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Abstract—Target detection algorithm in hyperspectral 

imaging detects a certain material in a hyperspectral image 

using a known spectral signature of the material. 

Conventional algorithms for target detection assume that 

there is only one known target spectrum so target statistics 

cannot be estimated. Discriminant analysis is designed for 

classification, but this paper analyzes the performance of 

discriminant functions for target detection. The 

discriminant functions have been modified for target 

detection and uses simulated target spectra with different 

amount of random noise. Experimental results show that the 

algorithms can work well within a certain amount of noise.  

 

Index Terms—target detection, hyperspectral imaging, 

remote sensing 
 

I. INTRODUCTION 

Hyperspectral imaging forms images of a scene by 

using an imaging spectrometer to collect the reflectance 

spectrum of each pixel in the scene. The spectrum covers 

a wide range of wavelengths. Hyperspectral images have 

high spectral resolution and has hundreds of spectral 

bands. The main applications of hyperspectral imaging in 

remote sensing are target detection, anomaly detection, 

and classification. Different materials have different 

spectral signatures. Target detection uses a known 

spectral signature from an image or spectral library to 

detect a specific material in the image from the spectrum 

of the pixel. Target detection assumes the image consists 

of only background pixels and target pixels. Unlike 

classification, which requires a sample of training pixels 

for the background and a sample of training pixels for the 

target, target detection requires a sample of training 

pixels for the background and only one training pixel for 

the target. 

The papers in [1], [2] give a review of target detection 

algorithms for hyperspectral imaging. The conventional 

algorithms Adaptive Matched Filter (AMF) in [3] and 

Adaptive Coherence/Cosine Angle (ACE) in [4] are 

commonly used in target detection. A recent review of 

AMF and ACE is in [5]. An algorithm based on logistic 

regression for target detection is in [6], and this algorithm 

uses simulated target pixels for training the detector. A 

constrained ACE detector for highly variable target is 

presented in [7], [8], and these algorithms implant 
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simulated target pixels as test pixels. Other approaches to 

target detection are discussed in [9]-[11]. 

Both the AMF and ACE assume the background pixels 

and target pixels form multivariate normal distributions. 

The AMF assumes a common population covariance   

for both the background and target distributions. The 

AMF is derived from a general likelihood ratio test and is 

given by 
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where 
1ˆ   is the inverse of the sample covariance ̂ , s  

is a target spectrum, and x  is a test pixel. The mean is 

removed from the target spectrum and all pixels in image. 

ACE is derived from the general likelihood ratio test. 

The null hypothesis tests if the test pixel has a normal 

distribution with mean 0  and covariance  . The 

alternative hypothesis tests if the test pixel has a normal 

distribution with mean as  and covariance 
2  . The 

vector s  is the known target spectrum, and 
2  and a  

are unknown scalars. The ACE detector for a test pixel x  

is given by 

        (2) 

This paper proposes to modify the linear discriminant 

and quadratic discriminant functions for target detection 

and compare their performance under different noise 

level. There is usually one target pixel available in target 

detection so additional training pixels for target need to 

be generated. The target training pixels are generated by 

adding a small perturbation to the mean target pixel. The 

source of the target spectral signature can be from the 

image, field measurements, or laboratory measurements. 

Experimental results using the mean target pixel from the 

image is presented in this paper. 

II. DETECTION ALGORITHMS 

A. Bayes’ Theorem for Target Detection 

The linear discriminant and quadratic discriminant 

functions are classification methods that produce a binary 

outcome. The two discriminant functions are modified 

below for target detection to produce an image of detector 
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output. The detector output is defined as the value of the 

modified linear discriminant or modified quadratic 

discriminant function.  

Let the random vector X  of dimensions 1p  and 

scalar random variable Y  represent a test pixel and class, 

respectively. A value x  of the test pixel X  is to be 

classified as a background pixel  Y b  or target pixel 

 Y t . Let the prior probability of a test pixel being a 

background pixel, density function of X  for a test pixel 

that is a background pixel, prior probability of a test pixel 

being a target pixel, and density function of X  for a test 

pixel that is a target pixel be denoted by, respectively, 

 b P Y b   ,    bf x P X x Y b   ,

 t P Y t   , and    tf x P X x Y t   .  

The Bayes' theorem states the probability that a given 

test pixel is a background pixel is  
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and the probability that a given test pixel is a target pixel 

is 
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A test pixel is classified as a target pixel if  
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B. Linear Discriminant for Target Detection 

Assume the background pixel and target pixel come 

from multivariate normal distributions with mean b  and 

covariance b  for the background pixel and mean t  

and covariance t for the target pixel. The density 

functions for the background pixel and target pixel are 

given by  
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The linear discriminant analysis does not require the 

covariance of the target by assuming the background and 

target have a common covariance matrix, i.e. 

b t     . Assuming that the prior probabilities are 

equal, Equation (5) can written as  

    1t bf x f x                    (8) 

The density functions in (8) can be replaced by (6) and 

(7) to obtain the inequality 
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By combining the exponential terms and then taking 

the natural log on both sides, Equation (9) becomes 

        1 1' '
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The detector based on linear discriminant analysis for 

target detection is defined as the left side of (10), i.e. 
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By multiplying out the products, (11) becomes 
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By adding a zero term 
1 1' '

t b b t        to (12) 

and then simplifying it, (12) becomes 
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The second term in (13) does not depend on the test 

pixel x . A large value of the detector would indicate a 

target pixel. Target detection typically assumes target 

pixels are rare so the common covariance   can be 

estimated by the sample covariance ̂  computed using 

all pixels from the image. The means b  and t  can be 

estimated using the sample means ˆ
b  and ˆ

t . 

C. Quadratic Discriminant for Target Detection 

The quadratic discriminant analysis assumes that the 

background and target have different covariance matrices, 

i.e. b t   . The covariance for the background can be 

estimated using the background pixels. There is typically 

only one known target pixel to be used as the target 

spectral signature so additional target pixels are needed to 

estimate the sample mean and sample covariance for the 

target. The additional target pixels are generated by 

adding a uniform random noise to the known target pixel.  

The density functions in (8) can be replaced by (6) and 

(7) to obtain the following 
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Equation (14) can be simplified to 

    
1 2

exp 2t b t bQ Q             (16) 

By taking the natural log on both sides of the equation, 
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The right side of (17) is not a function of x . Define 

the left side of (17) as the detector based on quadratic 

discriminant analysis for target detection, i.e. 

 Q b td x Q Q              (18) 

By multiplying out the products, (18) becomes 
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Equation (19) can be simplified to the following final 

version of the detector 
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A large value of the detector would indicate a target 

pixel. The means b  and t and covariances b  and 

t can be estimated using the corresponding sample 

means ˆ
b  and ˆ

t and sample covariances ˆ
b and ˆ

t . 

III. EXPERIMENTAL RESULTS 

To The objective of the experiment is to assess the 

performance of the linear discriminant analysis and 

quadratic discriminant analysis in target detection using a 

hyperspectral image from RIT (Rochester Institute of 

Technology). ROC curves and detector outputs are 

generated for the analysis. The image from RIT is shown 

in Fig. 1. The image is in the visible and near-infrared 

wavelengths and has spatial dimensions of 84 by 146 and 

a spectral dimension of 295. The two targets in the image 

are red felt and blue felt and are shown in Fig. 2. The 

mean target pixel used in both linear and quadratic 

discriminant detectors is the mean pixel from the 

simulated target pixels. The results presented in this 

section are for the red felt using the target spectra from 

the image. The results for the blue felt are similar to the 

red felt and are not shown. 

 

Figure 1. The RIT image with spatial dimensions of 84 by 146 and 
spectral dimension of 295. 

 

Figure 2. An image of the locations of the red and blue targets for the 
RIT image. 

The linear discriminant detector in (13) requires only a 

sample of background pixels, but the quadratic 

discriminant detector in Equation (20) requires a sample 

of background pixels and a sample of target pixels. All 

pixels in the entire image are considered as background 

pixels although some of them are actually target pixels. 

All pixels from the image are selected as training pixels 

for background. It is assumed that there is only one target 

pixel in target detection so the mean of the target pixels is 

assumed to be the representative target pixel. A random 

sample of 3 p  pixels are generated from a uniform 

distribution to be used training pixels for target. Each 

training pixel for target is the sum of the mean target 

pixel and a scalar multiple of a random pixel from a 

uniform distribution that has the same magnitude as the 

mean target pixel. The scalar multiple is a proportion of 

the magnitude of the pixel and is denoted by q  in 

percentage. 

The ROC curves for the red target using the linear 

discriminant detector are shown in Fig. 3 for 

1,2, ,10q  . The ROC curves for the red target using 

the quadratic discriminant detector are shown in Fig. 4 

for 1,2, ,10q  . As the value of q  increases, the 

ROC curve gets worse for linear and quadratic 

discriminant detectors. The linear discriminant detector 

performs best at 1q  . The best ROC curves for the 

quadratic discriminant detector are at 1,2,3q  . As more 

noise is introduced into the training pixels for the target, 

the performance of the linear discriminant detector gets 

progressively worse for the first three values of q  but 

stays about the same after that. The performance of  the 

quadratic discriminant detector stays about the same after 

the first four values of q . The roc curves show the 
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quadratic discriminant detector performs better than the 

linear discriminant detector for 2q  . 

 

Figure 3. ROC curves generated by the linear discriminant detector for 
detecting the red target for q=1, 2, 3, …, 10. 

 

Figure 4. ROC curves generated by the quadratic discriminant detector 
for detecting the red target for q=1, 2, 3, …, 10. 

The values of the detector are generated for analysis. 

The images of the detector output for the linear and 

quadratic discriminant detectors at 1q   are shown in 

Fig. 5 and Fig. 6. The image of the detector output for the 

AMF and ACE detectors are shown in Fig. 7 and Fig. 8. 

The detector images show that the detectors based on 

discriminant analysis can detect the red felt, but the 

background is a little noisy. The AMF and ACE detectors 

show rather homogeneous background. The red felt 

shows up more clearly in the ACE detector than in the 

AMF detector so the ACE detector performs better than 

the AMF detector. 

 

Figure 5. An image of the detector output generated by the linear 

discriminant detector at q=1 for detecting the red target. 

 

Figure 6. An image of the detector output generated by the quadratic 
discriminant detector at q=1 for detecting the red target. 

 

Figure 7. An image of the detector output generated by AMF detector 
for detecting the red target. 

 

Figure 8. An image of the detector output generated by ACE detector 
for detecting the red target. 

IV. CONCLUSION 

The linear discriminant and quadratic discriminant 

detectors can detect the red felt using simulated target 

spectra that are generated with different amount of 

random noise. This shows that it is feasible to solve the 

target detection problem, which typically has only one 

training pixel for the target by using classification 

algorithms, which require a sample of training pixels for 

the target. Different methods of generating the simulated 

target pixels and different conventional classification 

algorithms can be combined develop new detectors for 

target detection. 
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