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Abstract—Tonic-clonic seizures pose a serious risk of injury 

to those afflicted. Therefore, patients both in home-based 

and residential care can require constant monitoring. 

Technical aids may help by alerting caregivers of detected 

seizures. So far, the usability of several sensor systems for 

seizure detection has been shown. However, most of these 

systems require some sensors to be physically attached to 

the patient or are limited with respect to their accuracy or 

robustness. Thus, we investigated the feasibility of using 

depth image sequences for the detection of seizure-like 

periodic motion. A static camera setup was utilized to 

monitor a limited region of interest comparable to a 

patient's bed during the night. Data of simulated limb 

motion including seizure-like movement was acquired with 

help of a robot moving a hand phantom both uncovered and 

covered by a duvet, ensuring the availability of a known 

ground truth. Subsequently, a characteristic of the recorded 

images which may be used to differentiate between normal 

and seizure-like motion was defined. Finally, linear 

discriminant analysis was applied to the determined 

characteristic. We found that the rapid detection of seizure-

like periodic motion from depth image sequences is feasible 

even when the moving limb is covert by a blanket.  

 

Index Terms—vision based seizure detection, periodicity 

analysis, depth image processing, epilepsy 

 

I. INTRODUCTION 

Epilepsy is a chronic disorder affecting about 50 

million people around the globe [1]. Additionally,  5 to 

25% of patients with brain injuries experience seizures 

[2]. Particularly patients of the latter group may require 

continuous monitoring while epileptic patients in home-

based or residential care are most vulnerable while alone 

at night [3], [4]. For these patients, tonic-clonic seizures 

pose the greatest risk to life as they increase the risk for 

Sudden Unexplained Death in Epilepsy (SUDEP) 

especially while the patient is asleep [5], [6]. 

In either case, technical aids can relieve staff and 

family of the need for constant manual monitoring by 

alerting nurses and caregivers of detected seizures. 

Sensor systems utilized for seizure detection include EEG 

(electroencephalography), ECG (electrocardiography) 

PPG (photoplethysmography), EMG (electromyography), 

systems measuring EDA (electrodermal activity), audio 

recording systems, accelerometry, magnetometry, and 

RGB video recording systems [7], [8]. 

                                                           
Manuscript received August 14, 2018; revised December 6, 2018. 

Most of these systems require some sensors to be 

physically attached to the patient which may cause 

discomfort and is impractical for long-term care. 

Detection systems based on audio recordings are low-cost 

and may be placed in close vicinity to the patient without 

physical attachment to the patient. However, these 

systems show a poor performance with a large number of 

false alerts [8]. 

Furthermore, Lende et al. [9] recently reaffirmed the 

need for image based monitoring by evaluating the 

number of nocturnal seizures identified in a residential 

setting with help of video monitoring as well as with 

acoustic detection systems and bed motion sensors. They 

found that 33% of all seizures and 12% of all clonic 

seizures observed with help of the video monitoring were 

neither detected by the bed motion sensors nor the 

acoustic detection system. In their study, caregivers 

trained to recognize seizures monitored the video 

recordings.  

Today, a number of approaches exist for seizure 

detection from RGB video recordings [7], [8], [10]-[12]. 

Some of these utilize specific clothing [10] or visual 

markers attached to the patient's extremities which 

defeats the advantages of a contactless sensor system 

over systems requiring sensors attached to the patient. 

Other video recording systems employ seizure detection 

methods based on motion trajectories [11] or the 

periodicity of the average luminance in the RGB images 

[12]. None of these systems allow the patient to be 

covered during the video recording. A patient sleeping 

without a blanket is a common occurrence when the 

patient is a premature infant as is the case for the research 

of Karayiannis et al. [11] and Ntonfo et al. [12]. For 

patients of all other age groups, a solution enabling the 

vision based detection of clonic seizures despite normal 

bedding would be preferable.  

Additionally, all mentioned RGB-based seizure 

detection methods except the method developed by 

Ntonfo et al. [12] require elaborate computations. This 

may be of little relevance for diagnostic applications but 

appears undesirable when the objective is the rapid 

detection of an occurring seizure. Ntonfo et al. [12] chose 

an approach based on the detection of periodicity in the 

recorded movement reflected by the average luminance 

of the difference between two consecutive images of their 

RGB video recordings. They found that RGB video 

recordings of a 10s time window contained sufficient 
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information for their algorithm to detect neonatal clonic 

seizures. 

Contrary to RGB camera recordings which scarcely 

reflect movement away from or towards the camera, a 

depth camera implicitly records movements in any 

direction within its field of view. In the following, we 

show the feasibility of the detection of clonic seizure-like 

periodic motion of an object both within direct view of a 

depth camera and covered by a duvet using a periodicity 

based approach requiring less than 3 s of depth camera 

recordings. 

II. METHODS 

In order to investigate the feasibility of clonic seizure 

detection from depth camera data, we recorded a variety 

of motions including clonic seizure-like periodic 

movements simulated with help of a robot-mounted hand 

phantom both within direct view of the utilized depth 

camera and covered by a duvet. Subsequently, we 

determined the depth difference present in all pixels of 

two consecutively recorded depth images and calculated 

the number of times that the algebraic sign of the depth 

difference changed for each of the depth difference image 

pixels within a time window of up to 3s of depth camera 

recording. 

Here, each change of the algebraic sign of the depth 

difference should indicate a change of direction of the 

recorded movement. Finally, we applied cross-validated 

linear discriminant analysis to determine the feasibility of 

differentiating periodic seizure-like motion from other 

movements using the number of algebraic sign changes 

of the depth difference between consecutive depth images 

recorded over some time window. 

A. Data Acquisition  

The utilized data was recorded using the depth sensor 

of a Kinect v2 camera and a hand phantom mounted onto 

a robotic arm. The Kinect v2 camera has a recording 

frequency of about 30Hz. The setup as seen from the 

point of view of the Kinect v2 camera is depicted in Fig. 

1 where dark colors indicate a relatively small distance 

between the camera and the detected surface while lighter 

colors imply larger distances. Here, the distance between 

the hand phantom and the Kinect v2 was roughly 1.2m. 

  

Figure 1. Depth images of hand phantom mounted onto the robotic arm 
for data acquisition without (left) and with (right) duvet as seen from 

and recorded by the Kinect v2 camera. 

According to Lüders et al. [13], the muscle 

contractions present during clonic seizures occur at a rate 

between 0.2Hz and 5Hz and in tonic-clonic seizures, the 

rate of muscle contractions decreases until the 

contractions disappear. We decided to simulate seizure-

like motion with a frequency of up to 3Hz since 

simulated motions between 1 and 3Hz should be well 

within the frequency window through which each tonic-

clonic seizure should pass. 

In order to represent various other types of motion that 

a patient may exhibit while not experiencing a seizure, 

the robot motion protocol included a number of 

movements which may be grouped into the following 

categories: 

 Rest: hand speed of 0 mm/s, 

 Random light motion: hand speed of 10 mm/s 

covering distances of 10 to 15 mm, 

 Random strong motion: hand speed of 100 mm/s 

covering distances of 100 to 300 mm, 

 Seizure-like periodic motion: hand speed of 300 

mm/s covering distances of 50 to 100 mm. 

For the seizure-like periodic motion, the directions of 

motion were chosen such that the angle between the 

direction of motion and the depth camera's principal axis 

varied between 0 and 90 degrees. This setup ensures that 

the level of seizure detection determined later on is valid 

irrespective of the observed motion's orientation in space. 

For random light and strong motions, a new random 

direction was chosen after a certain distance was traveled. 

For random strong motion, this distance was chosen 

randomly from the interval [100, 300] mm while for 

random light motion, the distance to be traveled was 

selected at random from the interval [10, 15] mm. 

In total, approximately 18000 depth images were 

recorded: about 3000 depth images of rest, random light 

and random strong motion were recorded respectively as 

well as 9000 depth images of seizure-like motion. 

B. Pre-Processing 

A moving average filter with a window size of ten 

images was applied to the sequence of depth images in 

order to smooth out sensor noise present in the recorded 

data. For clonic seizure detection from sequences of 

depth images, we are interested in the change of depth in 

the recordings as observed over time. Therefore, the 

difference in depth between each pixel of two 

consecutive images was calculated. In the following, this 

will be referred to as a depth difference image (DDI). The 

depth difference of any pixels of a DDI for which the 

depth difference exceeded 100 mm was reset to 0 mm to 

exclude depth differences unrealistic for human motion. 

Examples of one DDI for each of the four recorded 

movement categories are shown in Fig. 2 and Fig. 3 for 

recordings of the hand-phantom with and without blanket 

covering respectively. Here, dark blue implies no change 

between the depth of the respective pixel in the 

consecutive images under consideration while lighter 

colors indicate greater changes of depth. One may note 

that only artifacts towards the edge of the field of vision 

of the depth camera are visible when a motionless scene 

was observed. 
The recording of random light motion leads to the 

visibility of a thin outline of the moving object while the 

hand phantom is clearly visible when the robot performs 
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random strong or seizure-like periodic motion. In fact, the 

DDIs for the latter two cases hardly differ since the 

speeds of the recorded robot movements of both cases 

enabled the robot to cover enough distance between the 

recording times of two consecutive images for the depth 

difference to be clearly visible in the DDIs. 

  
 

  

Figure 2. Depth difference image for each of the recorded movement 
categories, i.e. rest (top left), random light motion (top right), random 

strong motion (bottom left) and seizure-like motion (bottom right). 

  
 

  

Figure 3. Depth difference image for each of the recorded movement 
categories, i.e. rest (top left), random light motion (top right), random 

strong motion (bottom left) and seizure-like motion (bottom right), 
where the moving hand phantom and robot arm were covered by a duvet. 

The depth differences observed when the edges of the 

moving object conceal or expose parts of the background 

are most prominently visible in green and yellow since 

these represent the largest differences in the observed 

depth at each pixel. Movement towards or away from the 

depth camera is reflected by a light blue in the DDIs 

which for the human eye is harder to distinguish from the 

background than those changes reflected by bright colors. 

The use of DDIs renders the background of the 

considered depth images irrelevant since pixels in which 

no movement occurred between the current and the 

previous recorded time instance are set to zero. 

Consequently, walls, floor, bed frame and mattress do not 

appear in the DDI just as the floor of the laboratory 

clearly visible in the depth images in Fig. 1 as well as the 

table onto which the robotic arm is mounted are not 

reflected in the DDIs shown in Fig. 2 and Fig. 3. Only the 

edges of the table may be discernable. Similarly, the 

decrease in quality of the depth camera recordings 

towards the edges of the depth images is reflected in the 

DDIs. 

C. Feature Definition  

Clonic seizures are characterized by repetitive muscle 

contractions causing motion which periodically changes 

direction. The number of sign-changes in the difference 

of observed depths between the pixels of two consecutive 

images reflects the number of times that the direction of 

movement changed within a short time window. On the 

contrary, normal motion of a sleeping person should 

exhibit much fewer changes of direction within a short 

time window. 

More specifically, the characteristic to be calculated 

was defined as: fsign = number of sign-changes in the 

difference of depth between two consecutive images 

exceeding a threshold dsign (mm) over a number of 

consecutive images nsign. 

For the depth difference threshold dsign, values of 1, 5, 

10 and 20 mm were considered while the window sizes 

nsign that were taken into account covered 30, 45, 60, 75 

and 90 consecutive DDIs, i.e. roughly one to three 

seconds. Therefore, the fsign assigned to each DDI 

corresponds to the sum of the sign changes observed in 

all pixels which exceeded the threshold dsign of the current 

DDI as well as the nsign - 1 preceding DDIs. Therefore, 

the scale at which the depth of a pixel differed between 

two consecutive images does not influence the 

determined characteristic as long as this depth difference 

does not fall below the depth difference threshold dsign 

and does not exceed 100 mm, i.e. the color of the depth 

difference depicted in Fig. 1 and Fig. 2 is only of minor 

relevance for the calculation of fsign. 

The fsign corresponding to the first 89 DDIs of each 

depth image sequence depicting motion of one of the 

motion categories were discarded since these cannot be 

labeled unambiguously. Consequently, 2900 DDIs 

corresponding to rest, random light and random strong 

motion respectively as well as 8700 DDIs corresponding 

to periodic seizure-like motion were used in order to 

obtain a data set balanced between seizure-like and not 

seizure-like motion. 

D. Assessment  

In order to evaluate the influence of the depth 

difference threshold dsign and the number of consecutive 

images nsign on the applicability of the feature fsign to the 

detection of clonic seizures, linear discriminant analysis 

[14] was applied to each combination of dsign and nsign as 

well as to three different data sets: 

 Data acquired without any bedding, 

 Data acquired with a duvet covering the hand 

phantom and the robotic arm, 

 And the combination of the first two data sets. 

The evaluation of the results for the first two data sets 

should provide insights into the impact of covering of the 
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moving object on the performance of the proposed 

seizure detection method. Furthermore, the results of the 

third data set indicate the usability of the proposed 

method to the most realistic scenario where motion of 

relevance may occur both while the patient is covered or 

uncovered.  

All results were obtained utilizing ten-fold cross-

validation for model assessment [14]. Here, half of the 

instances of each fold corresponded to seizure-like 

motion and the other half to equal parts to each of the 

other movement categories described in Section 2.1. Each 

instance consisting of an fsign and the label (“seizure-like” 

or “not seizure-like”) corresponding to the DDI for which 

it was calculated was assigned to exactly one of the folds. 

Several measures designed to reflect the quality of a 

model exist. However, depending on the application it 

may be desirable to obtain a model which predicts 

instances of all considered classes equally well or to have 

a model which is able to reliably predict all instances of 

one of the considered classes even if this comes at the 

cost of a lower rate of correct predictions for 

measurements corresponding to all other classes. 

Furthermore, the importance of avoiding incorrect 

predictions of a class may vary. 

In the case of seizure detection, the incorrect prediction 

of seizures as normal motion could be devastating while 

the incorrect prediction of normal motion as seizure 

would be acceptable albeit uncomfortable. Consequently, 

the model assessment measure for this application should 

emphasize the correct prediction of seizures whereas the 

correct prediction of normal motion is of little interest 

other than that it decreases the number of false alarms. 

Then, a measure of interest is the G-Measure defined 

as the geometric mean of the precision (also known as 

positive predictive value) and the recall (also known as 

sensitivity or true positive rate) defined as follows:  

Precision =  
𝑇seizure

𝑇seizure+𝐹seizure
                  (1) 

Recall =  
𝑇seizure

𝑇seizure+𝐹noSeizure
                   (2) 

G-Measure =  √Precision ∙ Recall             (3) 

here, Tseizure describes the number of predictions which 

correctly label seizure-like motion in the considered DDIs. 

On the contrary, Fseizure denotes the number of instances 

when a DDI not depicting seizure-like motion was 

incorrectly classified as showing seizure-like motion 

while FnoSeizure provides the number of predictions which 

incorrectly labeled seizure-like motion as normal motion. 

The prediction results obtained for linear discriminant 

analysis utilizing each pair of dsign and nsign under 

consideration are presented in terms of the achieved 

number of correct and incorrect predictions for each class 

label as well as the precision, recall and G-Measure. 

III. RESULTS 

In order to obtain insights into the feasibility of using 

the proposed method for the detection of seizure-like 

periodic motion in different application scenarios, three 

distinct data sets were evaluated. All results are provided 

in terms of the cross-validated precision, recall and G-

Measure as well as their standard errors and the number 

of correct and incorrect predictions over all cross-

validation folds found by applying linear discriminant 

analysis to the feature fsign for various combinations of 

dsign and nsign.  

TABLE I.  RESULTS FOR DATA RECORDED USING A HAND PHANTOM TO SIMULATE MOTION FOUND BY APPLYING CROSS-VALIDATED LINEAR 

DISCRIMINANT ANALYSIS TO THE FEATURE fsign FOR EACH COMBINATION OF DEPTH DIFFERENCE THRESHOLD dsign AND NUMBER OF CONSIDERED 

DDIS nsign. FOR EACH CLASS LABEL (SEIZURE-LIKE PERIODIC MOTION AND NOT SEIZURE-LIKE MOTION), 8700 DDIS WERE CONSIDERED. 

dsign nsign 
Correct predictions Incorrect predictions 

Precision Recall G-Measure 
seizure-like not seizure-like seizure-like not seizure-like 

1 mm 30 8700 7220 1840 0 0.87±0.036 1±0 0.93±0.019 

1 mm 45 8700 7335 1365 0 0.88±0.036 1±0 0.94±0.019 

1 mm 60 8700 7542 1158 0 0.89±0.035 1±0 0.94±0.018 

1 mm 75 8700 7950 750 0 0.93±0.028 1±0 0.96±0.015 

1 mm 90 8540 8595 105 160 0.99±0.011 0.98±0.012 0.99±0.0077 

5 mm 30 8700 7045 1655 0 0.85±0.031 1±0 0.92±0.017 

5 mm 45 8700 6674 2026 0 0.82±0.032 1±0 0.90±0.017 

5 mm 60 8700 6561 2139 0 0.81±0.030 1±0 0.90±0.016 

5 mm 75 8700 6652 2048 0 0.82±0.030 1±0 0.90±0.016 

5 mm 90 8700 6412 2288 0 0.80±0.022 1±0 0.89±0.012 

10 mm 30 8700 7133 1567 0 0.86±0.031 1±0 0.92±0.017 

10 mm 45 8700 6875 1825 0 0.83±0.027 1±0 0.91±0.015 

10 mm 60 8700 6866 1834 0 0.84±0.030 1±0 0.91±0.016 
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10 mm 75 8700 6585 2115 0 0.81±0.026 1±0 0.90±0.014 

10 mm 90 8700 6351 2349 0 0.79±0.025 1±0 0.89±0.014 

20 mm 30 8700 7008 1692 0 0.85±0.030 1±0 0.92±0.016 

20 mm 45 8700 6866 1834 0 0.83±0.029 1±0 0.91±0.016 

20 mm 60 8700 6958 1742 0 0.84±0.032 1±0 0.92±0.017 

20 mm 75 8700 6844 1856 0 0.83±0.029 1±0 0.91±0.016 

20 mm 90 8700 6331 2369 0 0.79±0.024 1±0 0.89±0.015 

TABLE II.  RESULTS FOR DATA RECORDED USING A HAND-PHANTOM COVERED BY A DUVET TO SIMULATE MOTION FOUND BY APPLYING CROSS-
VALIDATED LINEAR DISCRIMINANT ANALYSIS TO THE FEATURE fsign FOR EACH COMBINATION OF DEPTH DIFFERENCE THRESHOLD dsign AND NUMBER 

OF CONSIDERED DDIS nsign. FOR EACH CLASS LABEL (SEIZURE-LIKE PERIODIC MOTION AND NOT SEIZURE-LIKE MOTION), 8700 DDIS WERE 

CONSIDERED. 

dsign nsign 
Correct predictions Incorrect predictions 

Precision Recall G-Measure 
seizure-like not seizure-like seizure-like not seizure-like 

1 mm 30 8539 7160 1540 161 0.86±0.037 0.98±0.0083 0.92±0.021 

1 mm 45 8700 7301 1399 0 0.87±0.036 1±0 0.93±0.019 

1 mm 60 8700 7471 1229 0 0.89±0.035 1±0 0.94±0.019 

1 mm 75 8700 7680 1020 0 0.91±0.035 1±0 0.95±0.019 

1 mm 90 8540 7849 851 0 0.92±0.033 1±0 0.96±0.018 

5 mm 30 8700 7053 1647 0 0.85±0.029 1±0 0.92±0.016 

5 mm 45 8700 6819 1881 0 0.83±0.029 1±0 0.91±0.016 

5 mm 60 8700 6500 2200 0 0.81±0.029 1±0 0.90±0.016 

5 mm 75 8700 6151 2549 0 0.77±0.011 1±0 0.88±0.0062 

5 mm 90 8700 6473 2227 0 0.80±0.020 1±0 0.89±0.011 

10 mm 30 8700 6812 1888 0 0.83±0.027 1±0 0.91±0.015 

10 mm 45 8700 6995 1705 0 0.85±0.030 1±0 0.92±0.016 

10 mm 60 8700 7037 1663 0 0.85±0.035 1±0 0.92±0.019 

10 mm 75 8700 7413 1287 0 0.88±0.036 1±0 0.94±0.019 

10 mm 90 8700 7456 1244 0 0.88±0.031 1±0 0.94±0.016 

20 mm 30 8700 6643 2057 0 0.82±0.028 1±0 0.90±0.015 

20 mm 45 8700 6804 1896 0 0.83±0.032 1±0 0.91±0.017 

20 mm 60 8700 7003 1697 0 0.85±0.034 1±0 0.92±0.019 

20 mm 75 8700 7330 1370 0 0.88±0.036 1±0 0.93±0.019 

20 mm 90 8700 7219 1481 0 0.86±0.032 1±0 0.93±0.017 

 
 

   

  

dsign nsign 
Correct predictions Incorrect predictions 

Precision Recall G-Measure 
seizure-like not seizure-like seizure-like not seizure-like 

1 mm 30 14457 12017 5383 2943 0.74±0.020 0.83±0.018 0.78±0.0086 

1 mm 45 14574 12034 5366 2826 0.74±0.020 0.84±0.012 0.78±0.0093 

1 mm 60 14605 12325 5075 2795 0.75±0.015 0.84±0.020 0.79±0.0037 

1 mm 75 15071 12571 4829 2329 0.76±0.015 0.87±0.0044 0.81±0.0070 

1 mm 90 14305 12441 4959 3095 0.75±0.013 0.82±0.022 0.78±0.010 

5 mm – 
20 mm 

30 – 
90 

17400 14500 2900 0 0.86±0.0019 1±0 0.93±0.0010 
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TABLE III. RESULTS FOR DATA RECORDED USING A HAND-PHANTOM WITH AND WITHOUT DUVET COVERING TO SIMULATE MOTION FOUND BY 

APPLYING CROSS-VALIDATED LINEAR DISCRIMINANT ANALYSIS TO THE FEATURE fsign FOR EACH COMBINATION OF DEPTH DIFFERENCE THRESHOLD

dsign AND NUMBER OF CONSIDERED DDIS nsign. FOR EACH CLASS LABEL (SEIZURE-LIKE PERIODIC MOTION AND NOT SEIZURE-LIKE MOTION), 8700
DDIS WERE CONSIDERED, I.E. 17400 DDIS IN TOTAL.



The results found for the data set acquired using an 

uncovered robotic arm and hand phantom are given in 

Table I. Here, the highest G-Measure of 0.99 was 

obtained for a depth difference threshold of dsign = 1 mm 

and a window size of nsign = 90. Simultaneously, this was 

the only setting for which some DDIs corresponding to 

recordings of seizure-like periodic motion were not 

detected.  

Similarly, the results obtained for the data set featuring 

recordings of the robotic arm and hand phantom both 

covered by a duvet are provided in Table II. Again the 

highest G-Measure was found for a depth difference 

threshold of dsign = 1 mm and a window size of nsign = 90. 

Here, none of the DDIs corresponding to recordings of 

seizure-like periodic motion were classified incorrectly. 

Generally, linear discriminant analysis correctly 

classified all DDIs corresponding to recordings of 

seizure-like periodic motion for 19 of the 20 

combinations of the depth difference threshold dsign and 

the window size nsign when only recordings of motion 

with or without covering were utilized.  

Additionally, these first two data sets were combined 

into a joint third data set. The results for this third data set 

are shown in Table III. Contrary to the best results of the 

first two data sets, the highest G-Measure for the joint 

data set was found for any depth difference threshold of 

dsign ≥ 5 mm combined with any of the considered 

window sizes. 

Considering only results obtained for dsign ≥ 5 mm, the 

results for data obtained without covering given in Table 

I suggest that the number of incorrectly classified normal 

motion instances increases for longer time frames while 

the results for data obtained with a duvet covering the 

hand phantom and robotic arm shown in Table II indicate 

the opposite for dsign ≥ 10 mm.  

IV. DISCUSSION 

The DDIs corresponding to periodic seizure-like 

motion are identified correctly in almost all cases except 

for fsign determined using the smallest considered depth 

difference threshold dsign = 1 mm. Thus, fsign for dsign ≥ 5 

mm combined with any of the considered window sizes 

nsign reliably reflects the presence of periodicity in 

seizure-like motion even when the moving object is 

covered by a blanket as a seizing patient lying in bed. 

While the reliable detection of seizure-like motion is 

the main objective, another goal is to minimize the 

number of false alerts, i.e. recordings of normal motion 

mistakenly classified as seizure-like motion. Although the 

best results overall were obtained for a depth difference 

threshold of dsign = 1 mm and larger window sizes nsign for 

the cases where both data sets were treated individually, 

the depth difference threshold dsign = 1 mm should be 

regarded with caution since the results for the 

combination of both data sets imply that such a small 

depth difference threshold causes a lack of robustness 

with respect to variations in the recording setting 

including variations in the proportions of the moving 

object. 

In the context of seizure detection, a short response 

time is desirable as one would like a seizure detection 

system to reliably raise an alarm as soon as possible after 

the onset of a seizure. Therefore, we propose the use of 

nsign = 30 and dsign = 5 mm, leading to a G-Measure of 

0.92 for both data sets when each is considered 

individually and a G-Measure of 0.93 when both training 

and test data include DDIs corresponding to recordings of 

covered as well as uncovered moving objects. For these 

parameters, approximately 1 s of depth image recordings 

is required for the detection of seizure-like motion.  

V. CONCLUSION 

We found that the detection of seizure-like motion 

from recordings of depth image sequences is feasible. 

Furthermore, the calculation of only one characteristic of 

the recorded images, namely the number of sign-changes 

of the depth differences between all pixels of consecutive 

depth images counted over some time window, is 

sufficient to differentiate seizure-like motion from other 

motions and rest even when the moving object is covered 

by a duvet. The information contained in depth camera 

recordings over a time window of approximately 1 s was 

found to suffice for the task at hand. 
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