress recognition. 

In this paper, we present the feasibility of stress 

recognition from heterogeneous data, which is the 

essential part of the research of our project.  

Traditionally, to assess the individual affective state, 

people are asked to fill in the standardized questionnaire 

(e.g., Perceived Stress Questionnaire [3]) which helps to 

quantify the stress. However, in 2001, R. Picard et al. [4] 

proposed that the ability to recognize emotion should be 

an important part of machine intelligence and developed 

a machine’s ability to recognize human affective state 

given the physiological signals, which opened a new gate 

to assess the individual affective state. After that, the 

researchers began to investigate the potential of 

physiological signals for stress recognition. P. Rani et al. 

[5] presented online stress detection by monitoring the 

Heart Rate Variability (HRV) of a human. They chose 

playing video games to generate mental stress and fuzzy 

logic for stress detection. R. Picard and J. Healey [6] 

collected and analyzed physiological signals during real 

world driving tasks to determine a driver's relative stress 

level. Their proposed methods based on linear 

discriminant function distinguished three levels of driver 

stress with high accuracy. In the context of human 

computer interaction, J. Zhai et al. [7] presented their 

research of stress recognition using four physiological 

signals when the user was interacting with the computer. 

A computer-based “Paced Stroop Test” was designed to 

elicit emotional stress and the classification accuracies of 

different learning algorithms were compared. Based on 

these discussions, several stress recognition systems were 

proposed. In 2003, E. Jovanov et al. [8] proposed a 

distributed wireless sensor system, which quantified 

stress levels based on measures of HRV. The system 

iCalm [9], using a wearable sensor and network 

architecture, could provide the long-term monitoring of 

autonomic nervous system, by registering the 

Electrocardiography (ECG) and Electrodermal Activity 

(EDA). The system INTREPID [10] estimated the 

subjects’ levels of apprehension in real time by 

classifying features extracted from biosignals. 

Generally speaking, these existing systems only use 

the physiological signals for stress recognition. However, 

it should be mentioned that the physiological signals are 

not the only source of data to quantify the reactions of an 

individual. Intuitively, we can observe that the personal 

cognitive reactions or behaviors may differ when an 

individual deals with various situations. For example, B. 

Bolmont et al. [11] presented that the climbers' mood 

Journal of Image and Graphics, Vol. 4, No. 2, December 2016

©2016 Journal of Image and Graphics 116
doi: 10.18178/joig.4.2.116-121



states may change when they are exposed to high altitude 

and their performance in Reaction Time (RT) differs as 

well. This gives us the idea that not only physiological 

signals, but also cognitive and behavioral reactions are 

possible to be adopted to recognize if an individual is 

under mental stress. However the existing systems pay 

little attention to use these actions for stress recognition. 

In this paper, we discuss the feasibility of stress 

recognition using physiological signals and RT. Another 

contribution is that concerning about the acquisition of 

the data related to the mental stress, we designed the 

experiments using various kinds of stressors to elicit the 

stress. The effects of different stressors were analyzed 

whereas in the researches of stress recognition given 

physiological data, usually only one stressor was used 

and the result of recognition is only based on the data 

related to this stressor.  

The rest of the paper is organized as follows: Section 2 

describes our experiments and Section 3 explains our 

methodology of stress recognition. The results of 

recognition are presented and discussed in the Section 4. 

II. EXPERIMENT  

To acquire the physiological signals related to the 

mental stress, we proposed two different experiments. 

The experimental protocol is aimed at eliciting the stress 

of the participating subject at the pre-determined period. 

The first experiment used 'Stroop test' to elicit the stress. 

The Stroop test [12] asks the subject to name the font 

color of the word when the color and the meaning of the 

words differ (e.g., the word “yellow” printed in green ink 

instead of yellow ink). This test has been used as an 

effective physiological stressor for stress recognition by 

many authors like Zhai and Barreto [7]. The second 

experiment used acoustic induction to elicit the stress. 

Music was found to be effective to arouse positive and 

negative emotion in the research of Kim and André [13]. 

They observed the physiological changes in music 

listening. This gave us the idea that acoustic induction 

could be a stress stimulus in the controlled laboratory 

environment. The details of these two experiments are 

explained in the following paragraphs. Nine students 

from University of Lorraine participated in our 

experiments and they were divided into two groups. The 

first group of four male students participated in the 

experiment of Stroop test and the second group of five 

female students participated in the experiment of acoustic 

induction. 

An experimental platform was designed for data 

acquisition. A screen was placed in front of the subject 

for the Stroop test and a joystick was placed between 

them. The joystick can be manipulated to point in four 

directions by the subject and a button is equipped on the 

top of the joystick. Two LEDs were put below the screen 

for RT test. The BIOPACTM System, consisted of the 

physiological sensors and amplifiers, was used to register 

the physiological signals. Three physiological sensors 

were used: EDA, ECG and Electromyography (EMG). 

The electrodes of the EDA sensor were attached to the 

index finger of the left hand and the two-lead ECG signal 

was register with the ECG sensor on the chest. The EMG 

sensor was placed on the trapezius muscle (shoulder). 

The BIOPACTM System collected all three physiological 

signals and digitized these signals at a common sampling 

rate of 2000 Hz. During the experiment, the subject sat in 

the chair, wore a headset and held the joystick.  

The experiment of Stroop test consists of three sections 

(Fig. 1). It begins with Section 1 composed of 100 

consecutive RT trials. In one RT trial, when the LEDs 

(originally turned off) are lighted up with the white color, 

the subject should press the button on the top of the 

joystick to respond. The RT, which is the time interval 

between the moment when LEDs are lighted up and the 

moment that the subject clicks the button, is calculated 

and registered. Section 2 and Section 3 are the sections 

for Stroop test and each section is consisted of 300 

consecutive Stroop trials. We designed a computer-based 

interacting environment for the Stroop test. In one Stroop 

trial, a graphic user interface is shown on the screen. A 

word is written in the center of the interface with four 

buttons surrounding it (Fig. 2). The word is the name of a 

color in French and the buttons are also labeled with 

different colors' names in French. The subject should 

choose the button with the label that matched the font 

color of that word. The choice of the button is realized by 

using the joystick. When the joystick is manipulated to 

point in one direction, its corresponding button is chosen. 

For example, when the joystick is pushed to point 

forward, the button above the word is chosen. If the 

answer is not right, the subject will hear a buzz in the 

headset. Moreover, if the subject does not respond in 2.5 

seconds, the screen will change to the next trial 

automatically. The Stroop trials of Section 2 are the trials 

without interference, which means that the word is 

printed in the color denoted by its name (e.g., word 

“jaune” (yellow) printed in yellow ink). The Stroop trials 

of Section 3 are the trials with interference, where the 

word is printed in the color not denoted by its name (e.g., 

word “jaune” printed in green ink instead of yellow ink). 

Besides, RT trials appear randomly in Section 2 and 

Section 3. When one section is finished, the subject is 

firstly asked to fill in the Self-Assessment Manikin (SAM) 

[14] so that we can acquire his self-assessment stress state. 

Then the subject is asked to relax for one minute before 

the test of next section. 

 

Figure 1.  Schedule of the Stroop test experiment. 

 

Figure 2.  Illustration of Stroop trial. 
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The experiment of acoustic induction also consists of 

three sections (Fig. 3) and each section is consisted of 

100 consecutive RT trials. The experiment begins with 

Section 1. During this section, there is no sound in the 

headset. In Section 2, the subject hears the positive 

ambient sounds in the headset, such as agreeable music 

and applause, and in Section 3, the subject hears the 

negative ambient sounds, for example horrible shrieking. 

In this experiment, the subject is also asked to fill in the 

SAM and then relax for one minute when one section is 

finished. 

 

Figure 3.  Schedule of the experiment of acoustic induction. 

III. METHODOLOGY 

Our system is aimed at using heterogeneous data for 

stress recognition. For the moment, physiological signals 

(ECG, EMG and EDA) and RT are used as the inputs of 

the system. 

A. Stress Recognition Using Physiological Signals  

The overall structure of stress recognition given 

physiological signals is illustrated in Fig. 4. After the 

preprocessing, the raw time-series of physiological 

signals were transformed into features, since standard 

classification algorithms can not be directly applied to the 

raw time-series signals. Then these informative features 

were used as the inputs for classification. We chose 

Support Vector Machines (SVM) for classification and 

the outputs of the SVM are the stress levels. 

 

Figure 4.  Block diagram of the stress recognition using physiological 
signals. 

1) Preprocessing 

At first, the physiological signals were filtered to avoid 

artifacts. The EMG signal was firstly filtered with a notch 

filter of 50Hz to filter out power line noise and a low-pass 

filter where the cutoff frequency is 500Hz. Since EMG 

recordings of trapezius muscle are often contaminated by 

the ECG signal [15], we added a 30Hz high-pass 

Butterworth filter to EMG for ECG contamination 

removal. It should be mentioned that the ECG signal 

requires addition preprocessing, since we need to 

generate informative features from HRV [13] for 

classification. To obtain HRV from continuous ECG 

signal, Pan-Tompkins algorithm [16] was used which 

detects the QRS complex of ECG to determine the R 

peak interval and the interpolated HRV time series with a 

re-sampling frequency of 8Hz were used for feature 

extraction. 

2) Feature extraction 

The informative features were generated from the 

filtered EMG, EDA and HRV signals. These signals were 

divided into the segments with predefined size (called 

windows) and informative features are generated for each 

window. Informative features are the statistical features 

which are originally used to analyze affective 

physiological state [4] and they can be computed in an 

online way which is an advantage for real-time 

recognition. Let the physiological signal be designated by 

x and xn represent the value of the n-th sample of the 

signal in the window, where n=1, …, N. Table Ι lists the 

informative features that are used in our research where 

AD is short for absolute difference. The features were 

max-min normalized to the range of [0, 1], as shown in 

(1): 

min( )

max( ) min( )

y y
y

y y





                         (1) 

where y denotes one informative feature. These max-min 

normalized features were the inputs of SVM classifier. 
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3) SVM classification 

SVM [17] is a supervised learning method used for 

pattern recognition. SVM considers that every data is a 

point in its feature space and it is possible to find a linear 

or non-linear discriminant function in high dimensional 

feature space to separate the data points that related to 

different classes. To ensure the classification accuracy, 

SVM needs the distance of the discriminant function 

from the nearest feature vector set to be maximal and 

these nearest feature vectors are called support vectors. It 

needs the data points that have been labeled in different 

classes to determine several parameters of SVM in 

training process. Once these parameters are determined, 

SVM can be used to label the rest data in different classes. 

In this paper, we used SVM with a usual Gaussian kernel 

[18] for the classification of different stress levels based 

on the informative features derived from physiological 

signals. The trained SVM can be used to predict the 

unknown stress level given physiological signals.  
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B. Stress Recognition Using RT 

We analyzed the registered RT of RT trial to find out if 
the difference of RT exists when the subject is under 

different stress levels. For each subject, we computed the 

mean, the median and the standard deviation (std) of the 

RT of one hundred RT trials in each section of our 

experiments. Then the Confidence Interval (CI) with 95% 

confidence level of the RT for each section was compared.  

IV. RESULTS 

During the experiments, the physiological signals 

(ECG, EMG and EDA) of the subject were registered. In 

each section, they were divided into one minute 50% 

overlapping segments. Each of these segments was 

designed to represent a period of low stress (Section 1), 

medium stress (Section 2) and high stress (Section 3). 

Different stress levels are confirmed by SAM. Six 

informative features were calculated for each segment. 

After the max-min normalization stage, the informative 

features were used as the inputs of SVM classifier. The 

classification accuracy of SVM was evaluated using the 

5-fold cross validation method [18]. Meanwhile, we 

registered the RTs of RT trials in each section and 

evaluated its ability of recognition using the statistical 

analysis.  

A. The Experiment of Stroop Test 

To begin with, we analyzed the performance of SVM 

classifier for stress recognition given the physiological 

signals. The inputs of SVM classifier were firstly the 

informative features generated from the segments of 

Section 1 and Section 3 and the output were two stress 

levels: low stress and high stress. The SVM classifier was 

trained with the mean value of the segment and all six 

informative features respectively for each physiological 

signal and the classification accuracies are listed in Table 

II. We note that the classification accuracies of the HRV 

for the subject 3 were not computed since his ECG signal 

of the Section 1 was not registered in the experiment.  

TABLE II.  CLASSIFICATION ACCURACIES OF THE EXPERIMENT OF 

STROOP TEST FOR LOW STRESS VS. HIGH STRESS 

Inputs of SVM 
No. of subject 

1 2 3 4 

mean of EDA 100.0% 96.6% 100.0% 78.6% 

all 6 features of EDA 100.0% 100.0% 100.0% 100.0% 

mean of EMG 78.5% 46.6% 78.5% 64.3% 

all 6 features of EMG 100.0% 100.0% 100.0% 85.7% 

mean of HRV 85.7% 76.6% no 85.7% 

all 6 features of HRV 100.0% 100.0% no 100.0% 

 

Similarly, we trained the SVM classifier with the 

informative features generated from the segments of 

Section 2 and Section 3 to see the performance of 

recognition for the medium and high stress levels. The 

classification accuracies are listed in Table III. Based on 

the results of Table II and Table III, we can note that the 

proposed SVM classifier is quite efficient for the stress 

recognition given physiological signals and a better 

performance is able to be obtained for the discrimination 

between the period of low stress and the period of high 

stress. The improvement of the classification accuracy 

can be observed when all 6 informative features were 

used to train the SVM classifier compared with the case 

where the input of SVM is only the mean value of the 

segment. Besides, it can be found that generally, the EDA 

signal bring in a better recognition performance 

compared with other physiological signals. 

TABLE III.  CLASSIFICATION ACCURACIES OF THE EXPERIMENT OF 

STROOP TEST FOR MEDIUM STRESS VS. HIGH STRESS 

Inputs of SVM 
No. of subject 

1 2 3 4 

mean of EDA 97.0% 78.5% 79.4% 79.4% 

all 6 features of EDA 97.0% 92.8% 79.4% 100.0% 

mean of EMG 61.7% 64.3% 61.8% 55.9% 

all 6 features of EMG 94.1% 97.1% 97.0% 82.4% 

mean of HRV 67.6% 70.0% 73.0% 91.1% 

all 6 features of HRV 97% 100.0% 100.0% 97.0% 

 

Then, we discussed the ability of stress recognition 

when RT was taken into consideration. For each section 

of the experiment, the statistical indexes of the RTs of RT 

trials such as mean, median, std and CI were computed 

(see Table IV). As can be seen, except the subject 3, the 

CI can be well distinguished for Section 1 and Section 3 

which means that it is able to discriminate the period of 

low stress and the period of high stress with RT. However, 

the same results are not found when comparing the CI of 

Section 2 and the CI of Section 3. 

TABLE IV.  STATISTICAL INDEXES OF RT (EXPERIMENT OF STROOP 

TEST) 

subject 1 

 Section 1 Section 2 Section 3 

mean (ms) 225.39 273.90 248.43 

median (ms) 215.50 238.00 230.25 

std (ms) 34.57 101.01 79.01 

CI (ms) [218.42, 232.36] [253.75, 294.04] [232.75, 264.10] 

subject 2 

 Section 1 Section 2 Section 3 

mean (ms) 233.79 289.51 304.66 

median (ms) 233.50 257.50 262.25 

std (ms) 34.33 114.02 112.60 

CI (ms) [226.98, 240.60] [266.65, 312.37] [282.32, 327.00] 

subject 3 

 Section 1 Section 2 Section 3 

mean (ms) 236.30 237.19 231.95 

median (ms) 230.00 236.00 228.50 

std (ms) 28.69 30.28 32.00 

CI (ms) [230.60, 241.99] [231.18, 243.20] [225.60, 238.29] 

subject 4 

 Section 1 Section 2 Section 3 

mean (ms) 307.76 322.31 358.77 

median (ms) 280.25 283.25 345.25 

std (ms) 103.33 113.06 129.16 

CI (ms) [287.04, 328.48] [299.64, 344.98] [333.14, 384.40] 
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B. The Experiment of Acoustic Induction  

Similar to the discussion of the experiment of Stroop 

test, firstly, the performance of SVM classifier for the 

stress recognition given physiological signals was 

analyzed. Table V shows the classification accuracies of 

the SVM classifier to recognize two stress levels: low 

stress and high stress, where the informative features 

were generated from the segments of Section 1 and 

Section 3. The performance of the SVM classifier to 

recognize the medium stress and high stress levels was 

also analyzed where the features were generated from the 

segments of the Section 2 and Section 3 (see Table VI). 

The results of recognition show that our SVM classifier 

can recognize different stress levels elicited by acoustic 

induction based on the features derived from 

physiological signals. Classification accuracy can be 

improved when SVM classifier is trained with all 6 

informative features compared with training with the 

mean value of the segment. The same improvement is 

found in the experiment of Stroop test. However, 

contrasted with the experiment of Stroop test, the EDA 

signal does not bring in a better recognition performance 

than others physiological signals. 

TABLE V.  CLASSIFICATION ACCURACIES OF THE EXPERIMENT OF 

ACOUSTIC INDUCTION FOR LOW STRESS VS. HIGH STRESS  

Inputs of 
SVM 

No. of subject 

1 2 3 4 5 

mean of EDA 71.4% 85.7% 92.8% 64.3 % 57.1% 

all 6 features 

of EDA 
100.0% 85.7% 100.0% 85.7% 64.2% 

mean of EMG 100.0% 71.4% 92.8% 71.4% 78.5% 

all 6 features 

of EMG 
100.0% 100.0% 100.0% 71.4% 78.5% 

mean of HRV 92.8% 50.0% 85.7% 78.5% 100.0% 

all 6 features 
of HRV 

92.8% 83.3% 100.0% 78.5% 100.0% 

TABLE VI.  CLASSIFICATION ACCURACIES OF THE EXPERIMENT OF 

ACOUSTIC INDUCTION FOR MEDIUM STRESS VS. HIGH STRESS  

Inputs of 

SVM 

No. of subject 

1 2 3 4 5 

mean of EDA 78.6% 64.2% 42.8% 42.9 % 50.0% 

all 6 features 
of EDA 

92.8% 71.4% 100.0% 85.7% 78.5% 

mean of EMG 100.0% 100.0% 64.2% 35.7% 92.8% 

all 6 features 

of EMG 
100.0% 100.0% 92.8% 100.0% 92.8% 

mean of HRV 64.2% 100.0% 64.2% 85.7% 78.5% 

all 6 features 

of HRV 
78.5% 100.0% 85.7% 85.7% 78.5% 

 

Secondly, we analyzed the ability of stress recognition 

using RT. Table VII lists the statistical indexes of the RTs 

of RT trials for each section of the experiment. Among 

the five subjects, a good discrimination can be found 

between the CI of Section 1 and the CI of Section 3 for 

the subject 1, subject 4 and subject 5. For the other two 

subjects, even though the CI does not show a good 

discrimination, we can observe that the std of Section 3 is 

always greater than the std of Section 1. Besides, similar 

to the experiment of Stroop test, the CI of Section 2 can 

not be well distinguished from the CI of Section 3 for five 

subjects. 

TABLE VII.   STATISTICAL INDEXES OF RT (EXPERIMENT OF ACOUSTIC 

INDUCTION) 

subject 1 

 Section 1 Section 2 Section 3 

mean (ms) 255.67 307.42 329.72 

median (ms) 252.50 293.50 318.25 

std (ms) 37.39 77.04 81.88 

CI (ms) [248.21, 263.13] [291.98, 322.87] [313.31, 346.14] 

subject 2 

 Section 1 Section 2 Section 3 

mean (ms) 269.33 266.68 280.90 

median (ms) 262.25 257.00 257.50 

std (ms) 50.47 44.26 88.75 

CI (ms) [257.31, 279.34] [257.85, 275.51] [263.28, 298.51] 

subject 3 

 Section 1 Section 2 Section 3 

mean (ms) 248.09 255.13 252.14 

median (ms) 240.25 247.00 234.50 

std (ms) 33.86 37.70 50.16 

CI (ms) [241.23, 254.95] [247.49, 262.77] [242.19, 262.09] 

subject 4 

 Section 1 Section 2 Section 3 

mean (ms) 274.65 290.44 330.91 

median (ms) 252.50 270.75 299.00 

std (ms) 61.29 96.52 119.90 

CI (ms) [262.43, 286.88] [270.88, 309.99] [306.74, 355.07] 

subject 5 

 Section 1 Section 2 Section 3 

mean (ms) 235.88 271.69 279.70 

median (ms) 220.50 228.00 267.00 

std (ms) 61.08 138.12 98.39 

CI (ms) [223.70, 247.07] [244.28, 299.10] [260.18, 299.22] 

V. CONCLUSION 

In this paper, we discuss the feasibility of stress 

recognition from heterogeneous data. Not only 

physiological signals, but also reaction time is adopted to 

recognize different stress levels. The proposed SVM 

classifier obtains an overall high accuracy of recognition 

given physiological signals. Statistical analysis of 

reaction time shows a good discrimination between the 

period of low stress and the period of high stress. The 

results of our research reinforce the belief that it is likely 

to adopt the data from heterogeneous sources 

(physiological signals, cognitive reactions, etc.) for stress 

recognition. As our research is still in progress, in the 

future, we will discuss the feasibility of embedded system 

which would realize the complete data processing. 
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