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Abstract—In this study, we propose an automated method 

for assessing small bowel motility function with cine MRI 

using 3D U-Net, which is a kind of deep fully convolutional 

neural networks for 3D semantic segmentation. In the 

proposed method, the cine MR images (temporal MR image 

sequence) is treated as a 3D image. We applied 3D U-Net, 

which employs 3D convolution, to automatically segment the 

temporal small bowel image sequence. Compared with the 

conventional 2D U-Net, in which the small bowel was 

segmented without temporal information and just 

segmented frame by frame, the proposed 3D U-Net can 

accurately and simultaneously segment all frames using 

temporal information. This is the first 3D fully 

convolutional network for small bowel segmentation in cine 

MR images (temporal sequence images), to the best of our 

knowledge. The small bowel motility function is assessed by 

the use of the segmented temporal MR image sequence. 

Experimental results demonstrate the effectiveness of the 

proposed method.  

 

Index Terms—cine-MR image, fully convolutional neural 

network, U-Net, 3D, small bowel, motility 
 

I. INTRODUCTION 

The small bowel is responsible for digestion and 

absorption activities that are essential to human life 

activity. Therefore, the measurement of this contraction 

movement is important for the treatment or inspection of 

the small intestine [1]. Recently, invasive testing method 

using some endoscope is a common method [2]. However, 

in this measurement method, the mental and physical 

burdens of patients are large. The workload of doctor is 

also very large. For this reason, it was needed to develop 

an assessment method of the small bowel contraction 

movement, which has the smallest burdens. In our 

previous study, we proposed an MR image-based 

assessment method based on cine MR imaging techniques 

[3], [4]. Cine MR images [5]-[7] are temporal sequence 
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images that can show small bowel contraction movement. 

Fig. 1 shows an example of cine-MR images (four 

frames), where white squares show the targeted small 

bowel. We measured temporal changes of the small 

bowel radius, which show the movement of the small 

bowel. Then we assessed the small bowel contraction 

movement based on frequency analysis. The limitation of 

our previous study is that the measurement and analysis 

were done manually and takes an enormous amount of 

time and efforts. We also proposed several automatic 

assessment methods based on image processing 

techniques [8]-[13]. They can be divided into three 

groups: (1) segmentation methods [8], [9]; (2) tracking 

methods [10], [11]; (3) temporal correlation or temporal 

difference methods [12], [13]. Since the segmentation-

based method is more intuitive and contains more 

information about the small bowel, we focus our research 

on the segmentation-based method in this paper.  

In recent years, deep convolutional neural networks 

have outperformed state-of-the-art methods in many 

computer vision tasks, including image classification, 

image segmentation, and image detection. Particularly, 

fully convolutional networks (FCNs) [14], [15] have been 

proposed for semantic segmentation and have achieved 

impressive performance. U-Net [15] is another deep 

learning-based semantic segmentation method, which is 

based on an encoder-decorder architecture. U-Net has 

been applied in many research fields including medical 

image segmentation [16]. Since the medical images (such 

as the CT image) are volume images, 3D U-Net [17] was 

introduced for medical volume image segmentation, in 

which 3D convolution as well as 3D pooling operations 

are employed. Cine MR images are 2D images in spatial 

space, but they are temporal sequence images (temporal 

2D images). Though we can use conventional 2D U-Net 

to segment the small bowel frame-by-frame, it is time-

consuming and lacks temporal smoothness among frames. 

In this paper, we treat the cine-MR image as a 3D 

image and use a 3D U-Net to segment the small bowel 
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from the cine-MR images. Compared with the 

conventional 2D U-Net, in which the small bowel was 

segmented frame by frame and no temporal information 

used, the proposed 3D U-Net can segment all frames 

simultaneously and accurately by using temporal 

information. To the best of our knowledge, this is the first 

3D fully convolutional network for small bowel 

segmentation in cine-MR images (temporal sequence 

images). The small bowel motility function is assessed by 

the use of the segmented temporal MR image sequence. 

Experimental results demonstrated the effectiveness of 

the proposed method. 

 
t=1 

 
t=2 

 
t=3 

 
t=4 

Figure 1. An example of cine MRI time sequence images. Two small bowels in the left-up and right-down areas are selected manually as the 

region of interest (ROI) for the analysis, which are indicated using white squares. It is evident that the shape of small bowel changes in time 
series. Temporal ordering is from left to right. 

The remainder of this paper is organized as follows: 

related works have been summarized in Section II, 

Section III gives a detailed description of the proposed 

method, experimental results have been presented and 

discussed in Section IV, and Section V presents the 

conclusion. 

II. RELATED WORKS 

In our previous study, we proposed an optical flow 

method based on the automatic feature points tracking 

method [10]. This method comprises of two steps. In the 

first step, users select two arbitrary points on the 

boundary of the small bowel in the initial frame. The 

distance between the two points represents the size of 

small bowel. In the second step, each of the two points 

are automatically tracked by the use of Kanade-Lucas-

Tomasi (KLT) feature points tracking method [18], [19] 

in the temporal sequence images. The KLT feature 

tracker is commonly used for feature point tracking in 

dynamic images (temporal sequence images). The KLT 

uses spatial information to search the most appropriate 

position of the tracking point in the next frame. Examples 

of automatic feature point tracking results are shown in 

Fig. 2. 

  

・・・ 

 
t=1 t=2  t=70 

Figure 2. Automatic feature point tracking results. Users arbitrarily 
specify the red dots in the initial frame. Temporal ordering is from 

left to right (t=1 to t=70). 

Though the tracking method is faster than conventional 

techniques, there is a problem that the tracking results 

depend on the initial points setting and it is a semi-

automatic method.  

III. MATERIALS AND METHOD 

A. Dataset 

The data used in this research are cine MRI DICOM 

images (256pixel × 256pixel × 70 frames) of four healthy 

male participants, as shown in Table I. Cine-MR DICOM 

image is a medical image obtained by consecutively 

imaging an arbitrary cross-sectional area over a period of 

time to capture the continuous display of the organ 

contraction motion in time-sequence (similar to a video 

image). First, the participant is first in a prone state, and 

an MR image of the entire abdomen with respect to the 

coronal plane is captured. Next, concerning the obtained 

abdomen MR image of the coronal surface, the plane in 

which the entire area of the small intestine best appears is 

regarded as the noted section. Finally, by sequentially 

imaging the section of interest within an arbitrary time, 

the cine MR temporal sequence images showing the 

entire small intestine are captured. We performed the cine 

MRI 10, 15, 30, 45 and 60 min after oral administration 

of 1500 ml of non-absorbable fluid. When performing the 

MRI, we obtained 70 frames of cine MRI in 30 s with 

suspended breath. Fig. 1 shows a typical cine MR image.  

In this research, we only focused on a small bowel, 

which is called the Region of Interest (ROI). An expert 

manually labels the ROIs. For each cine MR image, we 

labeled two ROIs in the left-up and right-down areas 

(which are indicated by white squares in Fig. 1), 

respectively, for analysis. Each temporal sequence 

contains 70 frames. The ROI size in each frame is 16 × 

16 pixels. As shown in Table I, we have 32 ROI temporal 

sequence images in all. 

TABLE I.  DATA USED IN THIS RESEARCH 

Patient No. Sex Area Elapsed time[min] 

103 Male LU, RD 10,15,30,45,60 

104 Male LU, RD 10,15,30,45,60 

105 Male LU, RD 15,30,45 

106 Male LU, RD 15,30,45 
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B. Network Architecture 

In this paper, we proposed an analysis method based 

on a 3D U-Net [17]. The 3D U-Net usually propagate 

three- dimensional images as inputs and outputs. Also, 

we leveraged an image sequence (2D image + time 

sequence) as inputs and outputs. This modification 

enables 3D U-Net to maintain and propagate time 

sequence information along the 3D structure. Fig. 3 

illustrates the 3D U-Net network architecture. Like a 

conventional 2D U-Net, the 3D U-Net has contracting 

and expanding path. In the contracting path, each layer 

contains two 3×3×3 convolutions each followed by a 

leaky rectified linear unit (Leaky ReLU), and then a 

2×2×2 max pooling with two strides in each dimension. 

In the expanding path, each layer has an up convolution 

of 2×2×2 by strides of two in each dimension, then two 

3×3×3 convolutions each followed by a ReLU. Shortcut 

connections from layers of same tensor shape in the 

contracting path provide the essential high-resolution 

features to the expanding path. In the last layer, a 1×1×1 

convolution reduces the number of output channels to the 

number of labels; we set output channels as 1. The input 

to the network is a 3D data which consists of 16×16×8 in 

x, y, and t directions, respectively. The output in the last 

layers is also 3D data of 16×16×8. We also introduce a 

batch normalization (BN) before each ReLU, and dropout 

to avoid overfitting. 

 
(a) 

 
(b) 

Figure 3. (a) is the architecture of U-Net and (b) is the architecture of 
3D U-Net. Red boxes represent the convolutional and max pooling 

operations, respectively. Light Green boxes represent batch 
normalization. Blue boxes represent dropout Layer. 

IV. EXPERIMENTAL RESULTS 

A. Training and Testing 

Training 3D U-Net from scratch requires a large 

amount of labeled training data. In order to increase the 

number of training data, each ROI temporal sequence 

image is divided into 63 sub-temporal sequence images 

as 3D input images. Each sub-temporal sequence contains 

eight frames. The frame numbers for each sub-sequence 

are 1–8, 2–9, 3–10, …, 63–70. As we described in Sec.3, 

there are 32 ROI temporal sequences; hence, we have 

2016 3D data for training and testing of the proposed 3D 

U-Net. The size of the 3D data is 16×16×8. (63 3D ROI 

images). 

We divided our data into four groups with each 

containing a patient. Table II shows the data distribution. 

We carried out experiments with 4-fold cross-validation. 

Three groups were used as training, and one group was 

used for testing. 

The whole network (3D U-Net) is trained end-to-end. 

Moreover, we ran 300 training epochs on an Nvidia Titan 

X GPU, which took approximately a day for each phase. 

We set the learning rate as 10
−3

 for ADAM optimizer and 

the batch size to 32. The network output and ground truth 

labels are compared using a sigmoid function with 

weighted cross entropy loss. Furthermore, the outputs of 

overlapping areas were combined using majority voting. 

TABLE II.  DATA DISTRIBUTION 

Group No. Patient No. Number of 3D data 

1 103 630 

2 104 630 

3 105 378 

4 106 378 

B. Evaluation Metrics 

We used two evaluation metrics, normalized 

correlation and the Dice coefficient for quantitative 

evaluations. We used the normalized correlation value of 

the time-series waveform of the small intestinal 

contraction movement (temporal areas of the small bowel) 

between the ground truth x (manually segmented results) 

and the automatically segmented results y. Equation (1) 

expresses the normalized correlation, where xi and yi are 

manually and automatically segmented results (areas of 

segmented small bowel) of the i-th frame, respectively. 

Moreover, 𝑥̅  and 𝑦̅  are means of x and y, respectively. 

The normalized correlation value is close to 1.0, 

indicating that the segmentation result is similar to the 

ground truth. 

 𝐶𝑜𝑟𝑟𝑒𝑙(𝐱, 𝐲) =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√(𝑥𝑖 − 𝑥̅)2(𝑦𝑖 − 𝑦̅)2
 (1) 

The Dice coefficient is used as a measure of 

segmentation accuracy for each frame, which is defined 

by Eq. (2), where x and y are manually and automatically 

segmentation results (binary masks) for each frame, 

respectively.  

 𝐷𝑆𝐶(𝑥, 𝑦) =
2|𝑥 ∩ 𝑦|

|𝑥| + |𝑦|
 (2) 

Also, using Fourier transform analysis we examined 

the frequency of small bowel contraction movement. Eq. 

(3) represents the Fourier transform, where f(t) is the 

waveform (temporal change of the segmented small 

bowel area), F(u) is its spectrum, u is the frequency, and 

N is the number of temporal frames. 
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 𝐹(𝑢) = ∑ 𝑓(𝑡)𝑒−𝑖
2𝜋𝑡𝑢
𝑁

𝑁−1

𝑥=0

 (3) 

C. Results 

Fig. 4 shows typical segmentation results using the 

proposed 3D U-Net. For comparing the method proposed 

in this paper and the conventional 2D U-Net, we have 

presented the segmentation results obtained using 

conventional 2D U-Net in Fig. 4. Also, Fig. 4 shows 

results of the manual segmentation by experts, while their 

waveforms are shown in Fig. 5. Their Fourier transform 

results are shown in Fig. 6. As shown Fig. 4-Fig. 6, it is 

evident that the 3D U-Net achieved more accurate 

segmentation than the other method. Table III 

summarized the results. For all cine MR images, the 

proposed 3D U-Net achieved better results as compared 

to the conventional U-Net. The effectiveness of proposed 

method has been confirmed experimentally. 

Frame No. Cine-MRI U-Net 3D U-Net Ground truth 

t=16 

    

t=17 

    

t=18 

    

t=19 

    

t=20 

    

Figure 4. Visuallization results of our test set. 

TABLE III.  COMPARISON OF THE 3D U-NET WITH U-NET ON SMALL BOWEL MOTILITY FUNCTION CINE-MRI SEGMENTATION 

 Normalized correlation Frequency error Dice coefficient 

No. Time U-Net 3D U-Net U-Net 3D U-Net U-Net 3D U-Net 

103 

10 0.79 0.81 0 0 0.82 0.87 

15 0.75 0.81 0 0 0.80 0.82 

30 0.72 0.72 0 0.033 0.87 0.88 

45 0.62 0.67 0 0 0.81 0.82 

60 0.63 0.70 0.067 0.033 0.79 0.80 

104 

10 0.46 0.62 0.067 0 0.64 0.74 

15 0.60 0.64 0 0 0.72 0.79 

30 0.82 0.87 0 0 0.75 0.79 

45 0.66 0.76 0.033 0.033 0.81 0.82 

60 0.78 0.84 0 0 0.83 0.85 

105 

15 0.76 0.73 0 0.033 0.81 0.82 

30 0.65 0.98 0.067 0 0.81 0.82 

45 0.87 0.91 0 0 0.86 0.87 

60 0.54 0.67 0.1 0 0.90 0.93 

106 

15 0.66 0.67 0 0 0.54 0.59 

30 0.48 0.50 0.067 0 0.62 0.58 

45 0.43 0.48 0.067 0 0.70 0.71 

60 0.36 0.31 0 0.1 0.58 0.61 

Mean±std. 0.64±0.14 0.70±0.15 0.022±0.033 0.012±0.025 0.76±0.10 0.78±0.10 
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Figure 5. Time-series waveforms. 

 

Figure 6. Comparison results of frequency analysis results. 

V. CONCLUSION 

In this paper, we proposed an automatic analysis 

method of small bowel motility function using 3D U-Net. 

For all cine-MR images used in our experiments, the 

proposed 3D U-Net achieved better results than 

conventional 2D U-Net. In the future, we are going to 

assess disease cases and compare them with the healthy 

cases. 
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