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Abstract—In this paper we present and examine a general 

SVD-based mathematical framework for the manipulation 

and transformation of images for traditional operations 

such as image compression and super-resolution to 

computational photography applications, e.g., to achieve 

novel aesthetic effects for the rapidly growing social media 

demand for image filter apps. Examples are given to 

demonstrate how images can be perturbed from realistic 

toward fanciful or from airbrushed gloss toward gritty 

realism. A primary goal of this paper is to draw greater 

attention to algorithmic methods that go beyond the 

traditional parameters of conventional image manipulation. 
 

Index Terms—computational photography, singular value 

decomposition, SVD, orthogonal vector interpolation, OVI, 

image processing, image enhancement, image compression, 

image super-resolution 

 

I. INTRODUCTION 

In this paper we introduce Orthogonal Vector 

Interpolation (OVI) as a mathematical methodology for 

the “holistic” manipulation and transformation of images 

to achieve various aesthetic effects. This is a rapidly 

emerging topic of interest in social media driven by the 

growing demand for image filter apps, e.g., on Instagram 

and Snapchat. 

The structure of the paper is as follows: In Section 2 

we introduce the SVD-based OVI framework and give an 

example of its applicability to the traditional problems of 

image decimation and super-resolution. In Section 3 we 

demonstrate its more general applicability for creating 

novel aesthetic transformations. And Section 4 concludes 

with a brief discussion and summary. 

II. ORTHOGONAL VECTOR INTERPOLATION (OVI) 

For any m × n matrix M there exists a singular value 

decomposition (SVD) 

M = UDV
T
                                (1) 

where U is an m × k matrix with orthonormal columns, D 

is a k × k nonnegative diagonal matrix, and V is a k × n 

with orthonormal columns. The non-increasing set of 

ordered positive values 
k

i iiD   are referred to as the 

singular values of M, the columns of U and V are referred 
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to as the singular vectors of M, and the rows and columns 

are jointly referred to as the orthogonal vectors of M. 

The importance of the SVD is that it decomposes a 

matrix (e.g., an image) into a weighted sum of r =rank(M) 

rank-1 matrices T

i i iU V , 0 ≤ i ≤ r. In other words, it 

determines an k-dimensional orthogonal coordinate frame 

in which the content of the matrix can be expressed as a 

sum of k coordinate projections. Although the orientation 

of this coordinate frame is not unique, the weights 

1 … k  are invariant i.e., the amount of information 

associated with the different projections is an intrinsic 

property of the matrix. When the matrix represents 

intensity/color values for pixels of an image then the set 

of singular values represents a signature that is invariant 

with respect to a variety of natural image transformations, 

e.g., rotations, while the orthogonal left and right singular 

vectors encode the structural information that 

distinguishes a given image from all other images having 

the same signature. 

The attractive mathematical properties of the SVD 

have been exploited in a variety of image processing 

applications, including image compression [1], [2]. For 

example, SVD offers a natural method for distinguishing 

the most informative components of an image based on 

the relative magnitudes of the singular values. Keeping 

only the k largest singular vectors, along with their 

associated left and right singular vectors, a reduced data 

approximation of an image can be constructed [3]. 

Orthogonal Vector Interpolation (OVI) is motivated by 

the recognition that an operation applied to each column 

vector, Ui or Vi, of the SVD of an image matrix only 

affects image features in the projection associated with 

i , while interpolation of the rows creates recursive 

compositions of the projections. More generally, the 

distinguishing feature of the OVI methodology is that it 

operates on the orthogonal vectors of a given 

matrix/image, not just a subset of the singular values. 

For applications involving a need to alter the resolution 

of an image – scaling the horizontal or vertical resolution 

up or down – the OVI approach is to interpolate the 

singular vectors, i.e., the columns of U and V, from the 

SVD of a given m × n image matrix M to produce a p × q 

image P using the same matrix D of singular values, i.e., 

the same signature as the given image. The steps can be 

summarized as follows: 

1) Obtain the SVD of M as UDV
T
 = M 
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2) Construct a p-element interpolation of each 

column of U and a q-element interpolation of the 

columns of V using a chosen interpolation 

algorithm, e.g., cubic interpolation. 

3) Let UP and VP be the interpolated sets of singular 

vectors from the previous step and construct P as 

P= T

P PU DV  

4) Scale the transformed image to preserve a 

specified property of the original image, e.g., 

mean intensity. 

The above algorithm is defined generally to apply to 

the conversion of an image
1
 of a given resolution to one 

with an arbitrarily chosen resolution, e.g., a lower 

resolution for image decimation or higher for super-

resolution. Different vector interpolation algorithms will 

in general produce different results. For example, linear 

interpolation between consecutive elements will only 

produce a simple linear interpolation of the image. By 

contrast, a high-order polynomial interpolation will tend 

to produce complex structures within the generated detail 

of the interpolated image [4], [5]. 

Experiments reveal that OVI produces results that are 

comparable to widely-used decimation and image 

superresolution (ISR) methods. Bicubic weighted-average 

interpolation is the most widely used ISR method because 

it produces highly-consistent results across a wide 

spectrum of different image types despite its 

characteristic blurring of detail [6]. Comparisons of 

bicubic and OVI on the standard 512 × 512 Lena image 

in Fig. 1 and Fig. 2 show that OVI produces visibly less 

blurring than bicubic. 

 

 

                                                           
1 The algorithm can be applied separately to each channel of a color 

image.  

 
Figure 1. Top is the full Lena image. Middle is a bicubic 16x 

enlargement of the left-eye feature. Bottom is the 16x result obtained 

using the OVI method. 

 

 
Figure 2. Top is a bicubic 20x enlargement of a region in the feathers of 
the hat. Bottom is the 20x OVI result for the same region. (Both of the 

enlarged samples have been downscaled by approximately 50% to fit 
the confines of the page width.) 

Fig. 2 shows 20x enlargements of a small region of the 

feathers on the hat. Again, the OVI result seems to 

preserve visibly more detail/texture, i.e., less visible 

blurring than what is produced from bicubic interpolation. 

The differences between the two methods in the 

examples of Fig. 1 and Fig. 2 are clearly visible when 

viewed on a computer screen at full size, but this level of 

improvement of OVI over bicubic may not be practically 

significant for most applications
2
. 

 

                                                           
2 Many other experiments have been performed using different vector 
interpolation methods; transforming interpolated vectors to the nearest 

set of orthogonal vectors (which also involves use of the SVD); and 

interpolating the rows of U and V. As is true for many of the more 
sophisticated ISR algorithms described in the literature, the results 

obtained with these variants of the basic OVI interpolation algorithm 
were widely varying and motivated consideration of aesthetic issues 

discussed in the next section. 
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While OVI’s exploitation of global structural 

properties of images does not yield significant benefit for 

purposes of ISR, extensive experimentation in that 

domain has suggested a potentially promising alternative 

application: aesthetically-motivated image 

transformations. 

III. AESTHETICALLY-MOTIVATED IMAGE 

TRANSFORMATIONS (AMITS) 

Online mobile photo-sharing and social networking 

services, such as Instagram, have created a large demand 

for filters that are applied to give images various kinds 

specialized aesthetic qualities. A popular example is the 

use of a sepia-tone transformation to give an image the 

appearance of a photograph from the early 20th Century. 

Other examples replicate the qualities of halftone printing, 

hand-drawn line sketches, cartoons, and other “looks” 

that are based on existing or vintage media products. 

Another category of filter design attempts to provide 

completely novel transformations that are not based on 

any pre-existing set of characteristics. These filters are 

often intended to attract attention specifically because the 

transformed results do not resemble a familiar aesthetic. 

A major practical challenge to the creation of image 

filters is the limited variety of image properties that can 

be easily and efficiently manipulated using standard 

image processing tools. These properties include color 

(e.g., transforming to black-and-white or sepia-tone) and 

physical distortion of the image surface, e.g., to replicate 

the appearance of curled corners. 

The OVI approach provides a completely different set 

of image parameters that can be altered to potentially 

capture a defined aesthetic with better fidelity or to create 

a completely new aesthetic. More specifically, the SVD 

of the image (1) provides parameters in the form of the 

rows and columns of U and V and the singular values on 

the diagonal of D. For example, interpolating the rows of 

U and V – instead of just the columns as was done for 

OVI interpolation in the previous section –  and 

commensurately interpolating the singular values, i.e., so 

that they are dimensionally consistent (conformant) for 

multiplication, can produce a wide variety of effects. 

Computationally, SVD computation can be expensive, 

but there are more efficient approximations available [7], 

[8]. Fig. 3 provides an example of how OVI can 

significantly alter the structural content of an image. 

 

 
Figure 3. The two images depict an image of a lion (Top) and the result 

of applying an OVI transformation (Bottom) which includes the 

interpolation of the rows of U and V. 

As can be seen in the lion example, interpolation of the 

row vectors of U and V has the effect of replicating 

image structure in a way that is superficially similar to 

ghosting artifacts in double-exposure images. What is 

critical to notice, however, is that there is no obvious 

ghost replication of the lion’s eye, nose, and mouth. What 

appears to have been generated by the transformation is 

additional synthetic detail consistent with the dominant 

feature structure in the image: the lion’s fur. 

A closer examination of the algorithm reveals that the 

interpolation of row vectors and their associated singular 

values does in fact have the effect of interpolating 

information in the transformed space of the singular 

values. Thus, it should not be surprising to see additional 

detail in the resulting transformed image. At present, 

though, any interpretation of the precise nature of such 

synthetic detail is purely speculative. 

Fig. 4 shows a transformation applied to Lena that is 

significantly less radical than that of Fig. 3. 

The transformation of Fig. 4 reveals a significant 

incorporation of new detail, e.g., beyond what is available 

from an increase in contrast. This can be seen in the 

mirror, where in addition to artificial texture some out-of-

focus features have become de-blurred by the addition of 

synthetic detail. The vertical beam above the brim of the 

hat also appears de-blurred because of added detail. In 

fact, the added detail gives the appearance that the right 

edge of the vertical beam crosses in front of the diagonal 

beam, which is not the case in the original image. 

Moreover, the beam is also 25% wider. This is so striking 

that it is displayed more closely in Fig. 5. 
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Figure 4. Top is the original Lena image and Bottom is the result 

obtained from an OVI transformation (cropped for emphasis of detail). 

Synthetic texture is clearly visible in the transformed image that is not 
present in the original. 

 

 
Figure 5. Top is a close-up of the beams in the upper-right corner of the 

original Lena image. Bottom is the same region after the OVI 
transformation. The vertical beam now appears lengthened and widened 

and seems to overlap the diagonal beam. 

At first glance the extension in length of the vertical 

beam in Fig. 5 seems most surprising because it changes 

the apparent relative depth of the diagonal beam. 

However, the extension in width is arguably more 

remarkable because it is somehow achieved without 

altering the foreground boundary of the hat. A possible 

explanation is that these features correspond to 

information encoded separately in different singular 

values/vectors in such a way that they are transformed 

independently. In other words, vertically-oriented light-

colored features may be more dominant in the image and 

are jointly enhanced, thus causing the vertical beam (and 

its shadow) to become merged into a single vertical 

feature. 

Fig. 6 gives an example of an extreme OVI 

transformation applied to a color image. 

 

It should be noted that OVI transformations may also 

prove useful as an intermediate step of other image 

processing algorithms. For example, the OVI-generated 

intensities of Lena in Fig. 4 can be merged with the 

softfocus color image of Lena (from Fig. 6) to produce a 

more “natural-looking” result as depicted in Fig. 7. 

Fig. 7 provides an example of how OVI can be applied 

to assist with commonly-performed image processing 

operations. In this case OVI provides texture and detail 

that does not exist in the original to achieve something 

resembling the look of a raw original photograph. It is 

straightforward to verify that standard processing tools 

cannot be applied to the original Lena image to replicate 

the OVI result. 

 

 
Figure 6. Top is the original Lena image in color and Bottom is an OVI 
transformation of the image. The result shows how texture and colors 

can be transformed in non-local ways. For example, the left eye is 

purple and the right eye is green whereas both are brown in the original 

image. 

 
 

50

Journal of Image and Graphics, Vol. 5, No. 2, December 2017

©2017 Journal of Image and Graphics



 
Figure 7. Top is the original Lena image in color and Bottom is an 

image obtained by merging it with the OVI greyscale result from Fig. 6. 
The result is an image with features consistent with a raw photograph 

prior to the application of air-brushing and other polishing. 

IV. DISCUSSION 

In this paper we have defined Orthogonal Vector 

Interpolation (OVI) for aesthetically-motivated image 

transformation (AMIT). Results suggest that OVI has 

very significant promise as a tool for creating 

aesthetically interesting image transformations (e.g., filter 

apps) for image sharing on social media. Several 

examples have been presented but there is clearly need 

for more work to characterize how specific vector 

operations performed on the rows and columns of the 

orthogonal matrices (and the diagonal vector of singular 

values) qualitatively affect the resulting transformed 

image. 

In summary, the novel feature of the OVI approach is 

that it treats all elements of the singular-value 

decomposition of an image as parameters for 

transforming that image. ISR and AMIT applications 

have been examined, but evidence (e.g., from Fig. 7) 

suggests potential uses in other areas of image processing 

and computational photography. 
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