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Abstract—Highly compressed images from surveillance-

camera systems suffer from block noise. We propose two 

methods to restore such degraded face images based on an 

example-based Super-Resolution (SR) method. The base 

method preliminarily generates a database of patches from 

a training set of face-image examples and reconstructs a 

High-Resolution (HR) image from a given Low-Resolution 

(LR) image by using the patches and taking the positions of 

facial parts into consideration. The proposed methods aim 

to restore highly-compressed degraded images instead of LR 

images. One of the proposed methods named as the Direct 

method, synthesizes a restored texture directly with a given 

degraded image. The other method, named as the Smooth 

method, synthesizes a restored texture with a filtered image 

generated from a given degraded image. The Direct method 

results in a 3.2 dB improvement in terms of Peak Signal-to-

Noise Ratio (PSNR) on average for the lowest quality rate i.e. 

1% (around 120:1 compression rate), while the conventional 

Gaussian-filtering method results in a 2.5 dB improvement. 

Although the Direct method results in better quality for 

highly-compressed images compared to the conventional 

Gaussian-filtering method and Smooth method, unnatural 

block noise is still observed in the restored images. The 

Smooth method yields more natural images and better 

PSNRs for images when the quality rate is around 5%.  

 

Index Terms—example-based, compressed image, image 

restoration, Gaussian-filtering, Direct method, Smooth 

method 

 

I. INTRODUCTION 

Several methods have been developed to fight crime 

such as using Closed-Circuit Television (CCTV) 

installations. Such installations are often used for 

surveillance in areas, such as banks, airports, and 

convenience stores that may require monitoring. These 

CCTVs record digital images of crime footage that are 

useful as evidence in investigations. Information from 

images, especially those of criminals' faces, is helpful in 

solving crimes. 

Unfortunately, most security cameras involve long-

term recording, resulting in low-resolution and highly 

compressed images with low frame decimation. The 

quality of the footage is frequently too poor to be used in 

investigations since less information can be obtained 

from such images. It is useless if the obtained images of 

 

criminal faces are unidentifiable due to poor image 

quality. Therefore, it is important to improve the quality 

of footage as well as increase their quantity to prevent 

crimes.  

Poor-quality images from CCTV's footage are often 

caused by block noise due to image compression and 

worsened by dark environments since crimes often occur 

at night. It is necessary to make images clearer to obtain 

more information from the surrounding shapes, textures, 

or even small details as well as reduce noise. 

There are several noise reduction methods, such as 

Point-Spread Function (PSF) [1]-[3]. These methods 

smooth an image and eventually reduce block noise. The 

stronger the PSF is, the lesser the noise. However, the 

high-frequency component such as sharp edges or 

detailed texture is inevitably lost due to the spread 

process, which leads to a corrupted and blurred image. 

Therefore, it is important to restore the missing high-

frequency texture component in an image [4]-[7].  

Super-Resolution (SR) methods [8]-[16] have been 

proposed to predict detailed information of missing high-

frequency component as well as enhancing their 

resolution during the image-enlargement process. 

Amongst them, Freeman et al. proposed example-based 

method [17]-[19]. Since then, variations of the example-

based methods have been proposed [20]-[31].  

Example-based methods are significant SR methods 

that generally enable the production of SR image with 

high magnification ratios [20]. Compared to conventional 

interpolation-based methods that only use information 

from input images, example-based methods can estimate 

the missing high-frequency components by exploiting 

external information available in the database [32].  

Various image processes benefit from example-based 

methods such as in panoramic imaging [21], image 

compression [22], pattern recognition, and 3D modeling 

[23], [24]. Several methods have been proposed through 

different approaches in terms of feature extraction and 

type of learning model. Lui et al. proposed a Markov 

random field (MRF)-based SR method using wavelet 

synthesis as feature maps [25]. Yang et al. implemented a 

dictionary-learning strategy using sparse representation 

[26], [27]. Jiji et al. used a best-matching model on 

wavelets [28] and contourlet feature maps [29]. Several 

years later, Wu et al. proposed combining a contourlet 

transform for feature extraction and MRF for a learning 

model [30]. 
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Example-based methods are most suitable for 

applications that handle a specific type of images such as 

faces. Recently, an extension of example-based methods 

[31] is proposed from the observation that each facial part 

is in the closer position even in different faces. The 

method in [31] takes the position of each patch in the 

normalized face image into consideration to select the 

suitable HR patch, while to Freeman et al.'s method only 

considers the similarity of appearance and matching of 

the borders.  

We incorporate the idea from [31] into image 

restoration for noise reduction and propose two methods, 

both of which construct the database of patch pairs from 

training images and their degraded images, combining 

with their positions in the normalized face images. The 

two methods are named as Direct method and Smooth 

method. The Direct method reconstructs a restored image 

by adding restored texture directly to a given degraded 

image. While the Smooth method generates a restored 

image by adding restored texture to a filtered degraded 

image.  

We evaluated our methods and compared them with a 

conventional PSF method, i.e. Gaussian-filter on several 

sets of degraded face samples that had different JPEG 

quality rates. The PSF method produces higher quality 

images than proposed ones for JPEG compression images 

at a quality rate of 10% and above. On the other hand, the 

Direct method produces higher quality images for highly 

degraded images at a quality rate of 3% and below. 

However, unnatural block noise is still observed in the 

restored images with the Direct method. The Smooth 

method yields more natural images and results in better 

quality for images at a quality rate of around 5%. 

The rest of the paper is organized as follows. Section II 

describes the algorithm of the example-based methods. 

Section III presents our image-restoration methods. 

Section IV shows experimental results and discussions 

and Section V summarizes the paper. 

II. EXAMPLE-BASED METHOD 

Freeman et al. proposed an example-based method 

implementing an MRF network as the learning model for 

SR [17]. They use external information from a large 

volume of training LR and HR image pairs. The MRF 

network statistically models the spatial relationship 

among patches and the reference from each patch of the 

input image to a patch in the database. 

Given an input LR image, the method first applies 

upsampling to generate an HR image, where high-

frequency component was lost or corrupted due to the 

enlargement process. The generated image was divided 

into a low-frequency and middle-frequency component. 

The middle-frequency component is split into patches, 

which are the LR patches of the input image. 

Fig. 1 illustrates the structure of the MRF network 

where each circle represents a network node and each line 

indicates the spatial relationship and statistical 

dependencies between nodes. The nodes Y(i,j) represents 

the LR patches at the position (i,j) in the input (observed) 

image. The nodes X(i,j) represents the LR patches in the 

database whose corresponding HR patches are used to 

estimate the high-frequency components at the position 

(i,j) for the restored (hidden) image. 

 

Figure 1. MRF-network-based learning model. 

The dependency between nodes are represented as two 

compatibility functions ϕ(.) and ψ(.) in [17]. For a 

position (i,j) in the MRF network, the function ϕ[X(i,j), 

Y(i,j)] called as image compatibility function, represents 

the compatibility between the observed patch Y(i,j) and 

the estimated patch X(i,j). For a position (i,j) and its 

adjacent position (u,v), the function ψ[X(i,j), X(u,v)] 

called as border compatibility function, represents the 

compatibility of the common border between the 

estimated patches X(i,j) and X(u,v). 

The joint probability of X(.) under the condition Y(.) is 

defined as 

 (1) 

where NB(i,j) is a set of right, left, top, and bottom 

neighbors of (i,j) in the MRF network. In order to reduce 

the computational load, a number of LR patch candidates 

for X(i,j) are previously selected based on the image 

compatibility function. The number of patch candidate is 

given as a constant parameter m. 

The image compatibility function ϕ(.) is defined as 

    (2) 

where d(.) is the distance of the two matrices (or vectors) 

and σ1 is a constant parameter. We use the root sum of 

the squared differences of the pixels in the two patches. 

 

Figure 2.  Region of overlap. 

Fig. 2 outlines the overlap region between two adjacent 

patches. The border compatibility, ψ(.) is defined as 

               (3) 
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where p(q) is the vector of pixels of the overlap region in 

patch X(i,j) (X(u,v), respectively) and σ2 is a constant 

parameter. 

Given an initial set of candidates for X(.), the method 

iteratively changes each candidate for X(i,j) in turn to 

improve P(X|Y) greedily until no significant improvement 

is observed. The HR patches corresponding to the final 

candidates for X(i,j) forms the estimated high-frequency 

component. The method combines the upsampled input 

image and the estimated high-frequency component to 

obtain the restored image.  

Recently, the Freeman's method was modified in [31] 

for face-image SR taking the correspondence of facial 

parts into account, which uses facial-parts compatibility 

function, λ(.). The underlying idea is to select patches in 

the database according to their facial parts. In order to 

increase the probability for the patches of the 

corresponding facial part to be selected, the face-images 

were normalized and the distance from the original 

position of the selected patch was utilized in the λ(.). Fig. 

3 illustrates a learning model where patches’ positions are 

taken into consideration. The facial-parts compatibility 

function, λ(.) is defined as 

        (4) 

where L is the Euclidean distance from the original 

position of the patch X(i,j) in the training face image to 

the position (i,j) in the restored face image and σ3 is a 

constant parameter. 

 

Figure 3.  Learning-model including facial-parts compatibility function 

λ(.) 

The joint probability of X(.) under the condition Y(.) is 

an extension of (1), which is defined as 

           (5) 

Patch candidates for each Y(i,j) are selected based on 

ϕ[X(i,j), Y(i,j)] and λ[X(i,j)] with a given weighting factor 

to adjust preference. The remaining part of the method is 

similar to the Freeman's method.  

III. PROPOSED METHOD 

In example-based tradition, the training set should only 

include images that are similar in the type of input image 

for better probability of similarity among textures. The 

key idea is to categorize training patches based on facial 

parts, i.e., as a database of eye patches and a database of 

nose patches. Since the MRF model already includes λ(.), 

it is unnecessary to distribute the patches manually. 

We start from a collection of normalized high-

resolution face images to construct a database. The 

normalized training images have the same size and ratio 

of facial features, where facial-feature points (e.g., eye, 

nose, mouth, chin, and face boundary lines) in each 

image are at approximately closer positions. We degrade 

each image by applying JPEG compression to them with 

different quality rates, creating several sets of degraded 

images. The main characteristic of the database is each 

patch's original position in the training images, as shown 

in Fig. 4, where (k,l) is training-patch-position coordinate, 

to be used later in the proposed MRF model function 

during the super-resolution phase.  

 

Figure 4. Patch-coordinate-based database construction 

A. Database Construction 

The training images in the database need to be pre-

processed to extract high-frequency information so that 

only the texture are observed. There are several methods 

of texture extraction in image processing that have led to 

the proposal of several example-based SR methods, as 

mentioned in the introduction.  

 

Figure 5. Previous SR method’s database construction 

Fig. 5 shows an SR method’s database-construction 

process that applies a Gaussian filter as the PSF onto the 

initial interpolated LR image to extract texture 

components, while texture components in the original HR 

image are extracted from the difference in the 

interpolated image. Both original HR and LR images’ 

texture components are then divided into patch pairs, 

where patches are typically 5x5 or 7x7 pixels in size. A 

hundred images are pre-processed through the same 
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procedure to create a large number of patch pairs in the 

database. 

In this study, our targets were different from those of 

previous studies. We proposed a straight-forward method, 

named as Direct method, as outlined in Fig. 6, which 

directly takes the difference between the original HR 

images and degraded images as high-frequency 

components for original HR image. While for degraded-

images’ texture extraction, we apply a Gaussian filter on 

the degraded images to obtain their low-frequency 

components. Then we subtract low-frequency 

components from the degraded image to obtain the 

middle-frequency components. Both high-frequency 

component and middle-frequency component are stored 

in pairs in the database.  

 

Figure 6.  Direct method’s database construction 

 

Figure 7.  Smooth method’s database construction 

Another proposed method named as Smooth Method, 

uses a different extraction process for original HR images 

for independently extracting high-frequency components 

from original HR images by applying a Gaussian filter 

into itselves. We smooth out the original HR images in 

advance using the Gaussian filter to obtain low-frequency 

components, then we subtract it from the original HR 

images to obtain their textures (high-frequency 

component), as outlined in Fig. 7. For the degraded 

images, we use the same process of extraction as for the 

Direct method. Both texture components are then divided 

into patches in which both patches correspond to each 

other and store them in the database. 

B. Patch-candidate Selection 

To reduce computational cost, a fixed amount of patch 

candidates for each node is selected in advance so that we 

do not have to consider thousands of patches available in 

the database iteratively during the iteration process. 

Several patch candidates that had the most similar texture 

according to their ϕ(.), and closest facial parts according 

to λ(.) with the input patches are chosen beforehand. 

To adjust the preference between ϕ(.) and λ(.), we 

apply a weighting factor α as follows. 

              (6) 

where α is between zero and one. 

When α is one, the function does not take into account 

λ(.), which means this is the same as that with Freeman et 

al.’s method. If α is zero, it only takes into account λ(.) 

and ignores ϕ(.). A set of patch candidates that have 

maximum likelihood are selected when α is 0.0, 0.1, 

0.2, ...., and 1.0 to find the best output result.  

The number of patch candidates proportional with the 

number of training images in the database, where there is 

1 patch candidate per training image, e.g., if we used 100 

training images, 100 patches among the total number of 

patches would be chosen as candidates. 

C. Image Restoration Phase 

The main objective for this study was to restore a 

degraded (block noise) image into a clear HR image. We 

adopt the same process as with example-based methods, 

but we use original and degraded image pairs as training 

images and a degraded input sample as the target.  

The MRF network in Fig. 3 probabilistically models 

the relation between the degraded input image patches 

and degraded HR training image-pair patches in terms of 

ϕ(.) and λ(.), and between the four neighboring estimated 

HR patches in terms of ψ(.). We have to find a set of 

patch candidates for each input node according to ϕ(.) and 

λ(.) with α previously. Then, the only element left to be 

considered is which patch amongst the candidates is the 

best neighbor.  

The iteration process involves a stitching algorithm 

that iteratively infers a set of best neighboring patches 

that have the most compatible ψ(.) values on the overlap 

region between nodes, as illustrated in Fig. 2. 

 

Figure 8. Restoration algorithms for Direct method 

 

Figure 9. Restoration algorithms for Smooth method 

Fig. 8 and Fig. 9 outline the overall image-restoration 

algorithms for our Direct and Smooth methods, 

respectively. The texture components from the degraded 

input image are extracted through the same process as in 

the database, which is using a Gaussian filter. We then 

find a set of patch candidates for each input patch node 

for the iteration process.  
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Before iteration, we create an initial estimated image 

as the base image by merging the most similar patch 

candidates (patches with the lowest ϕ(.) and λ(.)) of all 

nodes. This image would looks uneven and unnatural 

since the chosen patches would not yet be compatible 

with their neighboring patches. Local patches alone are 

not sufficient to estimate plausible looking HR images 

[17]. Hence, we applied the iteration process to reduce 

the incompatible effects in the image. 

Theoretically, the aim with the iteration process is to 

find a set of X(.), that will improve the joint probability, 

P(X|Y) in (5) as best as possible. By only using a limited 

number of selected candidates to determine the P(X|Y), 

the processing time can be reduced. We find the best 

P(X|Y) to get the best neighboring patches by replacing 

X(.) with the selected patch-candidates alternately. The 

PC(X|Y) in (7) is the known probability value from (6), 

which is different for each patch candidate. 

     (7) 

We replace the initial chosen patches on every node 

with the best patches among patch candidates that have 

highest compatibility with their neighboring nodes. The 

first iteration is done when all nodes have been processed. 

The image resulting from the first iteration is better than 

that from the initial image model. We carry out the same 

procedure iteratively until no improvement of P(X|Y) 

occurred. 

Since the extraction process during database 

construction is different for both methods, the combined 

components for the restored output image are also 

different. For the Direct method, we combine the 

estimated restored high-frequency component image 

directly with the degraded input image, while with the 

Smooth method, we combine them with the low-

frequency component from the degraded input image to 

obtain a final restored HR image. 

IV. RESULTS AND DISCUSSION 

We used a set of normalized face images taken from 

100 subjects for the database. All the original HR face 

images used in the experiment were 288x240 in size. We 

applied block noise to the original HR images by using a 

JPEG compression tool with different quality rates 

between 1 to 13%, resulting in compression ratios from 

134:1 to 111:1, to generate six sets of degraded samples. 

Our main target was the lowest quality, i.e., 1% quality-

rated degraded samples. The JPEG block sized in 8x8 

pixels yielded similar noise to simple 8x magnification 

from 1/8 low-resolution images but further degraded 

images because of mosquito and quantization noise. 

We evaluated our methods on a set of 30 lowest-

quality face images to determine their effectiveness. We 

ran the iteration process 10 times under different α (0.0, 

0.1, …, and 1.0) and Gaussian parameter σ values (4 to 

12) to find the best resulting images. 

We used PSNRs to evaluate the resulting images and 

compared them to the original ones (ideal result) to assess 

the performance of our methods. The mean value of all 

pixels in the images was used as a quality index. Thus, 

higher PSNRs indicate better quality. Fig. 10 presents 

three examples of the lowest quality rate (1%) of JPEG-

degraded face samples. 

 
Sample 1 

 
Sample 2 

 
Sample 3 

Original face samples 
   

 
Sample 1 Sample 2 

 
Sample 2 

Degraded input face images 

Figure 10.  Original and degraded test images 

A. Fix σ and α Value 

It is necesssary to fix the σ and α. To find the best σ for 

the Direct and Smooth methods, we ran the restoration 

process on 30 input images of lowest quality samples 

under different σ to find their average PSNRs. 

Fig. 11 shows the average PSNRs for 30 samples: 

input images, Gaussian-filtered images, and best output 

images from our methods (when best α was applied) for 

the Direct and Smooth methods for different σ. Gaussian-

filtered blurred images and our methods’ output images 

effectively exhibited higher average PSNRs than the 

input images. However, the higher the σ, the lower the 

PSNRs value of the Gaussian-filtered images. We can 

observe that PSNRs fell drastically when σ was more 

than 5. Conversely, those for the output images from both 

of our methods increased gradually. 

 

Figure 11.  Average PSNRs of 30 samples: input image, Gaussian-
filtered image, and Direct and Smooth methods’ output images. 
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Even the Gaussian filter has significantly reduced 

noise, consequently the filtered image losses the 

important high-frequency texture component. The image 

becomes too blurry when σ was 12. Conversely, the 

output images with our methods’ exhibited higher PSNRs 

since they also included predicted high-frequency 

components. 

Table I lists those average PSNRs for each σ. 

According to Table I, the best σ for the Gaussian-filtering 

method was 5, for the Direct method was 10, and for the 

Smooth method was 8. So, we fixed the σ for each 

method onwards.  

TABLE I.  AVERAGE PSNRS OF 30 FACE IMAGES: INPUT IMAGE, 
GAUSSIAN-FILTERED IMAGE, AND PROPOSED METHODS’ OUTPUT 

IMAGES 

Gaussian 

parameter, σ 

PSNR [dB] 

Input 
Gaussian-

filtered 
Direct 
method 

Smooth 
method 

4 18.690 21.121 19.646 21.260 

5 18.690 21.193 20.439 21.503 

6 18.690 21.039 20.954 21.656 

7 18.690 20.752 20.840 21.698 

8 18.690 20.430 21.102 21.765 

9 18.690 20.071 21.864 21.765 

10 18.690 19.719 21.921 21.694 

11 18.690 19.348 21.779 21.620 

12 18.690 18.983 21.642 21.537 

 

We then found the average α from a set of best α 

values when σ was 10 for the Direct method and 8 for the 

Smooth method, for 30 output samples to have a fixed α. 

From the set of the 30 best output images from 

assessment in Fig. 11, where α is variable from 0.0 to 1.0, 

the average α was 0.4 for both the Direct and Smooth 

methods.  

According to (6), when α was set to 0.4, the MRF 

function would be weighted towards λ(.) rather than ϕ(.), 

i.e., 60% λ(.) and 40% ϕ(.) during patch-candidate 

selection. Hence, the learning model including λ(.), as 

shown in Fig. 3 [31], performed well in terms of the 

proposed image-restoration process. 

Fig. 12 presents resulting images for the lowest quality 

of 1% for Sample 1. Fig. 12(a) is the original HR image 

and Fig. 12(b) is its degraded input image. The results 

obtained from the Gaussian-filtering, Direct, and Smooth 

methods are shown in Fig. 12(c), 12(d), and 12(e), 

respectively. The boxed images on the right side of each 

image are the zoomed versions of the marked regions in 

the images, where the details of the results can be 

observed. The Gaussian-filtering method effectively 

reduced block noise in the image; however, most of the 

face details are blurred, as shown in Fig. 12(c), especially 

along the edges. The restored images with our methods in 

Fig. 12(d) and 12(e) are significantly sharper than the 

Gaussian-filtered output image. Our methods effectively 

restored the texture in images. 

B. Comparison between Direct and Smooth Methods 

We compared the resulting PSNRs amongst the output 

images from our Direct and Smooth methods for the 30 

samples. We found that outputs for Sample 2 and 3 had 

the largest difference in PSNRs when the Direct method 

outperformed the Smooth method and vice versa. Table II 

shows the different PSNRs for the two samples. 

TABLE II.  PSNRS FOR OUTPUT SAMPLE 2 AND 3 FROM DIRECT AND 

SMOOTH METHODS 

Method 
Samples 

2 3 

Direct  22.850 22.561 

Smooth 22.153 22.844 

 

For Sample 2, the Direct method outperformed the 

Smooth method with a difference of 0.697 dB. For 

Sample 3, the Smooth method outperformed the Direct 

method with a difference of 0.283 dB. Fig. 13 and Fig. 14 

show the details of the processed images for Samples 2 

and 3, respectively, showing the entire face and parts of 

the (a) original, (b) degraded input, (c) output images 

with the Direct method, and (d) output images with the 

Smooth method.  

Because the patches and input images were normalized 

from the positions of the eyes, the algorithms of our 

methods, which use the positions of facial parts, tend to 

use patches of eyes for the target eyes. Therefore, the eye 

parts were accurately restored. Regarding the PSNR 

evaluation, the Direct method outperformed the Smooth 

method due to the fact that the Direct method numerically 

reduced the block noise directly since patches for the 

Direct method are generated from the image including 

JPEG noise, while patches for the Smooth method are 

generated by eliminating the effect of JPEG noise. 

 

 
(a) (b) (c) (d) (e) 

Figure 12. Resulting images for Sample 1 where σ and α were fixed: (a) original face image; (b) degraded input image; (c) Gaussian-filtered image 
(σ=5); (d) Direct method’s output image (σ=10, α=0.4); (e) Smooth method’s output image (σ=8, α=0.4). 
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(a) (b) (c) (d) 

Figure 13. Resulting images for best sample from Direct method compared to smoothed method: (a) original face image; (b) degraded input image; (c) 

Direct method’s output image; (d) Smooth method’s output image. 

 
(a) (b) (c) (d) 

Figure 14. Resulting images for best sample from smoothed method compared to Direct method: (a) original face image; (b) degraded input image; (c) 

Direct method’s output image; (d) Smooth method’s output image. 

However, the images generated with the Smooth 

method seemed to be more natural, and the quality was 

more stable for different σ. Therefore, the Smooth 

method can be used when natural appearing images are 

required. 

C. Evaluation for Different Quality-Rate Samples 

We demonstrated conventional Gaussian-filtering and 

our two methods on six sets of 30 samples, where the 

JPEG quality rate was 1, 3, 5, 8, 10, and 13% for each set 

for the sake of comparison. For the Gaussian-filtering 

method, we applied σ from 1 to 6 to find the highest 

average of output PSNR for each set. Table III shows 

average PSNRs of Gaussian-filtering method on different 

σ for the six sets of 30 samples. 

TABLE III.  AVERAGE PSNRS OF 30 SAMPLES FOR GAUSSIAN-
FILTERED OUTPUT IMAGES UNDER DIFFERENT  

Quality rate 

for set of 30 
samples [%] 

Gaussian filtering, σ 

1 2 3 4 5 6 

1 19.64 20.38 20.87 21.12 21.19 21.04 

3 19.89 20.62 21.08 21.32 21.38 21.20 

5 23.23 24.03 24.31 24.14 23.72 23.12 

8 26.36 26.95 26.34 26.03 25.08 24.12 

10 27.74 28.15 27.60 26.52 25.38 24.29 

13 29.27 29.39 28.35 26.99 25.65 24.46 

 

We fixed σ at 10 and 8 for the Direct and Smooth 

methods, respectively, regardless of the sample quality 

rate to standardize the results for the lowest-quality-rate 

samples. Table IV shows the average PSNRs for input 

images, best Gaussian-filtering output images (from 

Table III), and our methods’ output images for different 

quality rates. Table V shows the improvement of PSNR, 

while Fig. 15 illustrates their graph. 

TABLE IV.  AVERAGE PSNRS OF 30 SAMPLES FOR INPUT, BEST 

GAUSSIAN-FILTERED, AND PROPOSED METHODS’ OUTPUT IMAGES FOR 

DIFFERENT QUALITY RATES 

Sample 
JPEG quality rate [%] 

1 3 5 8 10 13 

Input 18.690  18.961  22.157  25.130  26.516  28.044  

Gaussian-
filtering 

method 

21.193  21.376  24.308  26.948  28.151  29.392  

Direct 
method 

21.921  22.255  24.618  26.715  27.607  28.676  

Smooth 

method 
21.765  22.059  24.930  27.098  27.987  28.985  

TABLE V.  AVERAGE PSNRS’ IMPROVEMENT FROM GAUSSIAN-
FILTER AND PROPOSED METHODS FOR DIFFERENT QUALITY OF 

SAMPLES 

PSNR 
improvement 

[dB] 

JPEG quality rate [%] 

1 3 5 8 10 13 

Gaussian-

filtering method 
2.503 2.415 2.151 1.818 1.635 1.347 

Direct method 3.231 3.294 2.461 1.585 1.091 0.632 

Smooth method 3.075 3.098 2.773 1.968 1.471 0.941 

 

From Fig. 15, our methods provided better 

improvement for images of lower quality rates. Direct 

method outperformed Smooth method and Gaussian-

filtering method at a quality rate of 3% and below, while 

Smooth method gave best improvement at a quality rate 

between 5 to 8%. However, as the quality rate increased, 

i.e., higher than 8%, the conventional Gaussian-filtering 

method performed better for noise reduction. In other 
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words, our proposed methods perform well for low-

quality images. 

 

Figure 15.  Average PSNR improvement of Gaussian-filtered and 
proposed methods’ output images against quality rate of input images 

V. SUMMARY 

We proposed an image-restoration process that 

involves the example-based method by constructing a 

patch database using a set of image pairs between original 

and degraded images. We used normalized training face 

images and models of the Markov random field that 

includes the facial-parts compatibility function. Generally, 

we divided training images (texture components) into 

patches and stored them into a database with information 

on their original positions on an image. Our process 

involves the Direct and Smooth methods that are 

appropriate to the block noise image. Then, we used the 

MRF to model patch structures for a restored image by 

considering facial-parts compatibility together with pixel-

value similarity between patches. Finally, the missing 

high-frequency components due to the Gaussian-filtering 

process were inferred using a stitching algorithm 

iteratively. The experimental results obtained from face 

images demonstrated excellent performance of our 

methods in terms of PSNR in comparison with the 

conventional Gaussian-filtering method. 

REFERENCES 

[1] M. Petrou and C. Petrou, Image Processing: The Fundamentals, 

Wiley, 2010. 
[2] P. J. Shaw and D. J. Rawlins, “The point-spread functions of a 

confocal microscope: Its measurement and use in deconvolution of 

3-D data,” Journal of Microscopy, vol. 163, pp. 151–165, 1991. 
[3] S. Hartung, “Image subtraction noise reduction using point spread 

function cross-correlation,” arXiv e-prints 1301.1413, Jan. 2013. 
[4] S. Al-ameri, N. Kalyankar, and S. Khamitkar, “Deblured Gaussian 

blurred images,” J. Comput., vol. 2, no. 4, pp. 33–35, 2010. 

[5] G. M. P. V. Kempen and L. J. V. Vliet, “Improving the restoration 
of textured objects with prefiltering,” in Proc. 3rd Annual 

Conference of the Advanced School for Computing and Imaging, 

1997, pp. 174–179. 
[6] G. Dougherty and Z. Kawaf, “The point spread function revisited: 

Image restoration using 2-D deconvolution,” Radiography, vol. 7, 

no. 4, pp. 255–262, 2001. 
[7] C. Dalitz, R. Pohle-Fröhlich, and T. Michalk, “Point spread 

functions and deconvolution of ultrasonic images,” IEEE 

Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, vol. 62, no. 3, March 2015. 

[8] S. C. Park, M. K. Park, and M. G. Kang, “Super-Resolution image 

reconstruction: A technical overview,” IEEE Signal Processing 
Magazine, vol. 20, pp. 21–36, May 2003.  

[9] D. Capel and A. Zisserman, “Computer vision applied to super 
resolution,” IEEE Signal Processing Magazine, vol. 20, pp. 75–86, 

May 2003.  

[10] H. Ozdemir and B. Sankur, “Subjective evaluation of single-frame 
super-resolution algorithms,” in Proc. EUSIPCO, Aug. 2009, pp. 

1102–1106.  

[11] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust 
multiframe super resolution,” IEEE Trans. on Image Processing, 

vol. 13, no. 10, pp. 1327–1344, Oct. 2004. 

[12] H. He and W. C. Siu, “Single image super-resolution using 
Gaussian process regression,” in Proc. IEEE Int. Conf. Comp. 

Vision and Pattern Recog., Jun. 2011, pp. 449–456. 

[13] S. Dai, M. Han, W. Xu, Y. Wu, Y. Gong, and A. K. Katsaggelos, 
“SoftCuts: A soft edge smoothness prior for color image super-

resolution,” IEEE Trans. on Im. Process., vol. 18, no. 5, pp. 969–

981, May 2009. 
[14] J. Sun, J. Sun, Z. Xu, and H. Y. Shum, “Gradient profile prior and 

its applications in image super-resolution and enhancement,” 

IEEE Trans. on Image Processing, vol. 20, no. 6, pp. 1529–1542, 
Jun. 2011. 

[15] S. Baker and T. Kanade, “Limits on super-resolution and how to 

break them,” IEEE Trans. on Pattern Analysis and Machine 
Intelligence, vol. 24, no. 9, pp. 1167–1183, 2002. 

[16] Z. Lin and H. Y. Shum, “Fundamental limits of reconstruction-

based super-resolution algorithms under local translation,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 

26, no. 1, Jan. 2004. 

[17] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based 
super-resolution,” IEEE Comp. Graphics Appl., vol. 22, no. 2, pp. 

56–65, 2002. 

[18] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning 
low-level vision,” International Journal of Computer Vision, vol. 

40, no. 1, pp. 25–47, Oct. 2000.  

[19] W. T. Freeman and E. C. Pasztor, “Markov networks for super-
resolution,” in Proc. 34th Ann. Conf. Info. Sciences and Systems, 

Princeton Univ., 2000. 

[20] S. Shuji, S. Takashi, and I. Akihiko, “Example-based super-
resolution to achieve fine magnification of low-resolution images,” 

NEC Technical Journal, vol. 7, no. 2, pp. 81–85, 2012. 
[21] T. Nir and N. Karpel, “Example based learning of image stitching 

for an omni-directional camera using a variational optical flow 

methodology,” in Proc. SPIE 7000, Optical and Digital Image 
Processing, April 2008. 

[22] J. Y. Cui, et al., “Example-Based image compression,” presented 

at the 17th IEEE International Conference on Image Processing, 
2010. 

[23] K. Grauman, G. Shakhnarovich, and T.  Darrell, “Virtual visual 

hulls: Example-Based 3D shape inference from silhouettes,” in 
Proc. 2nd Workshop on Statistical Methods in Video Processing, 

Prague, Czech Republic, May 2004.  

[24] B. Y. Koo, et al., “Example-based statistical framework for 
parametric modeling of human body shapes,” Computers in 

Industry, vol. 73, pp. 23–38, 2015. 

[25] S. F. Lui, J. Y. Wu, and H. S. Mao, “Learning-based super-
resolution system using single facial image and multi-resolution 

wavelet synthesis,” Lect. Notes Comp. Sci., vol. 4844, pp. 96–105, 

2007. 
[26] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-

resolution via sparse representation,” IEEE Trans. on Image 

Process., vol. 19, no. 11, pp. 2861–2873, 2010. 
[27] J. Yang, Z. Wang, Z. Lin, and S. Cohen, “Coupled dictionary 

training for image super-resolution,” IEEE Trans. on Image 

Process., vol. 21, no. 8, pp. 3467–3478, 2012. 
[28] C. V. Jiji and S. Chaudhuri, “Single frame super-resolution using 

learned wavelet coefficients,” Int. Journal of Imaging Systems and 

Tech., vol. 14, no. 3, pp. 105–112, 2004. 
[29] C. V. Jiji and S. Chaudhuri, “Single-frame images super-

resolution through contourlet learning,” EURASIP Journal on 

Advances in Signal Processing, pp. 1–11, 2006. 
[30] W. Wu, Z. Liu, W. Gueaieb, and X. He, “Single-image super-

resolution based on Markov Random Field and contourlet 

transform,” SPIE Journal of Electronic Imaging, vol. 20, no. 2, p. 
023005, 2011. 

[31] S. Hamdan, Y. Fukumizu, T. Izumi, and H. Yamauchi, “Example-

based face image super-resolution taking into consideration 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12

PSNR 

improvement 

[dB] 

Quality rate [%] 

Gauss.

filter

Direct

method

Smooth

method

16©2019 Journal of Image and Graphics

Journal of Image and Graphics, Vol. 7, No. 1, March 2019



correspondence of facial parts,” IEEJ Trans. on Electronics, 
Information and Systems, vol. 12, no. 6, 2017. 

[32] W. C. Siu and K. W. Hung, “Review of image interpolation and 

super-resolution,” in Proc. Asia Pacific Signal and Information 
Processing Association Annual Summit and Conference, 2012, pp. 

1–10. 

 
 

Suhail Hamdan is a doctoral student in 

science and engineering at the Ritsumeikan 
University, Japan. He received his B.E. from 

the Department of VLSI System Design at the 

Ritsumeikan University in 2011 and his M.E. 
in advanced electrical, electronic and 

computer systems from the same university in 

2013. His current research interests include 
signal processing and image processing. 

 

 
 

Yohei Fukumizu is presently an associate 

professor in Department of Electrical and 
Electronic Engineering since April 2013. He 

received his B.E. and M.E. degrees in 

computer and systems engineering from Kobe 
University, Kobe, Japan, in 2001 and 2003, 

respectively, and received the Ph.D. degree in 

computer engineering from Kobe University, 
Japan, in 2007. He joined in the Solutions 

Research Organization (SRO), the Integrated 

Research Institute (IRI), Tokyo Institute of Technology, Japan, as post-
doctoral researcher in 2007, in medical and biotechnology project. From 

April 2008, he had been an assistant professor in Department of VLSI 

System Design, Ritsumeikan University, Japan. His research interests 
currently focus on intellectual signal processing systems that contribute 

to a Safe and Secure Society. He is also interested in design 
methodologies of communication systems. He is a member of IEEE, 

IEICE, IEE, IIEEJ, ITE, RISP, and JAFST. 

 
 

Tomonori Izumi is presently a professor in 

Department of Electronic and Computer 
Engineering since 2016. Concurrently, he has 

also been a senior research scientist at 

Synthesis Corporation since 1998. He 
received his B.E. degree in computer 

engineering and M.E. and Ph.D. degrees in 

electrical and electronic engineering all from 
Tokyo Institute of Technology, Japan, in 1992, 

1994, and 1998, respectively. From 1998 to 

2005, he was a research associate at Department of Communications 
and Computer Engineering, Kyoto University, Japan. He joined 

Ritsumeikan University, Japan as an associate professor in 2005. His 

research interests include system, architecture, design and design 
methodologies of digital, especially reconfigurable hardware. He is a 

member of IEICE, IPSJ, ITE, RISP, IIEEJ, ISCIE and IEEE. 

 
 

Hironori Yamauchi has been a Professor in 

the Faculty of Science and Engineering, 
Ritsumeikan University, Japan since 1996. He 

received his M.E. and Ph.D. degrees from the 

University of Tokyo in 1975 and 1994, 
respectively. In 1975, he joined the Electrical 

Communications Laboratories of Nippon 

Telephone and Telegraph Public Corporation. 
His research interests include pattern 

recognition, image signal processing, low 

power embedded systems architecture and related VLSI design. He is a 
fellow member of IEICE, and a member of IEEE, IPSJ, RISP and IIEEJ. 

 

17©2019 Journal of Image and Graphics

Journal of Image and Graphics, Vol. 7, No. 1, March 2019




