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Abstract—Example-based algorithms are most suitable for 

face image super-resolution since they typically use specific 

kinds of images as their dictionary. Recently, a significant 

method using a set of normalized face images as database 

was proposed, where a high-resolution face image was 

estimated by taking into consideration their facial parts. 

This paper reports parametric analysis of the method, 

regarding the setting of image-patch size during super-

resolution process and their relations with image’s scaling 

factor. Our objective is to find the best patch size for the 

algorithms, which may produces better output high-

resolution images. We generated training images’ patch-

databases with different patch size, i.e. 5x5, 7x7, 9x9, 11x11 

and 13x13 in pixels. We ran the method onto several sets of 

low-resolution face images with different scaling factor of 

magnification, i.e. 2, 3, 4, 5 and 6 times, to generate high-

resolution images using different patch size orderly. Then, 

we observed the average of Peak Signal-to-Noise Ratio 

(PSNR) values for each set of constructed high-resolution 

images to analyze which size of patch yielded better results. 

According to the resulting PSNRs, interestingly we found 

that the best patch size is adaptable to scaling factor, where 

if the scaling factor is n, the best setting of patch size in the 

algorithms can be determined by (2n+1)2.  

 

Index Terms—example-based, super-resolution, face image, 

facial parts, patch size, scaling factor 

 

I. INTRODUCTION 

Surveillance cameras are often installed in areas that 

may need monitoring such as banks, airports, and 

convenience stores for prevention and detection of crime. 

These surveillance cameras have been recording digital 

footage of crime scenes and provide useful information 

especially criminal’s face image that is really helpful as 

clues in investigation. Unfortunately, most surveillance 

cameras are long-term recording, so they record low-

resolution and highly compressed frames due to storage 

constraint, causing poor quality of footage. Consequently, 

most recorded images are frequently too poor to be used 

in investigation since less information could be obtained. 

Therefore, it is very useful to process the LR images 

by enlarging them into larger and more legible High-

Resolution (HR) images. Several methods of image 

enlargement, such as Bicubic [1] and Lanczos 

interpolation, are commonly used to infer an HR image. 

However, these analytic approaches typically suffer from 
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a blurred appearance due to perceived loss of detail in 

textured regions, causing unsatisfying quality in enlarged 

images. Hence, Super-Resolution (SR) techniques [2]-[7]
 

have been widely adopted recently to resolve these 

problems by not only enhancing image resolution, but 

also estimating the missing texture details to define the 

enlarged HR image.  

Several methods in the SR techniques can be roughly 

categorized into two major categories: reconstruction-

based and learning-based methods. Between those two 

methods, learning-based methods, or also known as 

example-based methods are most suitable for specific 

applications, such as face image super-resolution, since it 

typically uses specific kinds of images as its database [8], 

[9]. Example-based methods utilize external information 

from a set of training LR and HR image pairs. Generally, 

a patch within an observed LR image is extracted and 

searched within the training set to estimate suitable HR 

patch that reconstructs the HR image.  

 

Recently, an SR method specifically for face image 

enhancement, which takes into consideration the 

correspondence of facial parts, has been introduced [19].  

The method employed a significant concept of using 

normalized human face images as training database, 

where the facial parts can be estimated according to 

patch’s original position in image. The method proposed 

a learning model that enable patch candidates to be 

selected by not only considering their pattern similarity, 

but also their compatibility of facial parts, i.e. using eye 

patches for eyes and nose patches for nose. This approach 

manage to increase the probability of similarity and 

produce better HR image compared to the Freeman et 

al.’s method in terms of face texture quality and Peak 

Signal-to-Noise Ratio (PSNR) value. 

However, there are many variable parameters in this 

method as well as in Freeman et al.’s method, which may 

lead to varied possibility of resulting images. Some of the 

main parameters are image patch size, weighting factor in 

compatibility functions, number of training images in 

database and scaling factor of magnification. It is 

important to find the most suitable parameter’s value in 
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Freeman et al. has proposed example-based algorithms

[10]-[12], using a bandpass filter to extract image textures 

and a Markov Random Field (MRF) as a learning model 

to infer the suitable HR patches. Since then, many 

algorithms have been developed using different 

approaches in terms of texture extraction method and 

type of learning model [13]-[18]. 



order to make the application more convenience, stable or 

less sensitive, besides user-friendly. Therefore, in this 

paper, we attempt to analyze the algorithms in terms of 

patch size and scaling factor. Our aim is to find the most 

suitable patch size for the SR process, which may 

provides better results. 

We conducted an experiment by demonstrating the 

algorithms onto sets of LR images that have different 

scaling factor, i.e. 2, 3, 4, 5, and 6 times respectively. We 

used different size of patch during SR process, i.e. 5x5, 

7x7, 9x9, and 11x11, and applied them onto each set of 

images to find which size provides better results. PSNRs 

for each set of constructed HR images were observed, 

and their average values were used for overview analysis. 

Based on the analysis, interestingly we found a consistent 

pattern of relationships between best patch size and 

scaling factor, which can be simplified into a formula. 

With this formula, we can easily determine what size of 

patch should be used in the method when we want to 

enlarge an LR image by a certain scaling factor. 

The rest of the paper is organized as follows. Section 2 

describes the algorithms of the example-based methods. 

Section 3 elaborates the learning model that takes into 

account correspondence of facial parts. Experimental 

analysis and proposed algorithms are presented in Section 

4, and a conclusion is given at the end of the paper.  

II. EXAMPLE-BASED METHOD 

Example-based algorithms utilize external information 

from a set of a large volume of training image pairs of LR 

images and HR images. Compared to conventional 

interpolation methods that only use information from 

input images, example-based methods enable new 

information to be predicted for the missing texture details.  

Example-based algorithms basically consists of two 

phases, i.e., 1) a database construction phase that extracts 

patch pairs from both LR and HR training images, and 

then stores them as training patches into database, and 2) 

a super-resolution phase that runs a learning model to 

reconstruct HR images by searching suitable patches in 

the database that are best matched to the input image 

patches.  

A. Database Construction 

A collection of high-resolution images is used to 

construct a training database. We restrict use of the same 

kinds of images to obtain better probability of similarity 

among features. All HR images are downscaled at a 

certain scaling factor, typically one-quarter the total 

number of pixels to create LR training images. After that, 

we initially upscale the LR images back into original size 

of HR using an analytic interpolation, such as Lanczos. 

These initial HR images are typically blurry due to the 

loss of texture during the process.  

We preprocess the training images in pair (initially 

upscaled LR and original HR images) to extract high-

frequency information so that only the textures are being 

observed. We apply a Gaussian filter to the upscaled LR 

images to extract their textures (middle-frequency 

component) and store them into database, Po, as outlined 

in Fig. 1. While textures (high-frequency component) 

from the original HR images are extracted by subtracting 

them with the initially upscaled LR images, then we store 

them as patches in database, Pc. These patches were 

typically 5x5 or 7x7 pixels. 

 

Figure 1.  Database construction process. 
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B. Image Super-Resolution 

Freeman et al. implemented a Markov random field 

(MRF) network as learning model to estimate plausible 

texture for an output HR image [10]. The MRF network 

statistically models the spatial relationship between input 

image patches and estimated training patches in database, 

and between neighboring high-resolution patches.  

Fig. 2 illustrates the structure of the MRF network 

where each circle represents a network node and each line 

indicates the spatial relationship and statistical 

dependencies between nodes. The nodes Y(i,j) represents 

the LR patches at the position (i,j) in the observed image. 

The nodes X(i,j) represents the LR patches in the 

database whose corresponding HR patches are used to 

reconstruct HR image. 

 

Figure 2. MRF-network-based learning model. 

The dependency between nodes are represented by two 

compatibility functions, ϕ(.) and (.). For a position (i,j) 

in the MRF network, ϕ[X(i,j),Y(i,j)] represents the 

compatibility between the observed patch Y(i,j) and the 

training patch X(i,j). For a position (i,j) and its adjacent 

position (u,v), the function [X(i,j),X(u,v)] represents the 

compatibility of the common border between the 

estimated patches X(i,j) and X(u,v). The joint probability 

over X(.) and Y(.) is defined as 

        (1) 

where NB(i,j) denotes the neighbors of X(i,j) in the MRF 

network. A number of patch candidates for X(i,j) are 

previously selected based on the ϕ(.). The number of 

patch candidates is given as a constant parameter m. 

To specify the ϕ(.) function, we impose a similar 

quadratic penalty on differences between the observed 

input image patch, Y(i,j), and the patch candidates found 

from the training set, X(i,j). 

        (2) 

d(.) is the distance of the two matrices (or vectors) and 1 

is a constant parameter.  

To specify the (.) function, we sample the input 

image’s patches so that they overlap with each other by 

one or more pixels, as shown in Fig. 3. The border 

compatibility function, (.) is defined as 

              (3) 

where p (q) is the vector of pixels of the overlap region in 

patch X(i,j) (X(u,v), respectively) and σ2 is a constant 

parameter. 

 

Figure 3. Overlap region between adjacent patches. 

Given an initial set of patch candidates for X(.), the 

method iterates to change each candidate for X(i,j) in turn 

to improve P(X|Y) greedily until no improvement is 

observed. The HR patches corresponding to the finally 

chosen candidates for X(i,j) forms the estimated texture 

(high-frequency component). The method combines the 

initially upscaled LR image and the estimated texture 

component to obtain a restored HR image. 

III. FACE IMAGE SUPER-RESOLUTION METHOD 

Recently, the method has been modified for face-

image super-resolution purpose, where a learning model 

that takes the correspondence of facial parts into account 

during patch estimation was proposed. The underlying 

idea is to select patches in the database according to their 

facial parts, i.e. using eye patches for eyes and nose 

patches for nose. In order to increase the probability for 

the patches of the corresponding facial part to be selected, 

the method uses normalized human face images as 

training database, where face feature points are 

approximately in closer position in every image. 

Therefore, the facial parts can easily be determined by 

patch’s original position in image, and the distance 

between observed patch and estimated patch is utilized to 

estimate their facial-parts compatibility.  

Let the facial-parts compatibility function is (.), the 

function is defined as 

                 (4) 

where ℓ  is Euclidean distance from original position of 

the patch X(i,j) in the training face image to the observed 

position (i,j) in the restored image, and 3 is a constant 

parameter. Hence, the joint probability of X(.) under the 

condition of Y(.) is an extension of (1) as defined in (5). 

          (5) 

P(X |Y ) = φ X(i, j),Y (i, j)[ ]
ij
∏

× ψ X(i, j),X(u,v)[ ]
ij,(u,v)∈NB(i, j )
∏

   φ X(i, j),Y (i, j)[ ] = exp −
d X(i, j),Y (i, j)[ ]

2σ1
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× ψ X(i, j),X(u,v)[ ]
ij,(u,v)∈NB(i, j )
∏

× λ X(i, j)[ ]
ij
∏
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A. Normalized Face Image Database Construction 

We start from a collection of normalized high-

resolution face images for database. The normalized 

training images have the same size or ratio of facial 

features, where facial-feature points (e.g., eye, nose, 

mouth, chin, and face boundary lines) in each image are 

at approximately closer positions.  

Fig. 4 illustrates a patch-database construction process 

for normalized face images. Since the learning model 

already includes λ(.), it is unnecessary to categorize the 

patches into multiple databases based on facial parts. The 

main characteristic of the database is each patch's original 

position in the training images, (k,l), as shown in Fig. 4, 

will be observed during super-resolution process. m refers 

to the number of available training images in database. 

 

Figure 4. Patch-coordinate-based database construction. 

Same as the process shown in Fig. 1, we degrade the 

training images by downsampling them into LR images 

under certain scaling factor, typically one-quarter the 

number of original pixels in each dimension (1/16 the 

total number of pixels). We then resample it back into the 

original size to create an initial upscaled image. Then, we 

filter out the lowest frequency component on both 

original HR and initially upscaled images to retain only 

their texture component. Both components are then 

divided into patches in a way where both patches 

correspond to each other. Patches were divided in a 

manner of overlapping their neighboring patches by one 

pixel to later specify (.) in the MRF network. 

B. Patch Candidates Selection 

A fixed amount of patch candidates for each node is 

selected in advance so that we do not have to consider 

thousands of patches available in the database iteratively 

during the inferring process. The number of patch 

candidates is set proportional with the number of 

training images in the database, e.g., if we used 100 

training images, 100 patches among the total number of 

patches would be chosen as candidates. 

Patch candidates for each nodes were selected based 

on ϕ(.) and λ(.) probability values. Training patch with 

higher pixel value (pattern) similarity and nearer position 

(closer facial parts) to an observed input patch has a 

higher possibility to be selected. To adjust the preference 

between ϕ(.) and λ(.), we apply a weighting factor, α as  

          (6) 

The value of α is set between zero and one. Hence, if α 

is one, the function would not take into account λ(.), 

which means this is the same as that with Freeman et al.’s 

method. The lower the α value, the higher its dependency 

on facial parts’ compatibility function. 

C. Super-Resolution Process 

The aim is to find the best set of X(.). By only using 

the limited number of selected patch candidates, P(X|Y) 

would typically be at optimum value. 

Fig. 5 outlines the super-resolution process, i.e., 

deriving an output HR image from a single input LR 

image. We initially upscale the input LR image into a 

targeted size of HR image, and then extracted its texture. 

We divided it into patches to find the most similar 

patches in database Po. Those corresponding patches 

from database Pc were placed together to build a base 

image for the MRF learning model. This image would 

look grainy or blocks since the chosen patches would not 

yet be compatible with their neighboring patches. Here, 

we applied an iteration process so that the chosen patches 

would be compatible with their neighboring patches.  

 

Figure 5. Super-resolution process. 

 

 

 

 

 

   
PC (X |Y ) = φ X(i, j),Y (i, j)[ ]α

ij
∏

× λ X(i, j)[ ] 1−α( )

ij
∏

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 170



According to (7), we replace X
C
 with the chosen 

candidates alternately to find the best X(.). PC(X|Y) is the 

known probability value from (6), which is different for 

each patch candidates. 

        (7) 

We replace the initial chosen patches with the best 

patches that are compatible with the neighboring patches 

(patches with the best (.) values) among the patch 

candidates on each node. The first iteration is done when 

all nodes have been processed. This resulting image is 

smoother than that from the initial image model. We 

carry out the same procedure iteratively until the P(X|Y) 

value shows no significant improvement. Finally, 

selected HR patches on each node were stitched together 

to form an estimated texture (high-frequency component) 

image, and then we combined them with the previously 

upscaled image to obtain the final output HR image. 

IV. PROPOSED METHOD 

We want to analyze the SR methods in terms of 

parameter setting. Till now, the size of patch used in 

those methods is typically 5x5 or 7x7 in pixels, and the 

scaling factor is set typically as 2 or 4 times enlargement 

(4 or 16 times the total number of pixels of LR image, 

respectively). However, there is no experimental analysis 

yet regarding those two parameters, i.e. patch size and 

scaling factor. Is it really the best patch size for the SR 

process? How about other cases of magnification, where 

their scaling factor is different? What is the most suitable 

setting of patch size when we want to enlarge an LR 

image by different scaling factor, e.g. 3 times or 5 times? 

It is important to find the most suitable setting of 

parameters in order to make the application more 

convenience, stable or less sensitive, besides user-

friendly. Therefore, we attempt to analyze the algorithms 

in terms of patch size and scaling factor. Our aim is to 

find the most suitable patch size, which may provides 

better results, for different cases of magnification. 

A. Experimental Analysis 

We conducted an experiment by demonstrating the SR 

algorithms onto several sets of input LR images that have 

different scaling factor, i.e. 2, 3, 4, 5, and 6 times 

respectively. We used different size of patch during SR 

process, i.e. 5x5, 7x7, 9x9, and 11x11, and applied them 

onto each set of images to reconstruct HR images. The 

overlap region between patches is one pixel. Since the 

image size must be fit or compatible to the scaling factor 

and patch size to avoid any unnecessary remain part of 

image during SR process, we beforehand processed all 

the original HR face images by adjusting them to a 

desired size. The adjusted sizes of HR images are 

respectively shown in Table I. 

 

TABLE I.  ADJUSTED SIZE OF HR IMAGES [(WIDTH) X (HEIGHT)] 

THAT IS FIT WITH SCALING FACTOR AND PATCH SIZE SETTING 

Patch 
Size 

Scaling factor 

2 3 4 5 6 

5x5 240x288 240x288 240x288 240x280 240x288 

7x7 240x288 240x288 240x288 240x300 240x288 

9x9 240x288 240x288 240x288 240x280 240x288 

11x11 240x280 240x300 240x280 240x280 240x300 

13x13 240x288 240x288 240x288 240x300 240x288 

 

According to Table I, if an image’s original size is 

240x288 and scaling factor is 2, the size of downscaled 

image (LR image) is 120x144. We generated training 

face images (HR and LR) and input images according to 

Table I, producing 25 sets of training database and input 

images, respectively. Each set of training database 

consists of 110 face images, while the set of input LR 

images (excluded from database) consists of 30 face 

samples. We ran the SR method onto those input LR 

images to reconstruct HR images. Weighting factor for 

MRF functions, α, was set variably between zero and one, 

then we found the best amongst output HR images 

according to Peak Signal-to-Noise Ratios (PSNR) 

evaluation. The higher PSNR values indicate better 

quality results. 30 best output HR images for each set 

were collected for assessment. 

For overview analysis, we observed the average values 

of PSNRs for each set of 30 output HR images. The 

resulting average PSNRs are shown in Table II. The 

bolded values note the best patch size for each case of 

magnification. We can observe in Table II a consistent 

pattern between the best patch size and scaling factor, 

which also means that the best patch size is adaptable to 

the scaling factor. Let the scaling factor is n, we can 

conclude that the best setting of patch size for each 

scaling factor can be expressed as (2n+1)
2
. With this 

formula, we can now easily determine the size of patch to 

be used in the method when we want to enlarge an LR 

image under a certain scaling factor. 

TABLE II.  AVERAGE PSNR [DB] FOR SETS OF 30 OUTPUT HR 

IMAGES 

Patch 
Size 

Scaling factor 

2 3 4 5 6 

5x5 35.973 31.112 28.913 25.572 24.103 

7x7 35.852 32.027 28.487 26.123 25.624 

9x9 35.600 31.498 29.262 26.523 24.904 

11x11 35.280 30.924 28.506 27.070 25.163 

13x13 35.221 31.442 28.898 26.578 25.718 

B. Proposed Algorithms 

We employed the formula into the SR method. The 

proposed algorithms are simply illustrated in Fig. 6. The 

bolded lines indicate the preferred flow of SR. For 

example, if we want to magnify an LR image by 3 times, 

the algorithms will select the most suitable database, i.e. 

7x7 patch database, to be used in SR process, yielding the 

best possible output HR image. 

   P(X |Y ) = ψ XC (i, j),X(u,v)!" #$
(u,v)∈NB(i, j )
∏

×PC (X |Y )
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Figure 6. Proposed algorithms for the using of best patch size in SR 
process. 

V. CONCLUSIONS 

This paper reports the parametric analysis of face 

image super-resolution method. We conducted an 

experiment using different setting of patch size and 

scaling factor, to find the most suitable patch size and 

analyze their relationship with scaling factor. According 

to resulting PSNRs assessment, the best patch size is 

adaptable to the scaling factor of magnification. The best 

setting of patch size for SR method can be determined by 

(2n+1)
2
, where n refers to scaling factor. This formula 

contributes to make the application of the method more 

stable and convenience, since the method has many 

variable parameters, which may lead to varied possibility 

of results. By using the algorithms to determine a patch 

size for SR process, we are able to narrow down the ways 

of finding the best possible resulting HR image for the 

method. 
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