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Abstract—A novel method to classify micro-cracks in 

Photoluminescence (PL) images of polycrystalline solar cells 

is proposed. Micro-cracks in PL images are difficult 

distinguish as they’re easily confused with noises that are 

present which may share the same size and shape features. 

Instead of relying on shape analysis to classify micro-cracks, 

the proposed method takes advantage of the patterns that 

are present at the end points of micro-cracks. Textural 

features are extracted via grey level co-occurrence matrix at 

the end points and then used as feature vectors in a SVM 

classifier. The proposed method is compared against 

existing shape analysis method and a preliminary 

experimental result has shown a significant improvement in 

sensitivity, specificity and accuracy.  

 

Index Terms—solar cell, photoluminescence, micro-crack 

 

I. INTRODUCTION 

Micro-crack is a type of defect that may be present in 

crystalline silicon solar cells which can be completely 

hidden and invisible to naked eyes. The presence of 

micro-cracks in solar cells not only compromises the 

structural integrity of the product but also poses a safety 

risk where solar cells containing micro-cracks may 

produce ‘hot-spots’ in solar modules which can 

potentially be a fire hazard. On average, 5 – 10% of fully 

completed solar cells coming out of a production line 

contain some form of micro-crack and this represents an 

ongoing problem to solar cell manufacturers. 

As a quality control process, an automated system that 

is capable of inspecting each and every solar cell coming 

out of a production line would be beneficial to 

manufactures. Several specialised techniques and 

methods currently exist to inspect fully completed 

crystalline silicon solar cells for micro-cracks. These 

include the Light Beam Induced Current (LBIC) [1], the 

Electron Beam Induced Current (EBIC) [2], the 

Electroluminescence (EL) [3] and the Photoluminescence 

(PL) [4] method. A good review on the various methods 

has been published elsewhere [5]. It would appear that 
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the PL method is potentially suitable to be used in an in-

line inspection without the need of extensive 

modifications to existing production lines. 

Although the PL method is able to meet the inspection 

speed and other practical demands of an in-line 

inspection, it also poses several challenges in image 

processing, especially for micro-crack detection for 

polycrystalline solar cells in particular. An example of a 

PL image of a polycrystalline solar cell is shown in Fig. 1. 

The base solar wafer of a polycrystalline solar cell is 

made from multiple silicon crystals. Each silicon crystal 

will emit slightly different PL intensities and therefore 

would produce a random heterogeneous background due 

to the multiple crystals in the solar cell. Furthermore, the 

grain boundaries produce noises in PL images which 

consist of random curvilinear structures that are very 

similar to micro-cracks, especially when compared 

against shorter examples. 

 

Figure 1.  PL image of a polycrystalline silicon solar cell containing a 
micro-crack originating from the left edge. 

Several studies [6], [7] has attempted to segment 

micro-cracks via shape analysis techniques. However, 

based on our observation, it would appear that in 

polycrystalline solar cells, micro-cracks cannot be 

reliably distinguished based on shape analysis alone as 

the micro-cracks can also exhibit very similar shape 

features with the surrounding noises. Furthermore, they 
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usually occupy the same gray scale values as noises and 

this further limits the ability of the previously proposed 

techniques. 

In this study, we propose a novel technique using 

localised texture analysis on each curvilinear structure 

that can be extracted from a PL image. Instead of 

extracting shape features of the segmented structure, the 

textural features and its immediate surrounding areas are 

used for classification. Classification is then performed 

using Support Vector Machines (SVM) based on the 

extracted textural features. 

II. METHODOLOGY 

A. Hardware Overview 

A PL imaging system consists of an excitation light 

together with a camera with appropriate lens and optical 

filters. Fig. 2 shows a layout of a PL imaging system for 

crystalline silicon solar cells where a camera is placed 

directly above the inspected sample. The solar cell 

sample is transported into the field of view of the camera 

with the sunny side (the side of the solar cell which faces 

the sun) facing the camera either by a belted conveyor or 

a walking beam, both which are common in solar cell 

production lines. 

 

Figure 2.  Schematic layout of an in-line PL system showing important 
elements. 

A monochromatic light source with wavelengths 

shorter than the PL emission spectrum is used as the 

excitation light. The reflected light from the surface of 

the sample would be blocked by a long pass filter 

allowing only the PL emission to be captured by the 

camera. 

The acquired PL image from the camera is then 

processed by software to identify and segment defects if 

present. PL signals are relatively weak compared to 

ambient light and are prone to interference from external 

light sources. To minimise exposure from external light 

sources, the entire PL imaging set-up would be enclosed 

in a dark box. A detailed design for a practical in-line PL 

imaging set-up was proposed in our previous study [8]. 

B. Curvilinear Structure Extraction 

Micro-cracks in PL images of solar cells consist of 

curvilinear structures. Therefore, all curvilinear structures 

that are present in a PL image are extracted as potential 

micro-crack candidates. A differential geometric 

approach to extract the curvilinear structures as proposed 

by Steger [9] was used. Fig. 3 shows the result of the 

extraction of the curvilinear structures from the original 

image shown in Fig. 1. It should be noted that the bus 

bars of the solar cell and the printed grid like patterns in 

the PL image was masked out prior to the curvilinear 

structure extraction and therefore do not form part of the 

extracted image. 

 

Figure 3.  Extracted curvilinear structures of the original image as 
shown in Fig. 1. 

C. Region of Interest 

Once the curvilinear structures are extracted, a square 

shaped Region of Interest (ROI) is created at both ends of 

the extracted structures. Fig. 4 illustrates the position of 

the ROIs at the end points of an extracted region. The 

ROIs are created at these positions as we have found that 

the textural patterns at the end points of each curvilinear 

structure in PL images would be able to provide the best 

distinction between micro-crack and noises. From our 

observation, micro-cracks can be classified into 3 distinct 

types, where their end points can be used to distinguish 

them. They are the edge cracks, bus bar cracks and the 

‘toolmark’ cracks.  

 

Figure 4.  Illustrated example of the position of the ROIs at the end 
points of an extracted curvilinear structure. 

Edge cracks are defined as micro-cracks that originate 

from the edges of a solar cell which are usually caused by 

an impact to the edges and would sometimes exhibit a 

visible chip. Examples of edge cracks are shown in Fig. 5 

Edge cracks when observed from the end point ROI 

closest to the edge of a solar cell will exhibit a distinct 

feature of a sharp line against a background which 

consists of a part of the solar cell and also a part of the 

background. The basic model of an edge crack is shown 

in Fig. 6. 
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Figure 5.  Examples of edge crack at the bottom edge (a), left edge (b) 
and the top edge (c) of solar cells under PL. 

 

Figure 6.  Examples of edge crack basic models (a), left edge (b) and 
the top edge (c) of solar cells. 

Bus bar cracks are defined as micro-cracks that 

originate or cross the bus bar area of a solar cell. These 

are usually caused by an impact to the bus bar area by a 

probing tool, i.e. an IV tester or a hotspot tester. 

Examples of bus bar cracks are shown in Fig. 7. Bus bar 

cracks when observed in the ROI at the intersection point 

with a bus bar will exhibit a cross like feature which 

contains part of the crack along with part of a bus bar. 

The basic model of a bus bar crack is shown in Fig. 8. 

‘Toolmark’ cracks describes micro-cracks that can 

occur in any location on a solar cell that would exhibit 

multiple crack lines that resemble a star or the letter ‘X’, 

‘Y’, or ‘T’ caused by a sharp impact on the solar cell. 

Examples of ‘toolmark’ cracks are shown in Fig. 9. When 

observed at the intersection point of origin, the ROI will 

exhibit a cross like feature with multiple crack lines that 

can be traced back to a single point of origin. The basic 

model of a ‘toolmark’ crack is shown in Fig. 10. 

 

Figure 7.  Examples of cracks intersecting the bus bar of solar cells 
under PL. 

 

Figure 8.  Examples of basic models of cracks.  

 

Figure 9.  Examples of ‘toolmark’ cracks on solar cells under PL. 

 

Figure 10.  Examples of basic models of ‘toolmark’ cracks on solar cells. 

D. Texture Analysis 

To distinguish micro-crack curvilinear structures 

against noises in each ROI, each basic model of a crack 

type has to be extracted. Methods such a pattern matching 

of each distinct micro-crack types has been previously 

proposed to be used to classify intact and micro-cracked 

solar cells. However, based on our observation, pattern 

matching cannot be reliably used as the variation of 

noises and cracks vary too much which makes basic 

pattern matching rather challenging. 

Instead of an attempt to extract shapes for pattern 

matching, a statistical approach based on texture is 

proposed. Based on our observation, due to the crack line 

characteristics along with the distinct immediate 

surrounding background features at the end point and 

intersection points of the 3 micro-crack types, it is useful 

to use a statistical approach such as the grey level co-

occurrence matrix (GLCM) to provide textural 

characteristic information about the relative position of 

neighbouring pixels.  

Haralick [10] proposed 14 statistical features that can 

be extracted from GLCM. In this study, 4 features of 

GLCM are used, they are; energy, correlation, local 

homogeneity and contrast. These 4 GLCM features were 

chosen as they represent the best features to be used to 

distinguish the different crack types and noises. They are 

calculated as follows:  
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where 
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It should be noted that the textural features calculated 

in this study is the mean of the four different directions of 

GLCM at 0°, 90°, 45°and 135°.  

E. Classification 

The type of micro-cracks to be identified is first 

determined by the location and feature of the ROI. ROIs 

which are in close proximity to the edges of the solar cell 

are used to identify edge cracks, while ROIs which 

intersects with the bus bar are used to identify bus bar 

cracks. In situations where multiple ROIs intersect each 

other, these ROIs are then used to identify ‘toolmark’ 

cracks where the crack intersections would create 

multiple overlapping ROIs.  

The textural features extracted from each ROIs is then 

used for binary classification of cracks and non-cracks 

using standard SVM. In total, 3 separate SVM classifiers 

are used, each used to classify each type of micro-cracks.  

Images are processed using a computer equipped with 

an Intel Core i3-3220 Processor (3M Cache, 3.30 GHz), 

4GB of RAM. On average, classification results can be 

obtained within 300 ms after image acquisition. This 

would mean that the entire cycle time to inspect a single 

solar cells sample is well within 1000 ms which is 

appropriate for an in-line application. 

III. EXPERIMENTAL RESULTS 

To evaluate the classification capability of the 

proposed method against our existing shape analysis 

method [11], a dataset as shown in Table I was used. The 

polycrystalline solar cell samples in the dataset consist of 

randomly selected pieces directly off a production line to 

mirror an actual production run. Training of both methods 

was conducted using 50 pieces of defective samples 

along with 200 pieces of intact samples contained within 

the dataset. 

TABLE I.  DATASET CONTAINING DEFECTIVE AND INTACT SAMPLES 

OF POLYCRYSTALLINE SOLAR CELLS 

Total number of samples 921 

Number of defective samples 231 

Number of intact samples 690 

Defective and intact samples were identified by 

examination of the acquired PL images by an experienced 

human observer. A physical stress test was later 

conducted on the samples and retested using the PL 

imaging system to observe any event of elongation of 

potential micro-crack lines to confirm the presence of 

actual micro-cracks.  

The classification performance is assessed using 

several commonly used quantitative measures, namely 

sensitivity, specificity and accuracy. These measures are 

based on the calculation of true positive TP, true negative 

TN, false positive FP and false negative FN. 
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The classification results are summarised in Table II. It 

can be observed that the proposed method yields a 

significant improvement to the regular shape analysis 

method with good sensitivity, specificity and accuracy. 

TABLE II.  CLASSIFICATION RESULTS OF THE TEST DATA SET 

Method Sensitivity Specificity Accuracy 

Texture Analysis 0.979 0.896 0.952 

Shape Analysis 0.799 0.452 0.539 

 

It was observed that the system tends to over-reject 

based on specificity figures. The over-rejected samples 

was further re-examined by a physical examination by the 

means of a stress test. It was found that some samples 

which have passed the physical stress tests contain certain 

features that are indistinguishable with actual micro-

cracked samples even to an experienced human observer 

in PL images. Examples of such samples are shown in 

Fig. 11 and a comparison with actual verified micro-

cracked samples is shown in Fig. 12. 

 

Figure 11.  Examples of intact solar cells exhibiting features which are 
indistinguishable from micro-cracks samples. 

 

Figure 12.  Examples of actual verified micro-cracked samples. 
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Most of these micro-crack like lines under PL was later 

found to be scratches on the solar cell's surface due to 

handling. Although scratches are not desirable, they 

should not be misclassified as micro-cracks. The 

similarity with micro-crack still poses a challenge not 

only in the classification but also the selection of images 

used for training. 

It should be noted that the classification results 

presented here are still preliminary and a large scale test 

shall be conducted to test if these figures are still valid as 

noises contained within polycrystalline solar cells can 

vary greatly between different batches of solar cells. 

Efforts to conduct a large scale test are currently being 

actively pursued in a commercial polycrystalline solar 

cell production facility. 

IV. CONCLUSION 

The detection of micro-cracks in polycrystalline solar 

cells is very challenging due to the similar looking noises 

that share the same gray scale values in PL images. 

Previous methods which rely on shape analysis do not 

perform well as there's no significant shape distinction 

between micro-cracks and the noises that may be present. 

In this study, a novel method to classify micro-cracks 

based on localised texture analysis was proposed. 

Preliminary results have shown significant improvements 

over current method and a large scale test is currently in 

progress. The existing results have also shown that the 

system tends to over-reject due to similar looking features 

which are not micro-cracks such as scratches. Further 

research is recommended to be carried out to better 

distinguish scratches and cracks in solar cell PL images.  
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