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Abstract—Automatic liver segmentation in CT images is an 

important step for computer-aided diagnosis and computer-

aided hepatic surgery. Recently, though numerous methods 

based on deep learning such as U-Net have been proposed 

for automatic liver segmentation, it is still a challenging 

topic because of its low contrast and variations of liver 

shape. Additionally, limited training data for deep learning 

is another challenging problem. In this paper, we propose 

an automatic liver segmentation using U-Net with a 

Wasserstein Generative Adversarial Network (GAN). The 

Wasserstein GAN was used to improve U-Net’s training, 

especially training with a small data set. We demonstrated 

that liver segmentation accuracy (Dice value) with 33 and 

392 training data sets was improved from 88% to 92% and 

from 92% to 93%, respectively.  

 

Index Terms—liver, segmentation, deep learning, GAN, 

WGAN 
 

I. INTRODUCTION 

The liver is an organ that is essential for vital body 

functions, such as its role in bile formation, nutrient 

storage, toxic decomposition, and production of certain 

blood components. However, it is also an organ that 

easily becomes severely ill, because of its scarce 

subjective symptoms for a disease. It is, therefore, called 

the “silent organ.” CT or MRI is effective for an early 

detection and diagnosis of liver diseases. Additionally, 

recent advancements in the performance of these imaging 

techniques have led to the production of larger data 

volume. Therefore, physicians require computer 

assistance in assessing this large volume of obtained data. 

Automatic liver segmentation in CT images is an 

important step to achieve computer-aided diagnosis and 

to perform computer-aided hepatic surgeries [1]. 

To date, numerous methods for liver segmentation 

have been proposed, including level set [2], clustering [3], 

anatomic model-based methods [4], [5], and interactive 

methods [6]-[9]. Recently, deep learning has 

demonstrated a powerful ability in computer vision tasks, 

by automatically learning hierarchies of relevant features 

directly from the input data. Deep learning methods have 
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been successfully applied to liver segmentation with the 

use of various networks, including Fully Convolutional 

Network (FCN) [10], [11] and U-Net [12], [13]. Because 

results obtained from FCN or U-Net segmentation results 

are neither perfect nor smooth, refinement has to be 

performed with Conditional Random Field (CRF) [14] or 

graph cut [12], [15]. An additional approach to refine the 

segmentation results is to use a Generative Adversarial 

Network (GAN) [16], [17]. In the GAN-based 

segmentation approaches, the generator is used to 

perform the segmentation task, whereas the discriminator 

is used to refine the training of the generator, which is 

exclusively used in the training. In the present study, we 

propose an automatic liver segmentation method based on 

U-Net with a Wasserstein GAN (WGAN). WGAN [18], 

[19] differs from GAN for its objective function. In 

WGAN, the Wasserstein distance is used as the objective 

function. Compared to conventional GAN, the learning of 

WGAN is more stable. We also propose to enlarge the 

generator result (segmented liver with surrounding 

region) as the input of the discriminator to improve the 

recall.  

In this article, Section 2 describes related work, 

Section 3 describes the proposed method, Section 4 

presents experimental results, and Section 5 details the 

discussion and conclusions. 

II. RELATED WORK 

A. U-Net 

U-Net is a network that is based on the principle of 

fully convolutional networks [12]. It is composed of an 

encoder for extracting features and a decoder for 

reconstructing images. Additionally, skip connection is 

used to combine low- and high-level features, enabling 

accurate localization. Such network architecture is often 

used for medical image analysis. Segmentation of a 3D 

structure, such as the liver, is performed by repeating a 

sequence of 2D slice segmentation. Because this 

approach does not include the context information along 

the z axis, the consistency among slices is lost. 

B. 3D U-Net 

3D U-Net [13] is an extension of U-Net to maintain the 

3D structure. Each U-Net layer is replaced with a 3D 
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convolution and 3D max pooling. It successfully 

maintains continuity in the direction of the vertical axis 

by performing segmentation using volume sequence 

rather than slice sequence. In this respect, a 3D sequence 

is more desirable as it can capture all spatial contexts. 

However, when compared to 2D convolution, 3D 

convolution on the volume data is computationally more 

expensive. Commonly, 3D convolution has more 

parameters than 2D convolution, with a lower amount of 

learning data. This represents a significant problem in 

medical images with small training data.  

C. Generative Adversarial Networks 

GAN [20], [21] are a generation model composed of 

two networks: generator and discriminator. The purpose 

of GAN is to first learn a distribution close to the learning 

data and then generate data similar to the learning data. 

GAN is defined as a minimax game of generator G and 

discriminator D, as follows:
  

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝔼𝑥~ℙ𝑟
[𝑙𝑜𝑔𝐷(𝑥)] + 𝔼𝑧~ℙ𝑧

[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]  (1)
 

where ℙ𝑟  is the real data distribution and ℙ𝑧  represents 

the generated data distribution. 𝑧  is a random number 

based on a uniform distribution. 

The generator inputs a random number based on a 

uniform distribution and, to generate data, it conducts 

convolution and deconvolution. The discriminator inputs 

real or generated data as input, after assessing which one 

has to be input. Based on the discriminator’s 

discrimination result, it updates parameters of the 

generator and the discriminator. Upon failure of the 

discriminator to discriminate the real data from generated 

data, it updates the discriminator’s parameters. If it is 

determined that the discriminator’s generated data is not 

real, the generator’s parameters are updated. By repeating 

these steps, the generator can generate data similar to real 

data, and the discriminator can discriminate generated 

data from real data with a high rate of accuracy. 

D. Image-to-Image Translation with Conditional 

Adversarial Networks 

Image-to-Image Translation with Conditional 

Adversarial Networks (pix2pix) [22] is an image 

conversion method that uses GAN. The technique 

generates a pair of images by interpolation taking into 

consideration a relationship from one image by learning 

the relationship between two images. The difference 

between pix2pix and GAN is based on the fact that the 

input of the generator is not a random number but an 

image. Also, the discriminator uses patch GAN, 

developed based on Conditional GAN [23]. It 

discriminates each patch, not the whole image. 

Importantly, pix2pix can convert images with higher 

precision than traditional networks. Our proposed method 

is based on pix2pix. 

E. Wasserstein GAN 

WGAN [18], [19] is one of the GANs. WGAN differs 

from GAN for its objective function. There are problems 

with GAN, such as the vanishing gradient problem, as 

well as instable mode collapse and learning. WGAN has 

overcome these problems by using Wasserstein distance. 

WGAN is defined as a minimax game of generator G and 

discriminator D as follows: 

min𝐺 max𝐷∈Ð 𝔼𝑥~ℙ𝑟
[𝐷(𝑥)] − 𝔼𝑧~ℙ𝑧

[𝐷(𝐺(𝑧))]   (2) 

where ℙ𝑟  is real data distribution and ℙ𝑧  is generated 

data distribution. 𝑧 is random number based on uniform 

distribution. 𝐷 is a function of 1-Lipschitz. WGAN finds 

the Wasserstein distance of the input real image and the 

generated image. 

As a result, the learning of WGAN is more stable than 

that of GAN. 

III. PROPOSED METHOD 

Fig. 1 describes the flow of our proposed method. First, 

we segment the CT image using the modified U-Net, 

which is used as a generator. Next, the segmentation 

result and the ground truth (GT) data (a manually 

segmented result) are input to the discriminator to judge 

if the generator result is real (1) or fake (0). We learn U-

Net and discriminator based on the identification result 

and error obtained from U-Net.  

 

Figure 1. Flow of the proposed method. First, we segment the CT image using a modified U-Net, which is used as a generator. Next, the 
segmentation result and the ground truth (GT) data (a manually segmented result) are input in the discriminator to understand if the generator 

results are real (1) or fake (0). We learn U-Net and discriminator based on the identification result and error obtained from the modified U-Net. 
Generator is a modified U-Net and Discriminator is WGAN. 
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Figure 2. The architecture of the generator, which is modified U-Net. The modification is based on the contents of DCGAN. Compared to the 
original U-Net, our generator (the modified U-Net) introduced Leaky ReLU and Batch Normalization and deleted Max Pooling layers. The 

feature map channel and kernel size are the same as U-Net. 

 

Figure 3. The architecture of the discriminator. This is same as encoder of the generator. The difference is that there is no decoder and Full 
Connection has been added. 

A. Generator 

Generators used in GAN generate data by inputting 

random numbers. However, in the present study, a liver 

segmentation image (a binary mask data) represents the 

output and a CT image represents the input. We used U-

Net as the network architecture of generator. Of note, the 

configuration is changed based on Deep Convolutional 

GANs [13]. The change points are represented by the 

abolition of pooling layers; activation function of encoder 

to Leaky ReLU; activation function of decoder to ReLU; 

and introduction of Batch Normalization. Accuracy is not 

significantly affected by these changes, as shown in Table 

I by the number of training data 10 and 99. The generator 

consists of 19 convolution layers. Fig. 2 shows the 

network architecture of the generator. We called it a 

modified U-Net. The generator’s parameter is updated 

based on cross entropy loss of the segmentation result and 

discriminator’s discrimination result. 

B. Discriminator 

In the present study, two discriminators were used in 

our experiments. The first discriminator is a network 

based on DCGAN [24] with a loss function as (1). The 

second discriminator is based on WGAN, which has the 

same network structure and minimizes Wasserstein 

distance between the GT data and the generated data with 

a loss function as (2). The first discriminator is 

represented as GAN and the second discriminator is 

represented as WGAN. Fig. 3 describes the 

discriminator’s network architecture. It is composed of 10 

layers and has the same structure as the encoder of 

generator. Before inputting segmentation results or GT to 

the discriminator, CT data are clipped out with the 

segmentation result or GT (as shown in Fig. 4).  
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Figure 4. Clipped CT data image. CT data are clipped out by using 
segmentation result (mask image) or ground truth before being 

input into the discriminator. 

IV. EXPERIMENTS 

This section outlines an evaluation of our system. We 

trained our models with the use of our own dataset, 

provided by Zhejiang University Hospital. We tested our 

model by using 20 volumes of fully annotated 

3DIRCADb dataset [25]. Additionally, we used 

RMSprop as an optimization for network learning. 

Learning rate was 0.005, and batch size was 3. These are 

generally used to perform generator and discriminator 

training. Table I, Fig. 5 and Fig. 6 outline the 

experimental results. 3D U-Net was not included in this 

article because of insufficient GPU memory. 

Experimentation under the same conditions as other 

methods was not possible because of higher capacity 

needed by the 3D convolution and 3D deconvolution. The 

quantitative evaluation metrics used in this study were 

dice, precision, and recall. Dice is comparable to F-score, 

which is the true positive number of the average size of 

two segmented areas. Precision is the proportion of what 

is actually positive, within data expected to be positive. 

Recall is the proportion of what is expected to be positive, 

within actually positive data. These measures are 

expressed as follows: 

𝐷𝑖𝑐𝑒 =
|𝑇 ∩ 𝑃|

(|𝑇| + |𝑃|)/2
                        (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑇 ∩ 𝑃|

|𝑃|
                         (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑇 ∩ 𝑃|

|𝑇|
                           (5) 

where 𝑇 and P represent the GT region and the predicted 

region, respectively. 

 

 

TABLE I. COMPARISON OF DIFFERENT METHODS AND DIFFERENT 

NUMBER OF TRAINING DATA A  

Number of 

training data 
Method Dice Precision Recall 

10 U-Net 0.85 0.95 0.77 

Modified U-Net 0.85 0.95 0.76 

Modified U-Net 

+ GAN 
0.86 0.93 0.80 

Modified U-Net  
+ WGAN 

0.90 0.94 0.86 

33 Modified U-Net 0.88 0.95 0.81 

Modified U-Net 

+ GAN 
0.89 0.94 0.85 

Modified U-Net  

+ WGAN 
0.92 0.94 0.90 

99 U-Net 0.89 0.95 0.84 

Modified U-Net 0.89 0.94 0.85 

Modified U-Net 

+ GAN 
0.91 0.95 0.88 

Modified U-Net 

+ WGAN 
0.92 0.94 0.91 

198 Modified U-Net 0.92 0.96 0.89 

Modified U-Net 

+ GAN 
0.93 0.95 0.91 

Modified U-Net 
+ WGAN 

0.93 0.96 0.91 

396 Modified U-Net 0.93 0.96 0.90 

Modified U-Net 

+ GAN 
0.93 0.96 0.91 

Modified U-Net 
+ WGAN 

0.94 0.97 0.91 

a “Number of training data” means total number of volumes of data 

used for learning, out of 396 volumes. The best result for each 
volume is shown in bold. 

Modified U-Net with WGAN is the most accurate in 

several cases, compared to modified U-Net and modified 

U-Net with GAN. Although an improvement of the dice 

can be observed with an increase in the amount of data 

used for training, no significant change is seen once all 

the training data are used, even if each discriminator is 

used. Additionally, with a small amount of training data, 

a high rate of dice is observed with the use of the 

discriminator. A similar tendency to dice can be noted for 

recall. Based on these observations, an improvement in 

accuracy can be expected even when the discriminator is 

used, regardless of the use of a small amount of training 

data. Precision has the tendency of being higher for 

modified U-Net only, wand recall tends to lower. Based 

on these observations, we can infer that modified U-Net 

is making smaller prediction than it actually is. With the 

use of WGAN, it can be observed that dice and recall 

tend to be higher and precision tends to be lower, as 

opposed to modified U-Net. From these observations, it 

appears that modified U-Net with WGAN is making 

larger prediction than modified U-Net. However, in 

modified U-Net with WGAN, precision is higher than 

recall. Therefore, it can be implied that a smaller 

prediction than the actual one is being made. 

Segmentation using WGAN discriminator was effective 

with a small dataset. Therefore, we believe that it is 

effective also when using 3D convolution, because the 

latter uses fewer training datasets than 2D convolution. 

U-Net 

Discrim

inator 
CT 

Data 

Segmentation 
Result 

Ground Truth 

Clipped 
Result 

Clipped GT 
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Figure 5. Examples of correctly segmentation result. First row is ground truth. Second row is the result of modified U-Net only. Third row is the 
result of modified U-Net with GAN’s discriminator. Last row is the result of modified U-Net with WGAN’s discriminator. By using GAN and 

WGAN, it has become possible to detect parts which could not be detected by modified U-Net only. This is in line with the rise of recall and 
dice shown in Table I. 

 

Figure 6. Examples of segmentation result with error. First row is ground truth. Second row is the result of modified U-Net only. Third row is the 
result of modified U-Net with GAN discriminator. Last row is the result of modified U-Net with WGAN discriminator. The circle represents 

the deteriorated part. Unnecessary parts have been detected with the use of GAN WGAN. As for precision, modified U-Net tends to be higher, 

in line with the results shown in Table I. 

Based on these findings, we thought of methods that 

would enable us to make larger predictions. Our goal was 

to judge with a wider range of information, by using a 

method that expands segmented mask images and inputs 

them into the discriminator. This approach is presented in 

Fig. 7. In this network, the segmentation’s result is 

enlarged before inputting into the discriminator. Through 

this network, we aim at extending the mask image and 

considering the information of surrounding pixels. 

In case of a small segmentation result, the liver should 

be in the expanded region. On the contrary, in case of a 

large segmentation, the boundary or other than the liver 

should be in the expanded region. By discriminating a 

wide region through this change, we expected that dice 

and recall will rise. Table II and Fig. 8 describe the 

experimental results. 

TABLE II. MASK IMAGE ENLARGEMENTS COMPARISON
A 

Number of 

training 

data 

Method Dice Precision Recall 

396 Modified U-Net 
+ WGAN 

0.94 0.97 0.91 

 Modified U-Net 

+ WGAN 
(expanded 3pix) 

0.94 0.96 0.92 

 Modified U-Net 

+ WGAN 

(expanded 7pix) 

0.94 0.95 0.93 

a The best result of each metrics is indicated in bold. 
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Figure 7. Network flow of mask expansion. In this network, the generator result (mask data) is enlarged before entering it into the discriminator. 
Although not shown here, ground truth follows the same processing. Other parts of the network are as in Figure 1. 

 

Figure 8. Result of segmentation using extended mask image. First row is ground truth. Second row is the result of using 7pix expanded mask. Third 

row is the result of 3pix expanded mask. Last row is the result of using no expanded mask. By enlarging the mask region, it is possible to detect 
apportion that has not been detected so far. However, expansion of the mask region results in blurring of the detection’s outline. 

When compared to modified U-Net with WGAN 

discriminator and 3pix enlarged, 7pix enlarged and no 

expanded, and no change in dice in either method was 

observed. However, we found that precision is the highest 

in no expanded and recall is the highest in 7pix enlarged. 

These results imply that, when the region of the mask is 

expanded, fail positive increase and fail negative decrease. 

Because we value Recall more than Precision as an 

evaluation metric, we can say that the accuracy has 

improved. When compared to modified U-Net only, there 

is a stronger tendency to increase recall and decrease 

precision. Additionally, as shown in Fig. 6, enlargement 

of the mask region allows the detection of apportion, 

which has not been detected so far. However, expansion 

of the mask region leads to a blurred outline of the 

detection result. Following an increase of the size to 

expand, this tendency becomes stronger. Interestingly, 

when using 7pix enlarged, we observed crushed details 

and differentiation becomes difficult. Between modified 

U-Net with WGAN and expanded 7pix, and between 

expanded 3pix and no expanded, we observed no change 

in dice. However, in the future with the continuation of 

mask region expansion, it is thought that following the 

stop of the increase of recall and the decrease of precision, 

dice decreases.  

Finally, with localization of the discontinuous liver in 

the same slice, smaller liver detection rate is low. Fig. 9 

describes such results. A smaller liver cannot be detected 

by either method. Because smaller liver is not detectable 

by the first U-Net segmentation, we can conclude that no 

change is present despite the use of the discriminator. To 

overcome this limitation, we believe that changes to the 

U-Net are more effective than those to the discriminator. 
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Figure 9. Result of segmentation methods and volumes. First row is ground truth. Second row is the result of modified U-Net only. Third row is the 
result of modified U-Net with GAN discriminator. Last row is the result of modified U-Net with WGAN discriminator. None are capable of 

detecting the smaller liver. 

V. CONCLUSIONS 

In the present article, we proposed a network that 

performs adversarial learning in segmentation of medical 

images. We confirmed an improvement of the dice value 

by about 3%–5% through the proposed adversarial 

training, with the use of a small training dataset. We 

observed an improvement of recall by about 2%, through 

extension of the region of the mask image as an input of 

the discriminator. 

To date, in the presence of a discontinuous liver in the 

same slice, the detection rate of small liver is low. As a 

future task, we believe that we can address this issue by 

adjusting the weight of learning according to the liver’s 

shape. 
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