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Abstract—We study the trade-offs between prediction 

accuracy and storage redundancy of neural networks that 

are stored in noisy storage media. Parameters of a trained 

neural network are commonly stored as binary data and it is 

usually assumed that the data storage and retrieval are 

error-free. This assumption is based upon the common use 

of Error Correcting Codes (ECCs) that correct bit flips in 

storage media. However, ECCs incur capacity and power 

overhead (10% to 20%) and thus increase cost and reduce 

the effective bandwidth when retrieving trained parameters 

from storage during inference. We measured the robustness 

of several deep neural network architectures and datasets 

when bit flipping errors exist but ECCs are not used during 

inference. It is observed that more sophisticated 

architectures and datasets are generally more vulnerable to 

bit flipping errors. We propose a simple parameter error 

detection method, called weight nulling, that can universally 

improve the robustness from twice to several orders of 

magnitude depending on network architectures.  

 

Index Terms—neural networks, bit flips, error detection 

 

I. INTRODUCTION 

Neural Networks (NNs) [1], [2] are layered networks 

that try to fit the function of neurons in a human brain 

during object recognition, decision making, etc. They are 

one of the most widely-used machine learning techniques 

due to their good performance in practice. Some variants 

of neural networks are shown to be more suitable for 

different learning applications. For example, deep 

Convolutional Neural Networks (CNNs) [3], [4] are 

found to be effective in recognizing and classifying 

images. Recurrent Neural Networks (RNNs) [5], [6] 

provides stronger performance in sequence prediction, 

e.g., speech or text recognition. Compared to standard 

feed-forward neural networks with full connections, 

CNNs have much less number of connections in the 

convolutional layers and thus much fewer parameters to 

train, possibly avoiding the over-fitting problems. RNNs 

have memory units like Long-Short-Term-Memory 

(LSTM) [7] that can be trained without 

vanishing/exploding gradient problems. 

A neural network is defined by the connections 

between neurons, each of which is associated with a 

trainable parameter called a weight. There is another 

parameter associated with each neuron, called a biase. 

                                                           
Manuscript received August 10, 2018; revised December 14, 2018. 

Since a bias can be viewed as a weight from a neuron 

with constant input, we will indiscriminately call it a 

weight as well. The set of all trainable weights are usually 

acquired by back-propagation algorithm [8], [9]. 

In order to fit highly non-linear functions and thus 

achieve a high rate of correctness in practice, neural 

networks usually contain millions to billions of weights 

trained from a large dataset in a careful manner. Current 

computer technology requires the weights to be stored in 

Non-volatile Memories (NVMs) and they are loaded to 

CPU/GPU caches during inference. NVMs are noisy 

media where bit flipping errors can happen during writing, 

reading, or retention. Error Correction Codes (ECCs) [10] 

are ubiquitously used in NVM systems to guarantee data 

reliability by adding 10% to 20% storage redundancy. 

There are two major reasons that we study the robustness 

of neural networks when weights stored in noisy NVM 

media are not fully recovered by ECCs. Firstly, the GPU 

caches have limited size (usually in Giga-byte range, but 

will be much smaller for embedded systems) but the size 

of the neural network models grow fast as a result of 

smaller cost of collecting big data. If caches in a single or 

multiple GPUs, in particular for embedded applications, 

cannot hold all weights of a neural network, the 

bandwidth of loading the weights from NVMs to GPU 

caches would become a bottleneck of system 

performance, e.g., applications with massive throughput 

requirement, such as video recognition during self-

driving where the number of frames processed per second 

positively correlates to the safety factor. The storage 

overhead brought by ECCs will add latency and reduce 

the effective throughput of the NVM chips. Secondly, 

there is a growing trend of research on in-

memory/neuromorphic computing [11] where computing 

units for a NN are moved from CPU/GPU to NVMs 

themselves where the resistance of a memory device will 

be used as the value of the weight such that error 

correction is not feasible. The benefit of this in-

memory/neuromorphic computing comes from higher 

parallelism and lower power consumption of NVM 

systems, but ECCs might have to be weakened or 

abandoned depending on the design of the computing 

system. 

Robustness of neural networks has been studied 

against random and adversarial noise to the input of the 

NNs. Ref. [12] provides adversarial attack algorithms on 

input and defensive distillation towards evaluating the 

robustness of neural networks. Ref. [13] proposed 
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training algorithms that address the issue of output 

instability when the input is slightly distorted. Ref. [14] 

and [15] studied neural networks with binary or ternary 

weights, whose training algorithms are adjusted. But to 

our knowledge, there has been no study in improving the 

robustness of weights (represented as binary arrays) 

against bit flipping errors. 

In this paper, we explore the robustness of trained 

neural networks when they are stored in noisy storage 

media. For each dataset, an originally undistorted neural 

network is trained by GPUs and the real-valued weights 

are stored as binary arrays by fixed-point representations. 

Each bit in the binary array will be flipped independently 

with some probability, called Raw Bit Error Rate (RBER) 

of the storage media, and the prediction accuracy of the 

distorted neural network will be examined. The typical 

RBER for current NVM technology will range from 10
-2

 

to 10
-6

, depending on their materials and requirement 

(throughput, latency, cost, etc.). We then propose a 

detection method, called weight nulling, by adding a 

single check bit for each weight. When reading a weight 

from storage, we first calculate if the check bit equals the 

modulo-2 sum of all other bits. If they are not equal 

(called a check fail), it is guaranteed that some bit in this 

weight are erroneous and we null the weight by setting it 

to be a zero. Multiple check bits, e.g., Cyclic Redundant 

Checks (CRCs), are not used since 1-bit check brings the 

smallest overhead and the performance improvement is 

already prominent. This weight nulling method can detect 

a single bit flipping error, which dominates multiple bit 

flipping errors in probability. Note that the weight nulling 

method is closely related to DropConnect [16] or Dropout 

[17], which were only used during training and the 

connections/neurons to drop are randomly selected. On 

the other hand, the weight nulling method is used during 

inference and is targeted to all connections that cause 

check fails. The tolerance of RBER at the same 

prediction accuracy with weight nulling has been 

improved by several times to orders of magnitude, which 

is validated by experiments on different datasets and 

neural network architectures. Note that the ultimate goal 

is not to optimize the prediction accuracy of the original 

neural networks, but to maintain relatively high accuracy 

as RBER increases so that it can be used with high 

device-to-device differences and uneven quality of NVM 

storage chips resulting from unavoidable manufacturing 

variability. 

II. PRELIMINARIES 

A. Neural Networks and Notations 

A neural network contains input neurons, hidden 

neurons, and output neurons. It can be viewed as a 

function  where the input  

is an n-dimensional vector and the output 

 is an m-dimensional vector. In this 

paper, we focus on classification problems where the 

output  is usually normalized such 

that  and  can be viewed as the 

probability for some input x to be categorized as the i-th 

class. The normalization is often done by the softmax 

function that maps an arbitrary m-dimensional vector  

into normalized , denoted by , as 

. For top-k decision 

problems, we return the top k categories with the largest 

output . In particular for hard decision problems 

where k=1, the classification results is then 

. 

A feedforward neural network  that contains n layers 

(excluding the softmax output layer) can be expressed as 

a concatenation of n functions , n 

such that . The ith layer 

 satisfies . The 

output of last layer  is then fed into the softmax 

function. The function  is usually defined as 

 
where W is the weights matrix, b is the bias vector, and σ 

is an element-wise activation function that is usually 

nonlinear, e.g., sigmoid and rectified linear unit (ReLU). 

Both W and b are trainable parameters. 

 

Figure 1. Example of a CNN 

 

Figure 2. Unfolding a RNN 

A Convolutional Neural Network (CNN) (Fig. 1) is a 

special class of feedforward neural network that has local 

weights constraints, e.g., the weights connecting neurons 

are all zeros except for a few pair of neurons between 

adjacent layers, and the value of weights between 

different pair of neurons in two layers with similar spatial 

relationships are forced to be the same. Therefore, a CNN 

layer has much less parameters to train compared to a 

fully connected layer and is good at extracting local 

features from the previous layer, which enables it to be 

the state-of-art technique for image recognition problems. 

A Recurrent Neural Network (RNN) is a special class of 

neural networks that has directed cycles, which enable it 

to create internal states and exhibit temporal behaviors. A 

RNN can be unfolded (Fig. 2) in time to form a 

feedforward neural network for training purposes. One of 

the most widely used neurons to store the states is LSTM, 
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consisting of forget-gate, update-gate, and output-gate. 

Back-propagation algorithms can be applied from the last 

output neurons backwards to train all weights in the RNN. 

B. Real-Valued Weights and Their Binary 

Representations 

The originally undistorted weights of a NN is trained 

by GPU and are represented by IEEE Standard for 

Floating-Point Arithmetic (IEEE 754). We will briefly 

review IEEE 754 and argue that floating-point 

representation is not an appropriate method when bit 

flipping errors exist. Then we introduce an unsigned 

fixed-point representation based on quantization and it 

will serve as the basis for representing real numbers in 

this paper. 

1) IEEE Standard for Floating-Point Arithmetic (IEEE 

754): IEEE 754 provides guidelines to represent a real 

number r as (–1)
s
 × c

q
 by 16, 32, 64, 128, and 256 bits, 

where s is 1-bit of sign, c is a significand, and q is an 

exponent. For example, a 16-bit representation assigns 5 

bits to the exponent with bias equal to 15, and the rest 11 

bits are used for the 10-bit significand and the 1-bit sign. 

The largest number that can be represented is (2 – 2
-10

) × 

2
15

 = 65504 which usually is much larger than any weight 

in a neural network. 

With the presence of media errors, IEEE 754 standard 

is not a proper representation of real-valued weights. The 

major weakness is due to the exponent representation. In 

particular, if the most significant bit in the exponent is 

erroneous, the value of that weight can be inadvertently 

set to a very large value. For example, the binary string 0 

01101 0101010101 represents (–1)
0
×2

13–

15
×1.3330078125 ≈ 0.33, but if the second bit is flipped 

and the string becomes 0 11101 0101010101, it will 

represent (–1)
0
×2

29–15
×1.3330078125 = 21840. This large 

weight will destroy the learned neural network. Since the 

number of weights is large and each weight has a few 

“vulnerable” bits (e.g., some most significant bits in the 

exponents), it is likely that some of them are flipped, 

resulting in poor robustness against the media errors. 

2) Fixed-Point Arithmetic with unsigned 

representation: Fixed-point representation avoids the 

troublesome exponent part in IEEE 754 standard. It can 

be either signed or unsigned representations depending on 

whether to allocate one bit for the sign. For signed 

representation, the maximumly (positive) and minimumly 

(negative) representable values are almost the same (can 

differ by one quantization interval). However, since the 

distribution of weights are not strictly symmetric around 

zero, we use the unsigned fixed-point arithmetic 

throughout this paper, where a direct quantization of real 

numbers between the minimum-valued weight and the 

maximum-valued weight is applied. Assume the 

minimum and maximum weight is denoted by wmin and 

wmax, respectively. To convert a real-valued weight into a 

length-q binary array, the interval [wmin –△, wmax + △] is 

be quantized into 2q consecutive subintervals with 

boundaries wmin –△ = b0 < b1 < … < b2
q = wmax + △, 

where △ =  is the size of subintervals. For 

all weights w ∈ [wmin, wmax], if w is in the ith interval, i.e., 

bi ≤  w ＜  bi+1, then w is represented by the q-bit 

unsigned binary representation of the integer i as (i0, 

i1, …, iq–1). To convert a binary array to a real-valued 

weight, the following equation is used for decoding: 

          (1) 

III. IMPROVING ROBUSTNESS BY WEIGHT NULLING 

In this section, we explore the robustness of different 

neural network architectures for different datasets and 

show that weight nulling can improve the tolerable RBER 

at the same prediction accuracy. 

Suppose we have an undistorted neural network model 

with N weights and each weight is represented by q bits 

in Section II-B2, then the total number of bits is qN. The 

noisy storage media is modeled as a Binary Symmetric 

Channel (BSC) [18], where each bit is independently 

flipped with probability p (called RBER of the media, 

denoted by BSC(p)). For each p, M distorted models are 

obtained by passing the undistorted model through a 

BSC(p) M times. Thus, each distorted model has on 

average pqN bit flipping errors. We will test the 

validation accuracy of all M distorted models and use that 

M values to approximate the statistics, in particular, the 

mean value of M validation accuracy for a certain p. Note 

that the fixed-point representation has a weakness in that 

the most significant bit (MSB), i.e., the leftmost bit in the 

binary array, is much more vulnerable because the 

distortion caused by MSB is  while 

distortions of other bits are exponentially decreasing. 

Therefore, it is desirable to have a small variance among 

all validation accuracy, which is also explored in our 

experiments. 

In order the measure the robustness of neural networks 

against storage media errors, we introduce a robustness 

measure R(x), which is defined as follows. Suppose the 

undistorted model has validation accuracy A ∈ [0, 1], 

then R(x), x ∈ [0, 1] is defined as the maximum RBER 

that the average validation accuracy is larger than or 

equal to Ax. We will use x = 0.99 and x = 0.95 as two 

criteria, that is, R(0.99) (or R(0.95)) is the maximum 

RBER that a neural network architecture can tolerate 

when the average validation accuracy of distorted models 

degrade at most 1% (or 5%) compared to the undistorted 

model. 

A. Weight Nulling during Inference 

Assume we have a trained NN model in which each 

weight w is to be encoded into q bits as (i0, i1, …, iq–1) 

and stored. The weight nulling requires that iq–1 = 

 where the summation is modulo-2, i.e., iq–1 is 

the check bit for the (q – 1)-bit representation of w. For 

inference purpose, suppose a weight is read from storage 

as ( ), where  with 
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probability p (RBER of the noisy storage media), we first 

check whether . If the equation is 

satisfied, we assume there is no bit flipping errors in the 

length-q array and will use it to calculate the input of a 

neuron; Otherwise, we can guarantee that at least 1 bit 

flipping error exists and we can then delete the 

connection by setting the weight as 0. The improvement 

of weight nulling is based on two major observations. 

First, RBER is usually small, thus the probability of one 

bit flipping error is dominating multiple errors and we 

can almost detect all distorted weights. Second, deleting a 

connection during inference is much less harmful than 

distorting the weight to be a random value. Note that 

weight nulling has 1 bit less in quantization compared to 

q-bit representation without weight nulling. Nonetheless, 

the gain in detecting distorted weights over-weighs the 

loss in 1 bit quantization, especially when q is not too 

small, e.g., we use q = 8 in our experiment. 

B. A 6-Layer CNN for MNIST 

The MNIST database is a database of handwritten 

digits that is commonly used for image processing and 

machine learning. It includes 60000 training images and 

10000 test images of size 28 × 28. We train a 6-layer 

convolutional neural network to classify the 10 digits 

with the architecture in Table I. 

TABLE I.  CNN ARCHITECTURE FOR MNIST 

 
 

Fig. 3 shows the comparison with and without weight 

nulling during inference. We use 8-bit fixed-point 

representation and each point in the figure is the average 

validation accuracy of 50 distorted models. The error bar 

surrounding each point is the standard deviation for those 

50 distorted models. Two dashed horizontal lines 

indicates the 99% and 95% of the undistorted model’s 

accuracy (which is 99.6%), respectively. The robustness 

measure (R(0.99), R(0.95)) of the 6-layer CNN have been 

increased from (0.006, 0.012) to (0.025, 0.034) by weight 

nulling. With the same RBER, it can also be observed 

that the variance of the distorted models has been reduced, 

resulting in more predictable inference performance with 

the presence of bit flipping errors in storage media. In 

order to explore the robustness of each convolutional 

layer or fully connected layer against errors, we test the 

validation accuracy when weights in each layer are 

distorted individually. The top figure in Fig. 4 shows the 

average prediction accuracy over 40 distorted models for 

each RBER where bit flipping errors appear in only one 

of the six layers. It can be observed that the robustness is 

decreasing from the first to the fourth convolutional layer, 

possibly due to the fact that the number of weights is 

largely increased from the first to the fourth. In order to 

take the total number of weights into account, the bottom 

figure in Fig. 4 shows the average validation accuracy 

versus the total number of bit flipping errors in each layer. 

It is reasonable to see that layers with more weights can 

tolerate more bit flipping errors at the same validation 

accuracy. 

 

Figure 3. Validation accuracy of the 6-layer CNN for MNIST with and 
without weight nulling. 

 

Figure 4. Validation accuracy when only one of the six layers has bit 
flipping errors. 

C. A 28-Step LSTM for MNIST 

LSTMs are typically used for sequence prediction and 

classification, such as language and speech, but they are 

also capable of recognizing images if we sequentially 

feed each row of the image to one LSTM cell. As a result, 

the number of LSTM cells (called steps) equals the 

number of rows in the image and the input dimension of 

one LSTM cell equals the number of columns in the 

image. Table II summarizes the LSTM architecture in our 

experiments. The input to each LSTM cell is a row in the 

image. 

TABLE II.  A 28-STEP LSTM ARCHITECTURE FOR MNIST 

 
 

Fig. 5 shows the comparison with and without weight 

nulling during inference. Similar to the setup of the 6-

Journal of Image and Graphics, Vol. 6, No. 2, December 2018

©2018 Journal of Image and Graphics 184



layer CNN, 8-bit fixed-point representation is used and 

50 distorted models are then obtained for each RBER. 

The undistorted LSTM model has validation accuracy 

98.57%. The robustness measure (R(0.99), R(0.95)) of the 

LSTM have been increased from (0.0003, 0.001) to 

(0.003, 0.006) by weight nulling. 

 

Figure 5. Validation accuracy of the 28-step LSTM for MNIST with and 
without weight nulling. 

D. A Depth-40 Growth-Rate-12 Densely Connected 

Convolutional Neural Network for CIFAR-10 

The CIFAR-10 dataset consists of 60000 32×32 color 

images in 10 classes. We use a densely connected 

convolutional neural network [19] (densenet), which is 

one of the best results for CIFAR-10 dataset. The depth is 

40 and the growth rate is k = 12 in our experiment. The 

reported validation accuracy in [19] of the undistorted 

model without data augmentation is 93%, which is close 

to what we observe (92.5%) after 300 epochs of training. 

Fig. 6 shows the comparison with and without weight 

nulling during inference. 8-bit fixed-point representation 

is used and 100 distorted models are then obtained for 

each RBER. The robustness measure (R(0.99), R(0.95)) 

of the densenet have been increased from (10
–5

, 2×10
–5

) 

to (4×10
–4

, 9×10
–4

) by weight nulling. 

 

Figure 6. Validation accuracy of the densenet for CIFAR-10 with and 
without weight nulling. 

E. A VGG-16 for Cats-Dogs Classification 

VGG-16 [20] has been a widely used deep neural 

network for image classification. We explore the 

robustness of the VGG-16 by categorizing a dataset of 

cats and dogs provided by Kaggle. We use 20000 images 

for training and 5000 for validation. The convolutional 

layers of VGG-16 is pretrained and we train the last few 

fully connected layers to achieve validation accuracy of 

98.76% with an undistorted VGG-16 model. The 16-bit 

fixed-point representation is used and 40 distorted models 

are then obtained for each RBER. Fig. 7 shows the 

comparison with and without weight nulling during 

inference. The robustness measure (R(0.99), R(0.95)) of 

the VGG-16 have been increased from (2×10
–
7, 10

–
6) to 

(1.5×10
–
4, 2.5×10

–
4) by weight nulling. 

 

Figure 7. Validation accuracy of the VGG-16 for cat-dog classifications 
with and without weight nulling. 

F. A Summary of Weight Nulling Improvement during 

Inference 

Table III summarizes the comparison of robustness 

measure R(0.99) and R(0.95) of different datasets and NN 

architectures with and without weight nulling. According 

to this table, we believe that more complicated image 

recognition tasks with more sophisticated NNs has much 

less robustness against the storage media errors. However, 

the improvement brought by the weight nulling method 

during inference is more significant. 

TABLE III.  ROBUSTNESS IMPROVEMENT BY WEIGHT NULLING 

 

IV. CONCLUSIONS 

In this paper, we study the robustness of neural 

networks against media errors for different neural 

network architectures and datasets. We propose a weight 

nulling method during inference that can improve the 

robustness (tolerable RBER with the same validation 

accuracy) by a few times to orders of magnitude, 

depending on the DNN architectures and datasets. 
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