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Abstract—Most Image Quality Assessment (IQA) methods 

measure the overall image quality including all visible and 

non-visible errors. They often do not correlate well with 

visual assessment particularly when non-visible errors are 

large in proportion. In particular, color artifacts are a 

crucial factor in visual assessment, but they might only have 

a small contribution to the total errors as they are often 

minorities. Hence, it is desirable to specifically measure 

color artifacts alone, excluding other errors. One 

application for such measurement is that color artifacts are 

the main visible errors produced by Color Filter Array 

(CFA) demosaicking algorithms. By formalizing the 

perception that color artifacts manifest as distinct visual 

color variation from their original and surrounding colors, a 

novel IQA method, namely Normalized Color Variation 

(NCV), is proposed specifically for locating and quantifying 

color artifacts. It gives a NCV index which is a measure of 

the degree of color artifacts. It has been shown that our 

proposed NCV method based on the formalization of the 

perception of color artifacts correlated well with our visual 

perception. Its NCV index has proven to be a good indicator 

of the degree of color artifacts and is virtually independent 

of other errors. 
 

Index Terms—color artifacts, Normalized Color Variation 

(NCV), image quality assessment, hue assumption, CFA 

demosaicking 

 

I. INTRODUCTION 

Most Image Quality Assessment (IQA) methods are 

based on the overall errors between a processed image 

and its original. Common image quality assessment 

methods including Color Peak Signal - to - Noise Ratio 

(CPSNR) [1], and Gradient Magnitude Similarity 

Deviation (GMSD) [2] will measure the overall errors in 

a processed image, but are incapable of distinguishing 

different types of errors such as interpolation errors, color 

artifacts, blurring, and motion artifacts. In this paper, we 

proposed a novel Normalized Color Variation (NCV) 

method with a NCV index for image quality assessment 

to identify and measure errors due to color artifacts 

specifically. 

Color artifacts, including false color [3]-[7], zipper 

effect [6]-[9] and color bleeding [10]-[13], are errors 

produced by various color image processing techniques 

such as Color Filter Array (CFA) demosaicking [6]-[8], 

                                                           
Manuscript received February 9, 2018; revised June 21, 2018. 

[14]-[30] and image compression [31], but not caused by 

blurring in general for example. In this paper, our 

proposed method can detect and quantify color artifacts 

while remaining unaffected by other errors. While there 

has not been any formal definition of color artifacts [3]-

[31], the general perception of color artifacts are pixels 

with distinct visual color variation from their original and 

neighboring color values. To conceptualize this idea, 

when a processed pixel with a color variation between its 

original is larger than the color variation between the 

original and its surrounding colors, that processed color is 

considered as distinct and that pixel is classified as a 

color artifact. In other words, pixels with errors due to 

blurring will not be classified as color artifacts as they do 

not have distinct color variation from their original and 

neighboring color pixels. 

The remainder of the paper is organized as follows. 

Section 2 introduces our proposed NCV method and its 

index. Section 3 presents the quantitative and visual 

assessment results with our conclusion in Section 4. 

II. PROPOSED NCV METHOD 

Since the general perception of a color artifact pixel is 

determined by its color variation from its original and 

surrounding colors, we propose to measure this color 

variation by measuring the change in hue. For CFA 

demosaicking, the common CFA is the Bayer pattern [32] 

in the RGB color space. Hence it is desirable to detect 

color artifacts in the same color space. According to the 

hue assumption, the difference between the color values 

of two adjacent pixels is a constant [8], [18], [33]. Any 

change in that constant value in the corresponding region 

in the processed image is a reflection of the change in hue 

in that region. Hence, the change in hue can be quantified 

by the change of this constant. Therefore, if the processed 

and original pixels have a similar color, the following is 

true for the red and green pixels at the same pixel location 

(i,j) according to the hue assumption [8]: 
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where GP, RP , and GO, RO, are the green and red pixels in 

the processed and original images respectively. As a 

result, the following equation is implied: 

,,,,

O

ji

P

ji

O

ji

P

ji RRGG                      (2) 

Journal of Image and Graphics, Vol. 6, No. 1, June 2018

48©2018 Journal of Image and Graphics
doi: 10.18178/joig.6.1.48-53

mailto:omar.shakar@flinders.edu.au


Let αi,j be the absolute difference of a color value 

between the processed and the original pixels in (2), 

therefore 
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Similarly, for the blue pixels, we define: 
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For the same reason,  
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Based on the hue assumption, a constant hue implies 

that G

ji ,
 , R

ji ,
 , B

ji ,
  are approximately equal. Hence any 

fluctuations among those values implies a change in hue. 

Their standard deviation is a measure of the degree of 

fluctuation, and therefore it is a good indicator of the 

degree of change in hue. As a result, we define the color 

variation, 
ji ,

, as the standard deviation among these 

three color differences as follows: 
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where i=1,2…,M, j=1,2,…,N, M and N are the 

dimensions of the image, and 
ji ,
 is the mean given by:  
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Since the general perception of a color artifact pixel is 

a pixel with a distinct color variation between itself and 

its original, in order to formalize this idea, the amount of 

color variation to be considered as distinct is quantified 

by a threshold for the classification of color artifacts. 

When the color variation is larger than that threshold, the 

corresponding pixel is classified as a color artifact. The 

maximum color variation within a region in the original 

image is used as a reference for the allowable color 

variation between a processed pixel and its original in 

that region. The threshold for classification of color 

artifacts is a relative quantity based on this maximum 

color variation within that region.  

To determine the threshold value for the classification 

of color artifacts for the pixel at (i,j), let S be the shell 

which is a set of color pixels surrounding it in the original 

image [34], [35]. We define S
R
, S

G
, S

B
 be a shell for the 

red, green, and blue color planes respectively as follows: 

            (8) 

            (9) 

           (10) 

For each of the three shells of the original image, eight 

absolute differences, βm,n, are determined between the 

pixel at (i,j) and each of the eight pixels in the shell as 

follows: 
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where (m,n) ∈ {(i−1,j−1), (i−1,j), (i−1,j+1), (i,j−1), (i,j+1), 

(i+1,j−1), (i+1,j), (i+1,j+1)}. 

Similar to (6), the color variation,  nm, , in the original 

image is given as follows: 
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where  nm,  is the mean value of the three color absolute 

differences given by the following: 
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The threshold value (T) is therefore defined as the 

maximum of these eight color variations plus a 

determined tolerance (δ) as follows: 

}max{ ,   nmT                        (14) 

where (m,n) ∈ {(i−1,j−1), (i−1,j), (i−1,j+1), (i,j−1), (i,j+1), 

(i+1,j−1), (i+1,j), (i+1,j+1)}. 

For 24-bit RGB color images, each color is quantized 

to 8-bit or 256 levels. As the intensity range is normalized 

to [0, 1], each quantization step size, 𝑞, is equal to 1/256. 

For any color variation to be visible, the absolute color 

differences for each color plane must be at least equal to 

one quantization step. To accommodate for the maximum 

possible quantization errors of the difference between two 

quantized intensity values, the tolerance to guarantee 

these two discrete values are distinct is therefore equal to 

two quantization steps as follows: 

1081.72 3 q                       (15) 

Let 𝐿 be a set which contains the locations of color 

artifact pixels in the processed image, 
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and |𝐿| be the cardinal number of the set 𝐿. The 

percentage, p, of the total area which contains color 

artifact pixels in the processed image is given by: 

%100



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L
p                       (17) 

where 𝑀 and 𝑁 are the dimensions of the image. This 

percentage, 𝑝, can serve as a supplementary index to 

quantify the size of total affected areas by color artifacts. 

The proposed Normalized Color Variation (NCV) 

index is defined by the following: 
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where 𝑀 and 𝑁 are the dimensions of the image. 

The NCV index is the total color variation of all color 

artifact pixels identified in the whole processed image 

and normalized by the image size. It is therefore a 

measure of the degree of color artifacts produced in that 

image. The NCV index is an effective and suitable tool 

for image quality assessment for the comparison of color 

artifacts produced by various algorithms, whereby an 

algorithm producing less color artifacts will give a lower 

NCV value, and a zero NCV value implies no color 

artifacts detected. Fig. 1 gives the flowchart of our 

proposed NCV method. 

 

Figure 1.  Flowchart of the proposed NCV method. 

III. RESULTS 

Various types of errors, including color artifacts, 

blurring and compression, were used to evaluate the 

performance of our proposed NCV method quantitatively 

and visually and to illustrate its independence of errors 

other than color artifacts. For generating CFA 

demosaicking errors, five algorithms, namely EIG [36], 

WM-HOI [18], RI [26], MDWI [19] and Bilinear, 

producing various degrees of color artifacts were used. 

For generating other errors, Gaussian and motion blur, 

and JPEG2000 [37]-[40] were used. Gaussian blur was 

simulated using a 5×5 filter window with a standard 

deviation of unity, and motion blur, which approximates 

the linear motion of a camera, was simulated using the 

same window size. 

TABLE I.  IMAGE QUALITY ASSESSMENT: CPSNR [1], GMSD [2], ZE 

[8] AND PROPOSED NCV FOR KODAK DATASET 

 CPSNR (dB) GMSD (×10−2) ZE (%) NCV (×10−3) 

Blurring 

Gaussian 
Motion 

29.52 
28.89 

4.413 
5.814 

6.45 
10.07 

< 10−7 
< 10−7 

Demosaicking 

EIG [36] 

WM-HOI [18] 

RI [26] 

MDWI [19] 

Bilinear 

40.37 

39.35 

38.99 

37.04 

30.25 

1.249 

1.578 

1.378 

1.680 

4.483 

3.68 

7.12 

7.81 

12.06 

40.18 

0.281 

0.845 

0.981 

1.606 

10.362 

JPEG2000 with different compression  ratios 

100% 

25% 
10% 

1% 

50.43 

49.85 
42.16 

29.20 

0.077 

0.090 
0.712 

8.692 

0.04 

0.09 
3.50 

13.88 

0 

0 
< 10−7 

2.359 

TABLE II.  IMAGE QUALITY ASSESSMENT: CPSNR [1], GMSD [2], ZE 

[8] AND PROPOSED NCV FOR IMAX DATASET 

 CPSNR (dB) GMSD (×10−2) ZE (%) NCV(×10−3) 

Blurring 

Gaussian 

Motion 

31.08 

29.44 

3.498 

5.628 

12.68 

16.37 

< 10−7 

< 10−7 

Demosaicking 

RI [26] 

MDWI [19] 

WM-HOI [18] 
EIG [36] 

Bilinear 

36.82 

36.13 

35.04 
34.40 

32.34 

1.472 

2.061 

2.500 
3.753 

2.694 

12.00 

11.74 

12.42 
12.01 

28.52 

0.251 

0.373 

0.344 
0.740 

2.804 

JPEG2000 with different compression  ratios 

100% 
25% 

10% 
1% 

49.95 
45.98 

39.18 
28.29 

0.078 
0.196 

1.100 
10.215 

0.15 
3.24 

12.84 
21.79 

0 
0 

< 10−7 
2.458 

 

To quantitatively evaluate the sensitivity of various 

IQA tools and our proposed NCV method to the degree 

of color artifacts, Color Peak Signal-to-Noise Ratio 

(CPSNR) [1], Gradient Magnitude Similarity Deviation 

(GMSD) [2] and Zipper Effect (ZE) [8] were used with 

all the 24 images from the Kodak dataset [41] and all the 

18 images from the IMAX dataset [17]. CPSNR measures 

the total errors in the processed image, GMSD measures 

image distortion and can predict accurately perceptual 

image quality in the processed image, and ZE is a 

measure of one form of color artifacts consisting of on–

off patterns created in saturated color regions. Tables I 

and II show the average numerical results for the different 

processing techniques using all the 42 test images from 

the Kodak and IMAX datasets respectively. From Tables 

I and II, our proposed NCV index gives negligible values 

when minimal color artifacts were produced by the 
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blurring methods, because blurring does not generally 

produce color artifacts, while the other IQA methods still 

produce considerable values including ZE which is 

intended to detect only one form of color artifacts. Hence, 

those IQA methods do not give a true reflection of the 

actual degree of color artifacts. Moreover, for JPEG2000 

with a compression ratio of 100% for instance, the 

decompressed image is visually indistinguishable from 

the original image with no color artifacts, but those IQA 

methods still produced some values reflecting the 

presence of errors, while our NCV index values are 

negligible showing no color artifacts detected. From 

Tables I and II, it has been shown that our proposed NCV 

method is able to produce a better correlated index in 

quantifying color artifacts than the other IQA methods. 

Our proposed NCV index will also find applications to 

assess color accuracy in color image processing. 

To examine the effectiveness of our proposed method 

in locating color artifacts for visual assessment, one 

image from each of the Kodak [41] and IMAX [17] 

datasets as shown in Fig. 2(a) and (b) respectively were 

used. The 2
nd

 and 4
th
 rows of Fig. 2(c)-(g) give the 

outputs of various demosaicking algorithms [36], [18], 

[26], [19] and those of Fig. 2(h)-(i) give the Gaussian and 

motion blurred images respectively. To generate 

compression errors, Fig. 2(a) and (b) were compressed by 

JPEG2000 with a compression ratio of 1% [40]. Their 

decompressed images are shown in 2
nd

 and 4
th

 rows of 

Fig. 2(j). 

 

Figure 2.  Cropped regions of the original image from (a) Kodak dataset and (b) IMAX dataset, and the processed images (c) to (j) using EIG [36], 
WM-HOI [18], RI [26], MDWI [19], Bilinear, Gaussian blur filter, motion blur filter and JPEG2000 [37] respectively. 

The color artifact pixels identified in the corresponding 

2
nd

 and 4
th

 row images by our method are shown in the 3
rd

 

and 5
th

 rows of Fig. 2. The white picket fence region with 

vertical edges in the 2
nd

 row and the white string net with 

diagonal and curved edges in the 4
th

 row are well known 

to cause color artifacts by demosaicking algorithms. The 

color artifacts, from (c) to (g), which manifest as false 

color pixels are quite distinguishable from the white 

picket fence and the white string net, and visually 

correlate well with the identified color artifacts in the 3
rd

 

and 5
th

 rows. For the images in the (h) to (i) columns, it is 

visually clear that minimal color artifacts were produced 

by the blurring algorithms and our NCV indices gave 

negligible values accordingly, even though another error 

due to blurring in the processed images was substantial. 

For the images in the (j) column, some degree of color 

bleeding artifacts were produced by JPEG2000, and these 

are reflected in the NCV indices as shown. By comparing 

the images in the 2
nd

 and 4
th

 rows to the corresponding 

color artifacts identified in the 3
rd

 and 5
th

 rows, it is 

evident that our proposed method can locate and identify 

color artifacts specifically. The NCV indices and p values 

shown correlate well with the degree of color artifacts in 

the processed images. In general, the NCV index and 𝑝 

both increase with the degree of color artifacts. However, 

there are cases when the NCV index increases as the 𝑝 

value decreases and vice versa as shown in the Kodak 

image of Fig. 2(d) and Fig. 2(j). In Fig. 2(d), the NCV 

index is larger than that of Fig. 2(j) while the p value is 

smaller. The reason is that even though the total affected 
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area by color artifacts in Fig. 2(d) is smaller, its total 

color variation is larger, and hence the color artifacts in 

Fig. 2(d) are more noticeable. 

Even though there is no formal definition of color 

artifacts in the literature with no ground truth for 

comparison, our experimental results have confirmed that 

our formalization of the definition of color artifacts based 

on the maximum color variation in the original image 

correlates very well with the perception of color artifacts. 

Hence, our proposed NCV method is suitable for the 

evaluation of the degree of color artifacts which are the 

main visible errors produced by CFA demosaicking 

algorithms. 

IV. CONCLUSION 

By formalizing the general perception of color artifacts, 

a novel Normalized Color Variation (NCV) index has been 

proposed for image quality assessment to quantify color 

artifacts for CFA demosaicking. It is based on the 

measurement of color variation corresponding to the 

change in hue derived from the hue assumption in the 

same RGB color space as the CFA Bayer pattern. Using a 

threshold determined from the original color variation in 

the original image to distinguish color artifacts from 

original colors, color artifact pixels can now be 

effectively identified and located. It has been shown by 

experimental results that our proposed NCV IQA method 

can effectively quantify the degree of color artifacts with 

virtually no influence by other errors. It has been proven 

to be a very effective IQA method for comparing 

different CFA demosaicking algorithms in producing 

various degrees of color artifacts. 
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