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Abstract—Visualization of three-dimensional (3D) medical 

images is an important tool in surgery, particularly during 

the operation. However, it is often challenging to review a 

3D anatomic model while maintaining a sterile field in the 

operating room. Thus, there is a great interest in touchless 

interaction using hand gestures to reduce the risk of 

infection during surgery. In this paper, we propose an 

improved real-time gesture-recognition method based on 

deep convolutional neural networks that works with a 

Microsoft Kinect device. A new multi-view RGB-D dataset 

consisting of 25 hand gestures was constructed for deep 

learning. The nine gestures that were associated with the 

high recognition accuracies were selected for the touchless 

visualization system. A deep network architecture, AlexNet, 

was used for the hand gesture recognition. The recognition 

accuracy was about 96.5%, which was much higher than 

that in our previous systems. We further demonstrated that 

this technique facilitates touchless real-time visualization of 

hepatic anatomical models during surgery. This system is 

expected to ultimately lead to better patient outcomes by 

enhancing the ability to visualize medical images in 3D 

during surgery. 

 

Index Terms—hand gestures recognition, deep learning 

technique, surgery aid system 

 

I. INTRODUCTION 

Understanding a patient’s anatomical hepatic structure 

is important and essential for successful liver surgery [1], 

[2]. However, ease of use and hygiene standards make it 

challenging to use traditional systems while operating. 

Touchless three-dimensional (3D) visualization during an 

operation is an open problem with significant potential to 

address these issues [3].  

A few touchless surgery-support systems using the 

Microsoft Kinect device have been developed [4]-[6]. 

However, many such systems rely on similar approaches, 

such as the use of the basic gesture interface of Kinect to 

interact with medical images [7], which is not sufficient 

for robust and real-time touchless visualization. 
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Thus, in this study, we focus on developing a more 

intuitive of operation scheme and meeting the 

requirements for interacting with 3D medical images in 

the operating room. In our previous system [8] (the first 

version), we used HOG as features and SVM as a 

classifier to recognize nine different hand gestures from 

the depth images. The average recognition accuracy was 

87.5%, which is sufficient, but the speed was only eight 

frames per second, indicating that the system could not 

achieve real-time gesture recognition. In the second 

version of the system [9], we implemented high-level 

Kinect APIs provided by Microsoft to automatically 

recognize three different hand states, which were 

combined into hand movements that can be used to 

interact with medical images. In addition to hand states 

and movements, depth information was used to respond 

only to users in a predefined range (the operating range of 

2.5-3.5 m) while actions or gestures out of the operating 

range were considered noise and disregarded; this 

allowed the system to only respond to the gestures of the 

surgeon, which is particularly important in an operating 

room. This version of the system, however, was not able 

to handle complicated interactions and flexibility in the 

interactions. In the third version of the system [10], we 

implemented gesture recognition based on deep learning 

using only a simple LeNet [11]. This touchless hepatic 

surgery-support system was trained with an existing 

dataset of limited hand gestures [12]. Experimental 

testing revealed that the system had a rapid response time, 

but the accuracy was only 84.3%. Since deep learning 

usually requires a very large amount of labeled data to 

return acceptable results, we constructed a new multi-

view RGB-D dataset (MaHG-RGBD) of 15 participants 

performing 25 different hand gestures [13] including 

front views as well as views from a degree angle, which 

are relevant as space is often limited especially in the 

operating room. After building the dataset, AlexNet [14] 

was used to recognize the hand gestures. The nine hand 

gestures that were most robustly recognized were applied 

for touchless visualization of the 3D medical images. The 

experimental results demonstrate that this version the 
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system outperforms previous versions in terms of both 

the recognition time and the accuracy.  

Herein, the proposed version of our touchless 

visualization system is presented in Section 2, including a 

detailed description of the hand pre-processing and hand 

gesture recognition using deep learning. Experimental 

results are reported in Section 3 and Section 4 provides a 

conclusion.  

II. PROPOSED SYSTEM 

First, we describe the proposed system in detail. The 

diagram in Fig. 1 summarizes the architecture of the 

system include its two modules: an interaction module 

and a visualization module. When the Kinect sensor 

detects that a user’s hand enters an available state (i.e., 

the nearest user's right hand is positioned 45 cm above 

the waist), it performs a fast and flexible hand gesture 

recognition using the trained deep learning model. The 

classified gesture and the associated hand movement are 

processed by a command module within the interaction 

module. This information is sent through a socket to the 

visualization module, which responds to the command 

and by performing the associated operation such as 

rotating the image, adjusting the opacity, zooming in or 

out, or fusing or selecting vessels. The steps of this 

process are as follows: 

 

Figure 1.  Diagram of our proposed system 

A. Hand Image Pre-processing 

The depth information and skeleton tracking provided 

by the Kinect are utilized to generate a depth-resolved 

image of the hand. First, a depth image of the user (Fig. 

2(a)) is generated. Then, calibration is conducted between 

the color and the depth from the camera. Using the right-

hand joint point as the center, a 100×100 pixels square 

region is extracted as the region of interest (ROI) (Fig. 

2(b)). A depth image with a range from d - 30 cm to d + 5 

cm, where d is the depth of the right-hand joint point. was 

defined as the hand image. 

The segmented hand image is shown in Fig. 2(c). Then, 

an opening operator and a median filter are applied to 

remove the noise (i.e., pixels of other regions) from the 

hand image) (Fig. 2(d)). To reduce the computation time 

and focus the analysis on regions of the hand shape, the 

image was cropped and resized to 32×32 pixels to be 

used as an input to the convolutional deep neural network. 

 
(a)                      (b)                          (c)                        (d) 

Figure 2.  The depth hand image for gesture recognition (the rad point 

is the right hand joint point detected by Kinect). (a) Depth image from 
Kinect. (b) Decision ROI of depth hand image. (c) Segmented depth 

hand image including noise. (d) Depth hand image excluding noise. 

B. CNN Architecture 

AlexNet [10] was adopted as the deep network 

architecture. The architecture of AlexNet is summarized 

in Fig. 3. It contains eight learned layers: five 

convolutional and three fully-connected layers. The input 

is hand image of 224×224 pixels. The output is 25 classes 

of gestures. 

 

Figure 3.  AlexNet for hand gesture recognition. 

C. Visualization Module 

In the visualization module, surface models of hepatic 

anatomical models, including hepatic artery, hepatic 

portal vein, hepatic vein and liver parenchyma (Fig. 4) 

are generated by converting the volume data to each 

component to a triangulated mesh surface using 

marching-cube algorithms. The volume data is segmented 

semi-automatically from computed tomography (CT) 

images under the guidance of a physician [1], [2]. 

Compared with traditional slice-by-slice visualization and 

review techniques, the surgeon can easily recognize the 

liver geometry and locations of vessels during the surgery 

from the 3D surface rendering of the anatomical model as 

shown in Fig. 5. For further details, Please refer [1], [2] 

for detailed information about CT data and segmented 

liver and vessel data. The system offers four visualization 

functions: rotation, zoom in/out, adjustment of opacity, 

fusion and selection of vessels. 

    
(a) Hepatic artery (b) Hepatic portal vein (c) Hepatic vein (d) Liver 

Figure 4.  Visualization of liver and its vessels. 

 

Figure 5.  Visualization of fused liver and its vessel structure. 
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III. EXPERIMENTAL RESULTS 

A. Dataset 

A novel multi-angle view dataset of hand gesture, 

named MaHG-RGBD [13], was generated. The 

ergonometric design of data recorder system is shown in 

Fig. 6.  

 

Figure 6.  Illustration of the MaHG-RGBD dataset acquisition setup. 

The dataset consists of 25 gestures. Since the surgical 

environment often has limited space and a complicated 

background, a Kinect sensor titled at an angle of 45 

degrees (Kinect 1 in Fig. 6) was used to collect images of 

the same gestures. Moreover, depth images of the 25 

hand gestures were recorded by the tilted Kinect sensor as 

shown in Fig. 7. Each class was recorded from 15 

participants. 100 images were generated per class by 

repeating the same hand gesture with slight movements. 

wo modalities (depth and color) were recorded and 

included in the MaGH-RGBD dataset. Thus, the dataset 

comprised 150,000 (2 × 2 × 15 × 25 × 100) tuples, each 

consisting of the depth and color of the hand region. Each 

hand image was 300 × 300 pixels. For additional 

information about the dataset, please refer Ref. 13. 

 

Figure 7.  Typical depth images of the 25 hand gesture classes recorded 
by the tilted Kinect sensor in MaGH-RGBD dataset. 

B. Recognition Resultst 

15-fold cross-validation was used for validation. Data 

from 14 participants were used to generate the training 

data and the data from a single subject was used as testing 

data. Twenty percent of the training data was selected 

randomly as the validation set. The validation was 

repeated 15 times and the recognition results were 

verified in all cases. The average of the confusion 

metrices for the AlexNet-based algorithm is shown in 

Table I. Using the confusion matrices, the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑗 , 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗 , and 𝐹1𝑗 score were calculated for each of the 

25 gestures (j=1, 2, …, 25) as shown in Eqs. (1)-(3): 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑗= 
𝑇𝑃𝑗

𝑇𝑃𝑗+𝐹𝑁𝑗
                       (1) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗  = 
𝑇𝑃𝑗

𝑇𝑃𝑗+𝐹𝑃𝑗
                         (2) 

𝐹1𝑗  = 
2𝑇𝑃𝑗

2𝑇𝑃𝑗+𝐹𝑃𝑗+𝐹𝑁𝑗
                          (3) 

where 𝑇𝑃𝑗 , 𝐹𝑁𝑗  and  𝐹𝑃𝑗  are the frequencies of true 

positive, false negative and false positive, respectively, 

for gesture class j.  Since the F1 score is an indicator of 

the classification accuracy of the system, the gestures 

were ranged in order of decreasing mean F1 scores as 

shown in Fig. 8. 

 

Figure 8.  Ranking of gestures for AlexNet. The ranks are based on the 
F1 scores. 

TABLE I.  THE AVERAGE CONFUSION MATRIX OF ALEXNET FOR THE 25 GESTURES. LAGER MISS CLASSIFICATION ERRORS (> 5) ARE INDICATED IN 

COLOR AND ZERO VALUES AND NOT INCLUDED 

Truth G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23 G24 G25 
G1 97.7          0.27     0.73   1.07  0.13   0.07  
G2  88.4 0.07 0.27 0.47 0.13   2.8    0.07   2.07  5.67      0.07  
G3   90.13 0.2 0.47   3.73 1.8  0.07       1.6     0.07 1.93  
G4 

G44 

  0.27 8 7.0      0.53    0.13 10.33    0.93    0.27  0.53 
G5   0.13  99.7        0.07     0.07        
G6      86.3     0.27     12.6 0.7    0.07     
G7      0.13 96.4 0.07  0.53  1   0.13 0.4 1.27      0.07   
G8  0.13 9.0     87.47 1.07   1.73  0.07         0.53   
G9  5.27 6.73   0.13  0.07 85.67  1.13     0.27  0.53  0.07    0.13  
G10   0.07 0.13      89.87    2.07 7.87           
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G11     0.53    1.93  90.13  0.27 0.07  5.53   0.13 1.27  0.13    
G12  4.13    0.2 0.53 2.8    91.47 0.13    0.07 0.13       0.53 
G13  0.13   0.6    2.6    92.57  2.2   1.73       0.07 
G14   0.07 0.2   0.13   0.07    86.53 0.07        10.87  2.07 
G15    1.53    0.07  4.93   3.67 0.27 89.53           
G16  3.2    6.87 2.73   0.13 3.6     77.07    5.73   0.67   
G17      0.13 3.67    0.07 0.13    0.07 95.87    0.07     
G18  0.47   0.6        1.13     97.8        
G19 0.07     0.47   0.2  0.13     0.27   98.27 0.33 0.27     
G20      0.27     0.47        6.53 92.0   0.33 0.4  
G21       7.8  0.07       0.53     91.6     
G22           0.07           99.93    
G23    0.4        0.07  0.8 0.07    0.8 0.4 0.8  96.47  0.2 
G24 0.67  2.8  0.2   0.13 0.07               95.8 0.33 
G25    0.07      1.07   3.67 2.13           93.07 

TABLE II.  COMPARISON OF OVERALL PERFORMANCE OF GESTURE RECOGNITION METHODS. 

Method Dataset 
Operation 

1 

Operation 

2 

Operation 

3 

Operation 

4 

Operation 

5 

Operation 

6 

Operation 

7 

Operation 

8 

Operation 

9 
Accuracy time 

HOG + 

SVM [8] 

Old dataset 

[12] 

Hand 

Open 

Hand 

Close 
Grasp Finger Up 

Finger 

Down 

Finger 

Left 

Finger 

Right 
Palm Up 

Palm 

down 87.5 0.123s 

91 91 87 89 95 86 84 82 83 

LeNet 

[10] 

Old dataset 

[12] 

Hand 
Open 

Hand 
Close 

Grasp Finger Up 
Finger 
Down 

Finger 
Left 

Finger 
Right 

Palm Up 
Palm 
down 84.3 0.0028s 

86.7 81 84.7 94.1 77.4 85 86.2 84.7 78.9 

AlexNet 
New 

dataset [13] 

G22 G5 G1 G17 G24 G21 G19 G25 G18 
96.51 0.0069s 

99.57 98.71 98.48 96.87 96.57 94.95 94.61 94.58 94.25 

 

As well as our previous systems [8], [10], nine gestures 

were selected to control the visualization operations. 

However, the previous systems were trained using an old 

dataset [12] of only nine kinds of gestures. Since the 

recognition accuracy was low for some gestures, the 

average accuracy were only about 85%. In the new 

system, in addition to using a deeper network (AlexNet), 

the new MaGH-RGBD dataset was used [13] and the nine 

gestures with the highest recognition accuracies were 

used (Fig. 8) to control the visualization operations. Table 

II provides a comparison of the proposed method with the 

approaches used in pervious works [8], [9] in terms of the 

recognition accuracy for each gesture and the prediction 

time. The results show that the new version of the system 

using new dataset and AlexNet produces better results 

than the previous versions [8], [10]. The average 

recognition accuracy was improved to 96.51% and the 

response rate (or operation rate) was 30fps, which is the 

same as the with LeNet [9] as the frame rate of the Kinect 

is 30 fps. However, the processing time with the new 

method is slightly longer than that with LeNet. 

IV. CONCLUSION 

In this paper, we proposed a robust hand-gesture-

recognition system based on the AlexNet and Kinect for 

touchless visualization of 3D medical images. Using our 

system, a surgeon can interact with 3D medical images in 

real time without touching any devices. This could 

effectively reduce the risk of contaminating the surgical 

field and infecting the patient. The recognition accuracy 

was evaluated for 25 different gestures using deep-

learning algorithms and nine of the most robust gestures 

were selected to control the system. This real-time (30 

fps), accurate (96.51% accuracy), and flexible Kinect-

based touchless visualization system represents a 

significant improvement over previous version. 

In the future, we plan to combine depth and color 

image modalities and multi-view images to increasing the 

robustness of the system.  
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