
Improving Robustness of Neural Networks

against Bit Flipping Errors during Inference

Minghai Qin, Chao Sun, and Dejan Vucinic
Western Digital Coporation, San Jose, California, USA

Email: {minghai.qin, chao.sun, dejan.vucinic}@wdc.com

Abstract—We study the trade-offs between prediction

accuracy and storage redundancy of neural networks that

are stored in noisy storage media. Parameters of a trained

neural network are commonly stored as binary data and it is

usually assumed that the data storage and retrieval are

error-free. This assumption is based upon the common use

of Error Correcting Codes (ECCs) that correct bit flips in

storage media. However, ECCs incur capacity and power

overhead (10% to 20%) and thus increase cost and reduce

the effective bandwidth when retrieving trained parameters

from storage during inference. We measured the robustness

of several deep neural network architectures and datasets

when bit flipping errors exist but ECCs are not used during

inference. It is observed that more sophisticated

architectures and datasets are generally more vulnerable to

bit flipping errors. We propose a simple parameter error

detection method, called weight nulling, that can universally

improve the robustness from twice to several orders of

magnitude depending on network architectures. 

Index Terms—neural networks, bit flips, error detection

I. INTRODUCTION

Neural Networks (NNs) [1], [2] are layered networks

that try to fit the function of neurons in a human brain

during object recognition, decision making, etc. They are

one of the most widely-used machine learning techniques

due to their good performance in practice. Some variants

of neural networks are shown to be more suitable for

different learning applications. For example, deep

Convolutional Neural Networks (CNNs) [3], [4] are

found to be effective in recognizing and classifying

images. Recurrent Neural Networks (RNNs) [5], [6]

provides stronger performance in sequence prediction,

e.g., speech or text recognition. Compared to standard

feed-forward neural networks with full connections,

CNNs have much less number of connections in the

convolutional layers and thus much fewer parameters to

train, possibly avoiding the over-fitting problems. RNNs

have memory units like Long-Short-Term-Memory

(LSTM) [7] that can be trained without

vanishing/exploding gradient problems.

A neural network is defined by the connections

between neurons, each of which is associated with a

trainable parameter called a weight. There is another

parameter associated with each neuron, called a biase.

Manuscript received August 10, 2018; revised December 14, 2018.

Since a bias can be viewed as a weight from a neuron

with constant input, we will indiscriminately call it a

weight as well. The set of all trainable weights are usually

acquired by back-propagation algorithm [8], [9].

In order to fit highly non-linear functions and thus

achieve a high rate of correctness in practice, neural

networks usually contain millions to billions of weights

trained from a large dataset in a careful manner. Current

computer technology requires the weights to be stored in

Non-volatile Memories (NVMs) and they are loaded to

CPU/GPU caches during inference. NVMs are noisy

media where bit flipping errors can happen during writing,

reading, or retention. Error Correction Codes (ECCs) [10]

are ubiquitously used in NVM systems to guarantee data

reliability by adding 10% to 20% storage redundancy.

There are two major reasons that we study the robustness

of neural networks when weights stored in noisy NVM

media are not fully recovered by ECCs. Firstly, the GPU

caches have limited size (usually in Giga-byte range, but

will be much smaller for embedded systems) but the size

of the neural network models grow fast as a result of

smaller cost of collecting big data. If caches in a single or

multiple GPUs, in particular for embedded applications,

cannot hold all weights of a neural network, the

bandwidth of loading the weights from NVMs to GPU

caches would become a bottleneck of system

performance, e.g., applications with massive throughput

requirement, such as video recognition during self-

driving where the number of frames processed per second

positively correlates to the safety factor. The storage

overhead brought by ECCs will add latency and reduce

the effective throughput of the NVM chips. Secondly,

there is a growing trend of research on in-

memory/neuromorphic computing [11] where computing

units for a NN are moved from CPU/GPU to NVMs

themselves where the resistance of a memory device will

be used as the value of the weight such that error

correction is not feasible. The benefit of this in-

memory/neuromorphic computing comes from higher

parallelism and lower power consumption of NVM

systems, but ECCs might have to be weakened or

abandoned depending on the design of the computing

system.

Robustness of neural networks has been studied

against random and adversarial noise to the input of the

NNs. Ref. [12] provides adversarial attack algorithms on

input and defensive distillation towards evaluating the

robustness of neural networks. Ref. [13] proposed

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 181
doi: 10.18178/joig.6.2.181-186

training algorithms that address the issue of output

instability when the input is slightly distorted. Ref. [14]

and [15] studied neural networks with binary or ternary

weights, whose training algorithms are adjusted. But to

our knowledge, there has been no study in improving the

robustness of weights (represented as binary arrays)

against bit flipping errors.

In this paper, we explore the robustness of trained

neural networks when they are stored in noisy storage

media. For each dataset, an originally undistorted neural

network is trained by GPUs and the real-valued weights

are stored as binary arrays by fixed-point representations.

Each bit in the binary array will be flipped independently

with some probability, called Raw Bit Error Rate (RBER)

of the storage media, and the prediction accuracy of the

distorted neural network will be examined. The typical

RBER for current NVM technology will range from 10
-2

to 10
-6

, depending on their materials and requirement

(throughput, latency, cost, etc.). We then propose a

detection method, called weight nulling, by adding a

single check bit for each weight. When reading a weight

from storage, we first calculate if the check bit equals the

modulo-2 sum of all other bits. If they are not equal

(called a check fail), it is guaranteed that some bit in this

weight are erroneous and we null the weight by setting it

to be a zero. Multiple check bits, e.g., Cyclic Redundant

Checks (CRCs), are not used since 1-bit check brings the

smallest overhead and the performance improvement is

already prominent. This weight nulling method can detect

a single bit flipping error, which dominates multiple bit

flipping errors in probability. Note that the weight nulling

method is closely related to DropConnect [16] or Dropout

[17], which were only used during training and the

connections/neurons to drop are randomly selected. On

the other hand, the weight nulling method is used during

inference and is targeted to all connections that cause

check fails. The tolerance of RBER at the same

prediction accuracy with weight nulling has been

improved by several times to orders of magnitude, which

is validated by experiments on different datasets and

neural network architectures. Note that the ultimate goal

is not to optimize the prediction accuracy of the original

neural networks, but to maintain relatively high accuracy

as RBER increases so that it can be used with high

device-to-device differences and uneven quality of NVM

storage chips resulting from unavoidable manufacturing

variability.

II. PRELIMINARIES

A. Neural Networks and Notations

A neural network contains input neurons, hidden

neurons, and output neurons. It can be viewed as a

function where the input

is an n-dimensional vector and the output

 is an m-dimensional vector. In this

paper, we focus on classification problems where the

output is usually normalized such

that and can be viewed as the

probability for some input x to be categorized as the i-th

class. The normalization is often done by the softmax

function that maps an arbitrary m-dimensional vector

into normalized , denoted by , as

. For top-k decision

problems, we return the top k categories with the largest

output . In particular for hard decision problems

where k=1, the classification results is then

.

A feedforward neural network that contains n layers

(excluding the softmax output layer) can be expressed as

a concatenation of n functions , n

such that . The ith layer

 satisfies . The

output of last layer is then fed into the softmax

function. The function is usually defined as

where W is the weights matrix, b is the bias vector, and σ

is an element-wise activation function that is usually

nonlinear, e.g., sigmoid and rectified linear unit (ReLU).

Both W and b are trainable parameters.

Figure 1. Example of a CNN

Figure 2. Unfolding a RNN

A Convolutional Neural Network (CNN) (Fig. 1) is a

special class of feedforward neural network that has local

weights constraints, e.g., the weights connecting neurons

are all zeros except for a few pair of neurons between

adjacent layers, and the value of weights between

different pair of neurons in two layers with similar spatial

relationships are forced to be the same. Therefore, a CNN

layer has much less parameters to train compared to a

fully connected layer and is good at extracting local

features from the previous layer, which enables it to be

the state-of-art technique for image recognition problems.

A Recurrent Neural Network (RNN) is a special class of

neural networks that has directed cycles, which enable it

to create internal states and exhibit temporal behaviors. A

RNN can be unfolded (Fig. 2) in time to form a

feedforward neural network for training purposes. One of

the most widely used neurons to store the states is LSTM,

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 182

consisting of forget-gate, update-gate, and output-gate.

Back-propagation algorithms can be applied from the last

output neurons backwards to train all weights in the RNN.

B. Real-Valued Weights and Their Binary

Representations

The originally undistorted weights of a NN is trained

by GPU and are represented by IEEE Standard for

Floating-Point Arithmetic (IEEE 754). We will briefly

review IEEE 754 and argue that floating-point

representation is not an appropriate method when bit

flipping errors exist. Then we introduce an unsigned

fixed-point representation based on quantization and it

will serve as the basis for representing real numbers in

this paper.

1) IEEE Standard for Floating-Point Arithmetic (IEEE

754): IEEE 754 provides guidelines to represent a real

number r as (–1)
s
 × c

q
 by 16, 32, 64, 128, and 256 bits,

where s is 1-bit of sign, c is a significand, and q is an

exponent. For example, a 16-bit representation assigns 5

bits to the exponent with bias equal to 15, and the rest 11

bits are used for the 10-bit significand and the 1-bit sign.

The largest number that can be represented is (2 – 2
-10

) ×

2
15

 = 65504 which usually is much larger than any weight

in a neural network.

With the presence of media errors, IEEE 754 standard

is not a proper representation of real-valued weights. The

major weakness is due to the exponent representation. In

particular, if the most significant bit in the exponent is

erroneous, the value of that weight can be inadvertently

set to a very large value. For example, the binary string 0

01101 0101010101 represents (–1)
0
×2

13–

15
×1.3330078125 ≈ 0.33, but if the second bit is flipped

and the string becomes 0 11101 0101010101, it will

represent (–1)
0
×2

29–15
×1.3330078125 = 21840. This large

weight will destroy the learned neural network. Since the

number of weights is large and each weight has a few

“vulnerable” bits (e.g., some most significant bits in the

exponents), it is likely that some of them are flipped,

resulting in poor robustness against the media errors.

2) Fixed-Point Arithmetic with unsigned

representation: Fixed-point representation avoids the

troublesome exponent part in IEEE 754 standard. It can

be either signed or unsigned representations depending on

whether to allocate one bit for the sign. For signed

representation, the maximumly (positive) and minimumly

(negative) representable values are almost the same (can

differ by one quantization interval). However, since the

distribution of weights are not strictly symmetric around

zero, we use the unsigned fixed-point arithmetic

throughout this paper, where a direct quantization of real

numbers between the minimum-valued weight and the

maximum-valued weight is applied. Assume the

minimum and maximum weight is denoted by wmin and

wmax, respectively. To convert a real-valued weight into a

length-q binary array, the interval [wmin –△, wmax + △] is

be quantized into 2q consecutive subintervals with

boundaries wmin –△ = b0 < b1 < … < b2
q = wmax + △,

where △ = is the size of subintervals. For

all weights w ∈ [wmin, wmax], if w is in the ith interval, i.e.,

bi ≤ w ＜ bi+1, then w is represented by the q-bit

unsigned binary representation of the integer i as (i0,

i1, …, iq–1). To convert a binary array to a real-valued

weight, the following equation is used for decoding:

 (1)

III. IMPROVING ROBUSTNESS BY WEIGHT NULLING

In this section, we explore the robustness of different

neural network architectures for different datasets and

show that weight nulling can improve the tolerable RBER

at the same prediction accuracy.

Suppose we have an undistorted neural network model

with N weights and each weight is represented by q bits

in Section II-B2, then the total number of bits is qN. The

noisy storage media is modeled as a Binary Symmetric

Channel (BSC) [18], where each bit is independently

flipped with probability p (called RBER of the media,

denoted by BSC(p)). For each p, M distorted models are

obtained by passing the undistorted model through a

BSC(p) M times. Thus, each distorted model has on

average pqN bit flipping errors. We will test the

validation accuracy of all M distorted models and use that

M values to approximate the statistics, in particular, the

mean value of M validation accuracy for a certain p. Note

that the fixed-point representation has a weakness in that

the most significant bit (MSB), i.e., the leftmost bit in the

binary array, is much more vulnerable because the

distortion caused by MSB is while

distortions of other bits are exponentially decreasing.

Therefore, it is desirable to have a small variance among

all validation accuracy, which is also explored in our

experiments.

In order the measure the robustness of neural networks

against storage media errors, we introduce a robustness

measure R(x), which is defined as follows. Suppose the

undistorted model has validation accuracy A ∈ [0, 1],

then R(x), x ∈ [0, 1] is defined as the maximum RBER

that the average validation accuracy is larger than or

equal to Ax. We will use x = 0.99 and x = 0.95 as two

criteria, that is, R(0.99) (or R(0.95)) is the maximum

RBER that a neural network architecture can tolerate

when the average validation accuracy of distorted models

degrade at most 1% (or 5%) compared to the undistorted

model.

A. Weight Nulling during Inference

Assume we have a trained NN model in which each

weight w is to be encoded into q bits as (i0, i1, …, iq–1)

and stored. The weight nulling requires that iq–1 =

 where the summation is modulo-2, i.e., iq–1 is

the check bit for the (q – 1)-bit representation of w. For

inference purpose, suppose a weight is read from storage

as (), where with

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 183

probability p (RBER of the noisy storage media), we first

check whether . If the equation is

satisfied, we assume there is no bit flipping errors in the

length-q array and will use it to calculate the input of a

neuron; Otherwise, we can guarantee that at least 1 bit

flipping error exists and we can then delete the

connection by setting the weight as 0. The improvement

of weight nulling is based on two major observations.

First, RBER is usually small, thus the probability of one

bit flipping error is dominating multiple errors and we

can almost detect all distorted weights. Second, deleting a

connection during inference is much less harmful than

distorting the weight to be a random value. Note that

weight nulling has 1 bit less in quantization compared to

q-bit representation without weight nulling. Nonetheless,

the gain in detecting distorted weights over-weighs the

loss in 1 bit quantization, especially when q is not too

small, e.g., we use q = 8 in our experiment.

B. A 6-Layer CNN for MNIST

The MNIST database is a database of handwritten

digits that is commonly used for image processing and

machine learning. It includes 60000 training images and

10000 test images of size 28 × 28. We train a 6-layer

convolutional neural network to classify the 10 digits

with the architecture in Table I.

TABLE I. CNN ARCHITECTURE FOR MNIST

Fig. 3 shows the comparison with and without weight

nulling during inference. We use 8-bit fixed-point

representation and each point in the figure is the average

validation accuracy of 50 distorted models. The error bar

surrounding each point is the standard deviation for those

50 distorted models. Two dashed horizontal lines

indicates the 99% and 95% of the undistorted model’s

accuracy (which is 99.6%), respectively. The robustness

measure (R(0.99), R(0.95)) of the 6-layer CNN have been

increased from (0.006, 0.012) to (0.025, 0.034) by weight

nulling. With the same RBER, it can also be observed

that the variance of the distorted models has been reduced,

resulting in more predictable inference performance with

the presence of bit flipping errors in storage media. In

order to explore the robustness of each convolutional

layer or fully connected layer against errors, we test the

validation accuracy when weights in each layer are

distorted individually. The top figure in Fig. 4 shows the

average prediction accuracy over 40 distorted models for

each RBER where bit flipping errors appear in only one

of the six layers. It can be observed that the robustness is

decreasing from the first to the fourth convolutional layer,

possibly due to the fact that the number of weights is

largely increased from the first to the fourth. In order to

take the total number of weights into account, the bottom

figure in Fig. 4 shows the average validation accuracy

versus the total number of bit flipping errors in each layer.

It is reasonable to see that layers with more weights can

tolerate more bit flipping errors at the same validation

accuracy.

Figure 3. Validation accuracy of the 6-layer CNN for MNIST with and
without weight nulling.

Figure 4. Validation accuracy when only one of the six layers has bit
flipping errors.

C. A 28-Step LSTM for MNIST

LSTMs are typically used for sequence prediction and

classification, such as language and speech, but they are

also capable of recognizing images if we sequentially

feed each row of the image to one LSTM cell. As a result,

the number of LSTM cells (called steps) equals the

number of rows in the image and the input dimension of

one LSTM cell equals the number of columns in the

image. Table II summarizes the LSTM architecture in our

experiments. The input to each LSTM cell is a row in the

image.

TABLE II. A 28-STEP LSTM ARCHITECTURE FOR MNIST

Fig. 5 shows the comparison with and without weight

nulling during inference. Similar to the setup of the 6-

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 184

layer CNN, 8-bit fixed-point representation is used and

50 distorted models are then obtained for each RBER.

The undistorted LSTM model has validation accuracy

98.57%. The robustness measure (R(0.99), R(0.95)) of the

LSTM have been increased from (0.0003, 0.001) to

(0.003, 0.006) by weight nulling.

Figure 5. Validation accuracy of the 28-step LSTM for MNIST with and
without weight nulling.

D. A Depth-40 Growth-Rate-12 Densely Connected

Convolutional Neural Network for CIFAR-10

The CIFAR-10 dataset consists of 60000 32×32 color

images in 10 classes. We use a densely connected

convolutional neural network [19] (densenet), which is

one of the best results for CIFAR-10 dataset. The depth is

40 and the growth rate is k = 12 in our experiment. The

reported validation accuracy in [19] of the undistorted

model without data augmentation is 93%, which is close

to what we observe (92.5%) after 300 epochs of training.

Fig. 6 shows the comparison with and without weight

nulling during inference. 8-bit fixed-point representation

is used and 100 distorted models are then obtained for

each RBER. The robustness measure (R(0.99), R(0.95))

of the densenet have been increased from (10
–5

, 2×10
–5

)

to (4×10
–4

, 9×10
–4

) by weight nulling.

Figure 6. Validation accuracy of the densenet for CIFAR-10 with and
without weight nulling.

E. A VGG-16 for Cats-Dogs Classification

VGG-16 [20] has been a widely used deep neural

network for image classification. We explore the

robustness of the VGG-16 by categorizing a dataset of

cats and dogs provided by Kaggle. We use 20000 images

for training and 5000 for validation. The convolutional

layers of VGG-16 is pretrained and we train the last few

fully connected layers to achieve validation accuracy of

98.76% with an undistorted VGG-16 model. The 16-bit

fixed-point representation is used and 40 distorted models

are then obtained for each RBER. Fig. 7 shows the

comparison with and without weight nulling during

inference. The robustness measure (R(0.99), R(0.95)) of

the VGG-16 have been increased from (2×10
–
7, 10

–
6) to

(1.5×10
–
4, 2.5×10

–
4) by weight nulling.

Figure 7. Validation accuracy of the VGG-16 for cat-dog classifications
with and without weight nulling.

F. A Summary of Weight Nulling Improvement during

Inference

Table III summarizes the comparison of robustness

measure R(0.99) and R(0.95) of different datasets and NN

architectures with and without weight nulling. According

to this table, we believe that more complicated image

recognition tasks with more sophisticated NNs has much

less robustness against the storage media errors. However,

the improvement brought by the weight nulling method

during inference is more significant.

TABLE III. ROBUSTNESS IMPROVEMENT BY WEIGHT NULLING

IV. CONCLUSIONS

In this paper, we study the robustness of neural

networks against media errors for different neural

network architectures and datasets. We propose a weight

nulling method during inference that can improve the

robustness (tolerable RBER with the same validation

accuracy) by a few times to orders of magnitude,

depending on the DNN architectures and datasets.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An

overview,” Neural Networks, vol. 61, pp. 85-117, 2015.

[2] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning, New York: Springer, 2001.

[3] K. Jarrett, K. Kavukcuoglu, and M. Ranzato, “What is the best
multi-stage architecture for object recognition?” in Proc. IEEE Int.

Conf. Computer Vision, Kyoto, Japan, September 2009, p. 2146-

2153.
[4] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet

classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25, F. Pereira,

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 185

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., Curran
Associates, Inc., 2012, pp. 1097-1105.

[5] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and

J. Schmidhuber, “A novel connectionist system for improved
unconstrained handwriting recognition,” IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855-868,
May 2009.

[6] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory

recurrent neural network architectures for large scale acoustic
modeling,” 2014.

[7] K. Greff, R. Srivastava, J. Koutník, B. Steunebrink, and J.
Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans.

Neural Networks and Learning Systems, pp. 1-11, July 2016.

[8] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: the RPROP algorithm,” in Proc. IEEE

Int. Conf. Neural Networks, San Francisco, CA, USA, March 2009,
pp. 586-591.

[9] R. Hecht-Nielsen, “Theory of the backpropagation neural

network,” in Proc. Int. Joint Conf. on Neural Networks,
Washington, DC, USA, 1989, pp. 593-605.

[10] W. Ryan and S. Lin, Channel Codes: Classical and Modern,
Cambridge University Press, 2009.

[11] W. Zhao, G. Agnus, V. Derycke, A. Filoramo, J. Bourgoin, and C.

Gamrat, “Nanotube devices based crossbar architecture: toward
neuromorphic computing,” Nanotechnology, vol. 21, no. 17, April

2010.
[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of

neural networks,” in Proc. IEEE Symp. on Security and Privacy,

San Jose, CA, USA, 2017, pp. 39-57.
[13] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the

robustness of deep neural networks via stability training,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, Las

Vegas, NV, USA, 2016, pp. 4480-4488.

[14] M. Courbariaux, Y. Bengio, and J. David. (2015). Binaryconnect:
Training deep neural networks with binary weights during

propagations. [Online]. Available: http://arxiv.org/abs/1511.00363
[15] P. Merolla, R. Appuswamy, J. Arthur, S. Esser, and D. Modha.

(2016). Deep neural networks are robust to weight binarization

and other non-linear distortions. [Online]. Available:
http://arxiv.org/abs/1606.01981

[16] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus,
“Regularization of neural networks using dropconnect,” in

Proceedings of the 30th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, S.

Dasgupta and D. McAllester, Eds., Atlanta, Georgia, USA: PMLR,

2013, vol. 28, no. 3, pp. 1058-1066.
[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.

Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning

Research, vol. 15, pp. 1929-1958, 2014.

[18] T. Cover and J. Thomas, Elements of Information Theory, New
York, NY, USA: Wiley-Interscience, 1991.

[19] G. Huang, Z. Liu, and K. Q. Weinberger. (2016). Densely
connected convolutional networks. CoRR, vol. abs/1608.06993.

[Online]. Available: http://arxiv.org/abs/1608.06993

[20] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc.

International Conference on Learning Representations, 2014.

Minghai Qin is a research staff member in Next Generation Platform
Technologies, Western Digital Research since May 2016. Before that,

he is with Storage Architecture, HGST, a Western Digital Company
since Sept. 2014. He received his Ph.D. in Electrical Engineering in

Sept. 2014 from the Department of Electrical and Computer

Engineering, UCSD, where he was also associated with the Center for
Magnetic Recording Research (CMRR) from 2010 to 2014.

Chao Sun received the B.S. and M.S. degrees in electrical engineering

and automation from the Harbin Institute of Technology, Harbin, China,
in 2009 and 2011, respectively, and the Ph.D. degree in electrical

engineering and information system from the University of Tokyo,
Tokyo, Japan. He was an Assistant Professor with Chuo University,

Tokyo, Japan, from 2014 to 2015. Currently, he is a Research Staff

Member (Sr. Principal Engineer/ Technologist) with the Western Digital
San Jose Research Center, San Jose, CA, USA. His current research

interests include high performance storage systems, cloud computing
and artificial intelligence.

Dejan Vucinic earned a Ph.D. in experimental particle physics from

MIT in 1998. He is now a director of NVM systems architecture group
at Western Digital Corporation’s San Jose Research Center.

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 186

