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Abstract—The level set approach has the potential to 

accomplish simultaneous noise reduction and edge 

preservation when it is used for image denoising. However, 

this kind of techniques is not very efficient for denoising 

very noisy images for their non-reliable edge-stopping 

criterion in the Partial Differential Equation (PDE). In 

addition, the numerical calculation of curvature and other 

partial derivatives in the PDE is very sensitive to noise.  In 

this paper, a new algorithm is developed to tackle such 

problems. Our idea is to first decompose the noisy image 

with the Orthogonal Wavelet Transform (OWT) and then 

we only filter the noisy wavelet coefficients at the three 

finest scales without touching the wavelet coefficients at 

higher levels for reducing noise while preserving edge-

related coefficients. The level-set based curve evolution is 

finally performed on the less-noisy image reconstructed 

from the denoised wavelet coefficients. Thus, the PDE 

model can be optimized by removing the Gaussian 

smoothing component. Furthermore, the numerical 

calculation of all partial derivatives in the PDE is influenced 

by less noise and the selective denoising becomes more 

efficient. Experimental results show that the proposed 

algorithm outperforms the conventional level set methods 

and generates state-of-the-art denoising results in edge 

preservation and noise reduction. 
 

Index Terms—orthogonal wavelet transform, level sets, 

mean curvature, image denoising 

 

I. INTRODUCTION 

The objective of image denoising is trying to recover 

the noise-free images from their noisy observations. 

However, how to preserve edges when reducing noise is 

a critical challenge for state-of-the-art image denoising 

techniques. Traditional image denoising techniques, such 

as linear Gaussian smoothing and low-pass filtering, can 

reduce noise, but edges are also blurred since edges are 

present in high frequencies. The wavelet-based hard-

thresholding techniques can eliminate much of noise by 

setting the small magnitude coefficients to zero, however 

artifact of Gibbs oscillation near discontinuities is 

usually introduced. Although the wavelet-based soft-

thresholding techniques [1], [2] greatly improve the hard-
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thresholding techniques by significantly reducing Gibbs 

oscillation, Gibbs oscillation cannot be eliminated.  As a 

result, the effectiveness of the wavelet-based 

thresholding techniques is limited for edge-preserving 

image denoising applications, such as medical image 

denoising. In recent 10 years, the level-set based 

nonlinear denoising methodologies have been a very 

interesting research topic in image processing [3]-[7]. 

This class of denoising techniques is in general very 

efficient to preserve image edges for piecewise-smooth 

images separated by edges because the curvature-

dependent evolution is only encouraged in the smooth 

regions, and it is automatically inhibited across edges.  

Thus, the level-set based denoising techniques can 

achieve simultaneous noise reduction and edge-

preservation. However, they are only efficient for 

denoising those images that are corrupted by a low level 

of noise. They are not very efficient for smoothing very 

noisy images for the lack of a reliable edge-stopping 

criterion in the PDE and for the noise-sensitivity of the 

partial derivatives in the PDE as analyzed below. As a 

result, noise cannot be reduced effectively. To reduce the 

influence of noise on the level set methods for noise 

reduction, a wavelet-based multiscale level-set curve 

evolution is proposed [8]. The noisy image is first 

decomposed into a linear scale-space using the dyadic 

overcomplete wavelet transform [9]. Afterwards the 

finest scale of the scale-space is filtered by using the 

MMSE-based method, making the linear scale-space 

even more stationary. Finally, the curvature-dependent 

evolution is performed on the scale-space. Since for a 

piecewise-constant image, the scale-space is still 

piecewise-constant and is more stationary than the 

original noisy image, the wavelet-based multiscale level-

set curve evolution is more efficient than the 

conventional level set methods. However, the 

computational complexity is expensive. Our motivation 

of using the OWT in this paper is to reduce the 

computational complexity while retaining its denoising 

efficiency.  

To leverage the edge-preserving property of level sets 

in image denoising while circumventing its limitations of 

non-reliable edge-stopping criterion and noise-sensitivity, 

we develop a new algorithm in this paper. We propose to 
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first convert the noisy image into a less-noisy one by 

decomposing the noisy image with the orthogonal 

wavelet transform and only filtering the noisy wavelet 

coefficients at the three finest scales. Finally, the 

curvature-dependent diffusion is performed on the less-

noisy image reconstructed from the denoised wavelet 

coefficients rather than directly on the original noisy 

image or on the wavelet coefficients. The benefit of 

using the first pass of wavelet-based denoising is that we 

can convert a very noisy image into a much less noisy 

one while preserving its edges as much as possible. This 

makes it possible for us to make full use of the power of 

level sets in selective smoothing when the PDE model is 

used as the second pass of denoising. Also, the PDE 

model can be further optimized by removing the 

Gaussian filtering component, and the numerical 

calculations of the curvature and other partial derivatives 

become more reliable. People may argue why not 

perform the curvature-dependent evolution on the 

orthogonal wavelet coefficients as done with the 

overcomplete wavelet transform [9] The point is that if 

we do so, it is easy to cause the Gibbs oscillation in the 

denoised image since the orthogonal wavelet transform is 

not translation-invariant, but the overcomplete wavelet 

transform is translation- invariant. Comparative studies 

have demonstrated that the proposed algorithm can 

significantly improve SNR while preserving edges well. 

The proposed algorithm outperforms the state-of-the-art 

level-set based nonlinear denoising techniques. 

This paper is organized as follows: Section II 

describes the orthogonal wavelet transform and Section 

III describes the related work about level sets in image 

denoising. We present the details of the proposed 

algorithm in Section IV. The experimental results are 

demonstrated in Section V and conclusions are made in 

Section VI. 

II. THE ORTHOGONAL WAVELET TRANSFORM 

In this work, the Orthogonal Wavelet Transformation 

(OWT) is used for Multiresolution Analysis (MRA). In 

MRA, a function is usually viewed at various levels of 

approximations or at various resolutions. This makes 

MRA possible to decompose a complicated function into 

several simpler ones, each of which is more convenient 

for analysis. The discrete wavelet transform can be 

viewed as a kind of MRA and its basic idea is to project 

a function or a signal )()( 2 RLxf   onto a sequence of 

closed successive octave approximation subspaces 
jV  

and their associated detail subspaces 
jW  with multiple 

resolutions. At each resolution j2 , the approximation 

subspace 
jV  and its associated detail subspace 

jW  

contain the necessary information to reconstruct the 

approximation subspace 
1jV  at the next finer resolution 

12  j .  

In constructing wavelets, under certain conditions, 

both scaling function and wavelet function can be 

implemented by the low-pass filter {
kh } and the high-

pass filter { kg }, respectively [10]. A one-dimensional 

(1-D) signal 0s can be recursively decomposed into a 

sequence of lower resolution approximations {
kjs ,

;

Zkj , } and details {
kjd ,

; Zkj , } using the 

following fast Discrete Wavelet Transform (DWT) [10]: 

nj

n

knkj shs ,12, 2   

 
n

njknkj sgd ,12, 2                         (1) 

While the following fast inverse DWT can be used to 

reconstruct the original image, 

    
   

k k

kjknkjknnj dgshs )(2 ,2,2,1

              (2) 

The 1-D WT can be easily extended to two-

dimensional (2-D) WT for image processing. In the 2-D 

WT, there are three high-pass filters: 1) high-pass in x  

but low-pass in y  direction, )()(),( lhkglkgHL  , 2) low-

pass in x  but high-pass in y  direction, 

)()(),( lgkhlkg LH  , and, 3) high-pass in both x  and y  

directions, )()(),( lgkglkg HH  . As a result, a 2-D image 

can be decomposed into a pyramidal structure with low-

low ( LL ), low-high ( LH ), high-low ( HL ), and high-

high ( HH ), spatially oriented frequency channels as 

shown in Fig. 1. The details about how to construct the 

filters and the implementation of the fast WT are referred 

to [10], [11]. 
 

LL3 

HH3 

HL3 

LH3 

LH2 HH2 

HL2 

LH1 HH1 

HL1 

 

Figure 1. A 3-level decomposition example about the 2-D orthogonal 
WT. 

  
           (a)             (b) 

Figure 2. An example of 3-level 2-D orthogonal WT. (a) is the image 
and (b) is the orthogonal WT result. 

A 3-level decomposition example about the 2-D 

orthogonal WT of a piecewise-constant image is shown 

in Fig. 2. In this work, the Daubechies’ length-8 wavelet 

4D  [11] is used for the orthogonal WT for its proper 

regularity and fast processing. 
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III. REVIEW OF LEVEL-SET BASED IMAGE 

DENOISING 

In the recent 20 years, the level set methods [12]-[14] 

have been received great attention in image processing.  

The basic idea of the level set in image processing is to 

represent the evolving image intensity surface as a 

hypersurface )(t , and embed this hypersurface as the 

zero level set of a higher dimensional function  , 

defined by dtyx ),,( , where d  is the signed distance 

from the point ),( yx  to the hypersurface )(t . When 

evolving the hypersurface )(t , any point NRtx )(  

satisfies 0)),(( ttx . A Eulerian formulation is 

produced for the motion of the surface, propagating 

along its normal direction at a given speed )(xF , where 

)(xF  is a function of the surface characteristics 

(curvature and normal direction at the point )(tx ), and 

the image characteristics (intensity value and gradient).  

According to the chain rule, the evolution of   can be 

given as follows: 

         (3) 

With the initial condition 
0)0,(  tx . The implicit 

level-set approach is more advantageous over the explicit 

parameterized contour models like snakes [15] to 

represent curves or surfaces. The speed function 𝐹 can be 

decomposed into an advective speed and a diffusive 

speed: 

0)1(   Kgt
                     (4) 

where   is a small constant and K  is the mean 

curvature: 

2
3

22

22

)(

2

yx

xyyxxyyyxx
K










                   (5) 

Generally, the edge-stopping criterion function g  is 

taken as [7]: 

0,))(*(
)(

0
0 






xIG
exIGg               (6) 

where, )(0 xI  is the initial image and 
G  is the Gauss 

filter with the scale parameter  , and  denotes the 

gradient operator. The edge-stopping criterion function

g  is designed in such a way that its value is close to zero 

when the point x  is located at edges indicated by high 

gradients, and its value is close to one when the point x  

is within a homogeneous region indicated by low 

gradients. With g , the evolution is only encouraged 

within a homogeneous region or along the edge direction, 

but it is inhibited across edges. Thus, edges can be 

preserved over time t  for noise reduction. For image 

denoising, the level set methods have the similar idea 

with the anisotropic diffusion [16], but they accomplish 

it in a different way. Since for image denoising, it is 

desirable that the diffusion in the gradient direction is 

very small, by deleting the constant speed term in the 

PDE in (4), the PDE for selective image smoothing 

becomes [6]: 

  KIgt )(                (7) 

To further improve the accuracy of evolution when it 

approaches to edges, an additional constraint is usually 

added into the PDE [17],  

            gKIgt )(             (8) 

where   is a constant. According to the curvature-

dependent evolution process, the image smoothing 

process can be defined as following: 

))((),,()1,,( IgIKIgttyxItyxI    (9) 

where the original noisy image is used as the initial 

condition )0,,( yxI , ),( yx  denotes a pixel position to be 

smoothed in a 2-D image domain, t  denotes the discrete 

time steps (iterations), t  is a small number to control 

the stability of the PDE, and for )( Ig  , I  is calculated 

from the Gaussian smoothed noisy image. However, 

when the curvature-dependent evolution model is 

directly applied to a noisy image as done in all 

conventional level-set based denoising techniques, noise 

cannot be reduced efficiently. This is for the facts that in 

(6), the gradients for determining the edge-stopping 

function values are calculated from a smoothed image by 

using the Gaussian filtering method. However, the 

Gaussian filtering usually gets edges blurred when 

reducing noise. Thus, the obtained edge-stopping 

criterion is not reliable for very noisy images. In addition, 

the mean curvature defined in (5) contains the first- and 

second-order partial derivatives. When the image 

)0,,( yxI  is corrupted by a high level of noise, in the 

right-hand side of PDE (9), the mean curvature and 

gradient measurements in the second term 

))(( IKIgt   are very sensitive to noise. Also, for the 

third term Ig  , due to the noise, the vectors may 

deviate from the actual gradient directions, resulting in 

inefficient edge preservation. 

IV. THE PROPOSED DENOISING ALGORITHM 

The proposed algorithm in this paper includes two 

components: the first pass of wavelet-based denoising for 

the 3 finest scales, and the second pass of the level set 

based denoising on the reconstructed images from the 

denoised wavelet coefficients in the first pass.   

A. Statistical Filtering on the Orthogonal Wavelet 

Transform Domain 

When the noisy image is represented with the 

orthogonal wavelet transformation, we use the Minimum 

Mean Squared Error (MMSE)-based filtering method to 

reduce noise in the wavelet coefficients, but it is only 

performed on the three finest scales.  The rationale is that 

statistical noise in the spatial image domain is a kind of 

random oscillation and in the orthogonal wavelet 

transform domain, noise is amplified to be the high 

frequency information and is mostly located at the fine 

scales. So, it is not efficient to do the curvature-

dependent evolution on the 3 noisy finest scales. Suppose 

an image ),( yxf  is corrupted by the Additive White 

0  Ft
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Gaussian Noise (AWGN) with variance 2

n . Let the 

observed noisy image ),( yxfn
 be represented as: 

          ),(),(),( yxnyxfyxfn              (10) 

For ,...2,1,0, yx 1M , where ),( yxn  is the noise 

term, ),( yx  is the spatial position, and M  is the image 

dimension in the row and column directions. For the 

chosen orthogonal wavelet transform, the transformed 

noisy image ),( yxfn
 can be written as:  

2,1,3,2,1),,(),(),(
222

 jkyxnwyxfwyxfw kk

n

k
jjj

 (11) 

where ),(
2

yxfwk
j

 denotes the orthogonal wavelet 

coefficient of the noise-free image at location ),( yx  and 

scale j2  with the subband orientation 3,2,1k , in the 

horizontal, vertical and diagonal direction, respectively, 

as shown in Fig. 1, and Fig. 2(b), respectively. 

),(
2

yxfw n

k
j

 denotes the wavelet coefficient of the noisy 

image, and ),(
2

yxnwk
j

 denotes the wavelet transform 

coefficient of the zero-mean and 2

n -variance, Additive 

White Gaussian Noise (AWGN). It is still an AWGN due 

to the orthonormality of the OWT. 

Motivated by the LAWMAP algorithm [18], in this 

work, the wavelet coefficients ),(
2

yxfwk
j

 at the three 

finest scales ( 2j ) of the noise-free image are assumed 

to be the conditionally independent zero-mean Gaussian 

random variables ),0( 2

),( yxN  , given their variances 2

),( yx . 

These variances 2

),( yx  are modeled as identically 

distributed, highly correlated random variables. 

According to the Maximum Likelihood (ML) estimation, 

the local variance 2

),( yx  is obtained from the local noisy 

wavelet coefficients as following [18]: 

𝜎̂(𝑥,𝑦)
2 =  𝑀𝑎𝑥{0,

1

|𝜂(𝑥,𝑦)|
∑ [𝑤2𝑗 

𝑘
(𝑝,𝑞)∈𝜂(𝑥,𝑦)

𝑓𝑛(𝑥, 𝑦)]2 − 𝜎𝑛
2}  (12) 

where 
),( yx  denotes the spatial neighborhood of the 

position of  ),(
2

yxfw n

k
j

,
),( yx  denotes the number of 

neighbors in 
),( yx . The neighborhood 

),( yx  is defined as 

a square window centered at the position of ),(
2

yxfw n

k
j

. 

The noise standard deviation n  is estimated separately 

using a robust estimation, the median absolute deviation 

of wavelet coefficients at the finest scale diagonal 

subband divided by 0.6745 [18],  

6745.0/)),((ˆ 3

2 yxfwMedian nn              (13) 

After the variance of local noise-free wavelet 

coefficients is estimated, the noise-free wavelet 

coefficient value of ),(
2

yxfwk
j

 is estimated as following 

[18]: 

),(
ˆˆ

ˆ
),(ˆ

222

),(

2

),(

2
yxfwyxfw n

k

nyx

yxk
jj






             (14) 

B. Level-Set Based Curve Evolution  

In this work, we still use the level set methods defined 

in (9). However, after the noisy image I  has been 

converted into a less-noisy one, I
~ , for determining the 

edge-stopping function values, we propose to calculate 

the gradients directly from the less-noisy image rather 

than from an external force field of Gauss-smoothed 

image. Thus, by removing the Gaussian smoothing 

component from the PDE in (9), the PDE can be 

optimized into: 

)
~~

)
~

((),,(
~

)1,,(
~

IgIKIgttyxItyxI    (15) 

The edge-stopping criterion g is defined as [16]: 

)1(1)(
2

2

k

x
xg             (16) 

where, x  is the gradient magnitude calculated directly 

from the less-noisy image, and k  is a threshold.  

Furthermore, the curvature K  and gradient in (15) are 

affected by less noise and they become much more 

reliable. Therefore, the PDE in (15) becomes more robust 

than that when it is directly applied to the noisy image. 

The numerical implementation of (15) is as follows: 

2
1

2

,

2

,,, ))
~

()
~

(()),(
~

([),,(
~

)1,,(
~ t

yxy

t

yxxji

t

yx IIKyxIgttyxItyxI  
 

t

yxx

t

yxx

t

yxx

t

yxx IgIg ,,,,

~
)0,)min((

~
)0,){max((     

})0,)min((
~

)0,)max(( ,,,,

t

yxy

t

yxy

t

yxy

t

yxy IgIg          (17) 

where  

 t

yx

t

yx

t

yxx III ,,1,

~~~
 

 , t

yx

t

yx

t

yxx III ,1,,

~~~


          (18) 

t

yx

t

yx

t

yxy III ,1,,

~~~
 


, 

t

yx

t

yx

t

yxy III 1,,,

~~~


         (19) 

 2/)
~~

(
~

,1,1,

t

yx

t

yx

t

yxx III   , 2/)
~~

(
~

1,1,,

t

yx

t

yx

t

yxy III     (20) 

C. Summary of the Proposed Algorithm 

The proposed algorithm can be summarized as follows: 

1. Decompose the noisy image into three levels 

using the orthogonal WT.  

2. For the orthogonal WT coefficients at the three 

finest scales, do noise reduction using the 

adaptive statistical analysis method described in 

Section 4.1. We have tried to apply the curve 

evolution to the wavelet coefficients at all levels, 

but it is found less efficient than the way done in 

this paper. 

3. Reconstruct the denoised image with the inverse 

orthogonal WT.   

4. Apply the level-set based curve evolution model 

described in Section 4.2 to the less-noisy image 

obtained in Step 3.  

The proposed algorithm is called WT_LSCE and that 

without containing step 4 is called WT_MMSE.   

V. EXPERIMENTAL RESULTS 

The performance of the proposed algorithm is 

evaluated using the 512x512 testing images of Peppers, 

Lena, and Barbara. The additive white Gaussian noise 
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with different noise variances is added to these images. 

The Peak Signal to Noise Ratio (PSNR) is used to 

evaluate the quality of the denoised images:  

511,0,
)ˆ(

255
log*10

,

2

,,

2

10 





ji
II

PSNR

ji

jiji

  (21) 

In which Î  represents the final denoised image and I

represents the original noise-free image. For 

demonstrating the effectiveness of the proposed 

WT_LSCE algorithm in noise reduction and edge 

preservation, it is compared with the counterparts of the 

WMLSCE_MMSE [8], the Level-Set based Curve 

Evolution method (LSCE) [6], and the LAWMAP [18]. 

The PSNR values of the three noisy images with respect 

to different noise variances are listed in Table I. Since for 

a lot of state-of-the-art level-set based denoising 

techniques, their denoised images and numerical results 

for these images are not available for a complete 

comparison, they are not compared here.   

TABLE I.  THE PSNR (IN DB) OF THE NOISY STANDARD TESTING 

IMAGES OF LENA, BARBARA AND PEPPERS WITH RESPECT TO 

DIFFERENT NOISE VARIANCES 

Image 
PSNR (dB) vs. Noise variance )( 2  

225 400 625 

Lena 24.66 22.18 20.27 

Barbara 24.67 22.19 20.29 

Peppers 24.81 22.36 20.47 

 

The PSNR values of the denoised images for the 4 

algorithms with respect to different noise variances are 

listed in Table II, from which we can see that the 

proposed WT_LSCE algorithm achieves much better 

denoising performance than all other algorithms. For 

visual quality comparison, the denoised images of the 

WT_LSCE, WT_MMSE, the LSCE [6], and the 

WMLSCE_MMSE [8] algorithms, corresponding to 

noise variance 225 are displayed in Fig. 3 to Fig. 6, 

respectively, for the image Lena. In addition, the 

WT_LSCE is much faster than both WMLSCE_MMSE 

and LSCE. This is for the facts that in the WT_LSCE 

algorithm, the first step of denoising in the orthogonal 

WT domain is very fast and when the curvature-

dependent evolution is performed on the less-noisy 

image, a smaller number of iterations is needed for the 

level-set based curve evolution than that for the LSCE 

algorithm [6]. Since the LSCE is directly applied to the 

noisy image with the limitations analyzed above, its 

performance is the lowest in all these algorithms. For the 

WMLSE_MMSE, since the curvature-dependent 

evolution is performed in the overcomplete wavelet 

transform domain, it is natural that it is slower than the 

proposed WT_LSCE algorithm. 

For illustrating the impact of the MMSE-based 

filtering on the performance of the proposed WT_LSCE 

algorithm, the WT_MMSE is tested. Its PSNR values for 

the 3 denoised images are listed in Table II. The 

WT_MMSE scheme is more efficient than the 

LAWMAP [18] algorithm, in which the MMSE-based 

filtering is applied to all five levels. This conforms to our 

analysis that the zero-mean Gaussian distribution 

assumption is not adequate for the orthogonal wavelet 

coefficients at coarser scales. So, the MMSE-based 

filtering is very helpful for the proposed WT_LSCE 

algorithm to outperform the LSCE and LAWMAP 

algorithms. From the experiments, we also can see that 

the LSCE is not very efficient for denoising the image of 

Barbara. It is for the fact that the image contains a lot of 

textures, which are not piecewise-constant and not very 

suitable for the level set methods for noise reduction. 

However, with the proposed WT_LSCE algorithm, we 

can still achieve very satisfactory denoising performance 

due to the MMSE-based filtering at the three finest scales. 

TABLE II.  PERFORMANCE (PSNR IN DB) OF THE PROPOSED 

WT_LSCE COMPARED WITH THAT OF THE LSCE [6], LAWMAP [18], 
WMLSCE_MMSE [8], AND WT_MMSE ALGORITHMS FOR DIFFERENT 

IMAGES WITH RESPECT TO DIFFERENT NOISE VARIANCES. THE 

RESULTS OF LSCE ARE FROM THE AUTHOR’S IMPLEMENTATION 

RATHER THAN FROM THE ORIGINAL PAPER [6] 

Scheme Image 

PSNR (dB) vs. Noise variance 

)( 2  

225 400 625 

WT_LSCE 

Lena 32.88 31.60 30.60 

Barbara 30.56 28.97 27.76 

Peppers 32.38 31.16 30.16 

LSCE 

Lena 31.36 30.01 28.98 

Barbara 27.61 26.09 24.92 

Peppers 31.12 29.92 29.00 

LAWMAP 
Lena 32.27 30.92 29.90 

Barbara 30.13 28.57 27.40 

WMLSCE_ 

MMSE 

Lena 32.64 31.33 30.32 

Barbara 29.76 28.09 26.83 

Peppers 32.35 31.01 29.94 

WT_MMSE 

Lena 32.44 30.93 29.77 

Barbara 30.52 28.91 27.68 

Peppers 31.78 30.29 29.04 

 
Figure 3. The denoised image of Lena using the proposed WT_LSCE 

algorithm.  
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Figure 4. The denoised image of Lena using the WT_MMSE algorithm 
in this paper. 

 
Figure 5. The denoised image of Lena using the LSCE algorithm [6]. 

 
Figure 6. The denoised image of Lena using the WMLSCE_MMSE 

algorithm [8].  

VI. CONCLUSION 

We have presented a very efficient algorithm to 

improve the level set methods for noise reduction. We 

first convert the noisy image into a less-noisy one with 

edges preserved by decomposing the noisy image using 

the orthogonal wavelet transform and denoising the 

wavelet coefficients at the three finest scales using the 

MMSE-based filtering. Thus, an environment is 

constructed so that the PDE model is influenced by much 

less noise and is much more robust for noise reduction 

and edge preservation. In addition, the PDE can be 

optimized by removing the Gaussian smoothing 

component. Experimental results show that this 

algorithm can achieve both very high PSNR values and 

very satisfactory visual quality for the denoised images. 

This algorithm is very efficient for medical CT & MR 

imaging denoising where the critical requirement is to 

preserve the image edges in the denoised image. 
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