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Abstract—We propose a Convolutional Neural Network for 

counting objects and persons in images. Utilizing a sequence 

of images, it is possible to count with respect to a movement 

direction (e.g. UCSD pedestrian dataset). The proposed 

Number Convolutional Neural Network (NCNN) directly 

outputs the desired count and thus does not require 

additional counting steps or dense maps as intermediate 

step. It cannot only be superior with respect to the mean 

absolute error evaluated on already known datasets. It also 

requires only the count as ground truth data and is thus 

easily and quickly applied to a variety of new problem 

statements. Additionally, it is able to count with respect to a 

movement direction by integrating time-dependent 

information. 

 

Index Terms—deep learning, CNN, crowd counting 
 

I. INTRODUCTION 

In vision research and application Convolutional 

Neural Networks (CNN) are a famous approach for 

various kinds of problems. The most common utilization 

is for classification of images, e.g. the widely known 

implementation called AlexNet [1]. However, in this 

paper we are interested in counting people or objects in 

single static images or with respect to a movement. 

A. Related Work 

A popular approach for counting people is the method 

proposed by Chan et al. [2]. It is not limited to a static 

count, i.e. counting without involving time on single 

images. The solution is able to count people walking in 

different directions, which we call here a dynamic count. 

However, they show that the accuracy depends on various 

features selected and composed for that particular 

problem and modelled as a trained Gaussian process.  

Lempitsky et al. [3] propose to learn a linear mapping 

from local features in images to their density maps of 

objects. A density map for counting persons generated by 

a regression random forest is proposed by Fiaschi et al. 

[4]. Unfortunately, density maps cannot be used for 

dynamic counting and thus these approaches are limited 

to static counts. 

All three approaches mentioned above are presented 

for comparison with our approach in the evaluation. 

A more general approach for counting would be to 

detect all persons in the image as the first step. This could 
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be done by applying the proposed method by Li et al. [5] 

which is a fast approach applying CNN for face detection. 

However, such approaches would require visible faces in 

a sufficient resolution. 

Thus, counting utilizing CNN is usually done by 

detecting crowds in density maps as e.g. proposed by 

Zhang et al. [6], [7]. In the former mentioned paper, they 

propose to switch the learning process depending on the 

input and to count utilizing a ridge regressor for density 

estimation first. In their latter paper, they propose to 

switch between different CNNs instead of different 

trainings. The density maps are then combined which is 

afterwards used for counting in a subsequent step. 

This is a more general approach as it could be adapted 

to various kinds of objects but is limited to a static count 

as well. The result can be improved by applying an 

additional CNN to select a net that best suits the crowd 

density in the given image [8] instead of combining the 

results. It is also possible to match small patches to object 

densities by utilizing a CNN as proposed by [9]. An 

overview about related approaches is given in [10]. 

B. Contribution 

To the best of our knowledge, all approaches utilizing 

a CNN are focused on density maps and thus cannot 

count dynamically. Zhang at el. mentioned two natural 

approaches for a CNN to count [7]. First is the density 

map, second is the number as direct output. They argue 

for following the first idea and so to neglect the second. 

We see reasonable advantages of the latter idea: 

 As ground truth data only the count is required. 

Thus, labeling an image takes only a short time. 

 Counting is done by the system without requiring 

object specific methods, e.g. features especially 

for detecting persons. 

 It is not limited to a static count (see above). 

The goal of this paper is not only to further improve 

the already excellent accuracies of the approaches 

mentioned above. We also propose a CNN that directly 

counts static and dynamic persons and objects. It is thus 

easily and quickly applied to new problem definitions and 

we call it the Number Convolutional Neural Network 

(NCNN).  

For a dynamic count informations about the movement 

must be visible in the images. 

We thus propose a method to enable a dynamic count 

using a single image with three channels for three 

different time instances. 
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Manually generating ground truth data is fast as 

mentioned above. However, a large training set is 

required to cover all possible situations in all image areas. 

We therefore also show how to generate additional 

training data by shuffling parts of an image and 

recombine these to a new image. 

In the evaluation, we compare this approach with other 

methods utilizing already known datasets, namely the 

UCSD pedestrian dataset [11] and the TRANCOS v3 data 

set [12]. We conclude under which circumstances the 

proposed NCNN is superior to other approaches 

regarding Mean Absolute Error (MAE) and deduce the 

requirement for a broad training data set for this approach. 

C. Overview 

The paper is organized as follows. In the next section 

II we present the NCNN for static (Sec. II-A) and 

dynamic counting (Sec. II-B) where we also propose the 

concept for including the required time-dependent 

information in movies like walking directions. 

Afterwards in Sec. II-C we present our algorithm to 

generate additional training data. 

In the evaluation in Sec. III we apply the methods to 

the UCSD pedestrian dataset (Sec. III-B) for static and 

dynamic counting and afterwards in Sec. III-C to the 

TRANCOS dataset for static counting. The conclusion 

(Sec. IV) utilizes the outcome of the evaluation and 

summarizes the methods. 

II. NUMBER CONVOLUTIONAL NEURAL NETWORK 

The Number Convolutional Neural Network (NCNN) 

proposed in this paper is based on the idea that a CNN is 

composed of multiple well-known mathematical 

operations. The counting step by detecting objects or 

counting in crowd/density maps can be integrated into the 

net due to the aforementioned general nature of a CNN. 

The input of the NCNN is thus the image with people or 

objects to count. The output is the count as a scalar.  

Fig. 1 depicts the NCNN. It is simple and small and 

thus very fast compared to the CNN mentioned in Sec. I-

A. One convolutional layer is sufficient, where 𝑐𝑥 × 𝑐𝑦 ×

𝑐𝑑 denotes the size and depth of the convolutional filters 

and  𝑐𝑁  the number of filters. The filter size should be 

chosen according to the resolution of the input images. 

As the evaluation in Sec. III shows, smaller resolutions 

benefit from smaller filter sizes (e.g. 𝑐𝑥 × 𝑐𝑦 = 3 × 3 ) 

both in MAE and speed while the size should be higher 

(e.g. 𝑐𝑥 × 𝑐𝑦 = 15 × 15 ) for a resolution above 640 ×

480. The depth of each filter 𝑐𝑑 is 1 for static counting 

and 3 for dynamic counting, see Sec. II-B. Additionally, 

the number of output scalars is variable as well depending 

on the number of different classes to be counted. 

The convolutional layer is followed by a layer with 

rectifying linear units and a max-pooling layer with a 2x2 

kernel and stride 2. The next layer is a dense layer with 

10 neurons and again rectifying linear units. The last 

layer is the counting layer with variable number of 

neurons, depending on the number of desired scalars. 

 

Figure 1. The size 𝒄𝒙 × 𝒄𝒚 of the convolutional filter should be adapted 

to the resolution of the input images. The depth 𝒄𝒅 should be 1 for a 

static count and 3 for dynamic counting, see Sec. II-B. The number of 

filter 𝒄𝑵 depends on the training data. 

A. Static Count 

Static count denotes counting objects or persons in a 

single image without respect to a possible movement. 

Even though walking people have a leg and arm position 

that indicates their walking direction, we propose a 

different approach to include this in the next section.  

To this end we apply the NCNN structure depicted in 1 

with a filter depth of 𝑐𝑑 = 1 in the convolutional layer for 

grayscale images as input. The number of output neurons 

is one: the scalar estimating the count. 

B. Dynamic Count 

A dynamic count of people as explained in Sec. I-A 

could be done by training to detect typical arm and leg 

movements or the direction of the face indicating the 

walking direction. However, in the given datasets the 

objects and persons are rather small, such that the limbs 

and faces are not always clearly visible.  
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Therefore, we propose a slightly different structure of 

the NCNN compared to the static count. The filter depth 

of the first layer is now three, which is commonly the 

case for colored images. Here the three input channels 

have a different meaning. Assuming we want to count at 

time 𝑡, the grayscale image at 𝑡 is the second channel of 

the input image. The first channel is then the grayscale 

image at time 𝑡 − ∆𝑡  and the third channel is the 

grayscale image at time 𝑡 + ∆𝑡. Interpreting this image as 

a colored BGR image leads to Fig. 2 where we set 

∆𝑡 = 1s. In a grayscale image people are dark compared 

to the walkway which leads to a lower value in the 

corresponding channel. In an area without movement the 

image is thus gray as all channels have the same value. If 

for example at time 𝑡 − ∆𝑡 a person is in that area the 

blue channel has a lower value resulting in yellow. Thus, 

the direction of a walking person is identifiable by a set 

of color transitions. 

 

Figure 2. Image of walking people in the UCSD pedestrian dataset [11] 
using the image channels for different time instances. 

The output of the NCNN are two scalars for the 

dynamic count, one for each direction comparably to the 

approach in [2]. 

C. Image Shuffling 

CNN are typically applicable to images that are 

comparable to images in the training data. While 

convolutional layer work with a sliding window applying 

the same operation in all areas of the image, the matrix of 

a dense layer has different gains for the pixels in the 

image. To train all entries of the matrix correctly we thus 

need all possible situations in all areas of the training 

images. 

 

Figure 3. Image composed as a mixture of a given source image to 
generate additional training data. 

We therefore apply the following method to generate 

additional training data. We cut an image in smaller parts 

(e.g. patches with size 25x10 pixel) and reorganize them 

randomly to generate a new image, see Fig. 3. As one of 

the goals of this paper is to require only simple ground 

truth data (i.e. the count), we do not know where persons 

or objects are in the source image. Thus, it is possible that 

persons/objects are cut and placed in different locations 

in the target image, which can reduce the quality for 

training. 

III. EVALUATION 

The goal of this section is to evaluate the objectives 

described in Sec. I-B. We are especially interested in the 

ability to count persons and objects statically and 

dynamically without changing the setup.  

It is known that CNN are impractical on datasets that 

require extrapolation, i.e. if the training data does not 

cover all possible situations. As our approach is based on 

a CNN only, it is prone to this and we are interested in 

how it performs under these circumstances and if the 

generation of additional training data as explained in Sec. 

II-C can improve the results. 

We utilize two challenging datasets for which already 

precise solutions exist. First one is the UCSD pedestrian 

dataset [11] that consists of 2000 images of a walkway at 

the University of California in San Diego. The dataset 

provides ground truth data and contains the total person 

count useful for the static count evaluation. Furthermore, 

the number of people walking towards the camera und 

away from the camera is also contained which we utilize 

for the evaluation of the dynamic count. Additionally, we 

use the TRANCOS dataset with 1244 images of traffic 

scenes recorded by surveillance cameras. 

A. Setup 

Our CNN training and inference is based on 

Tensorflow [13]. All source images are grayscale with the 

mean value per image subtracted. For the UCSD 

pedestrian dataset a Region of Interest (ROI) is usually 

defined. All pixel outside this region are set black. As 

cost function we use the mean squared error between the 

ground truth and the estimated count. The number of 

scalars in this count depends on the desired type of count, 

i.e. static or dynamic count, here one and two 

respectively. The Adam optimizer proposed by Kingma 

et al. [14] leads to the best results compared to e.g. 

Adagrad algorithm [15] or Gradient Descent. Learning 

rates and batch sizes are adapted to image size and shape 

of the cost function. All variables are initialized by 

random numbers, also the permutation used by the image 

shuffling is random. However, to allow to reproduce all 

results, we set the random number generator seed to the 

random but fixed number 42. 

B. UCSD Pedestrians 

The resolution of the images is 238x158. However, we 

resize all images to 250x150 to have a larger variety of 

possible patch sizes for shuffling (Sec. II-C). At this 

resolution a convolutional filter size of 𝑐𝑥 × 𝑐𝑦 = 3 × 3 

is sufficient. 

We compare training sets with additional shuffled 

images in different patch resolutions with no additional 
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images. The comparison is done using the MAE after 10 

training epochs on the evaluation images. We finally 

selected a patch resolution of 25x10 and add 40 shuffled 

images per source image to the training set. 

In [2] frames 600 to 1399 are utilized for training, the 

remaining images for evaluation. As the authors correctly 

state, this split allows to test the extrapolation ability of 

the approach.  

TABLE I.  MAE OF DIFFERENT APPROACHES COUNTING ON THE UCSD 

PEDESTRIAN DATASET AS DEFINED IN [2]. NCNN1 DENOTES THE NCNN 

WITH TRAINING IMAGES AS PROVIDED IN [2] AND NCNN2 WITH 

ADDITIONAL SHUFFLED IMAGES AS EXPLAINED IN SEC. II-C 

Appr. Static Count Dynamic Count 

“Away” 

Dynamic Count 

“Towards” 

[2] N/A 1.621 0.869 

[16] N/A 1.808 1.343 

[17] N/A 1.995 1.108 

[6] 1.6 N/A N/A 

[7] 1.07 N/A N/A 

NCNN1 3.493 3.272 3.041 

NCNN2 2.585 2.653 2.889 

 

Fig. 4 depicts the MAE using the evaluation images 

during the NCNN training. As can be seen ("Normal"), 

shortly after 20 training epochs no further improvements 

can be observed. Table I shows the MAE of different 

known approaches to statically counted persons. The 

performance of the proposed NCNN trained as described 

above leads to a low performance after 100 training 

epochs. Extending the training dataset by images shuffled 

as explained in Sec. II-C improves this result as Fig. 4 

("Shuffled") and Table I shows. However, it is still below 

state of the art methods.  

 

Figure 4. MAE using the evaluation image set of the UCSD pedestrian 
dataset of three different training setups. "Normal" denotes an 

experimental setup as in [2], "Shuffled" denotes our training set 

extension as explained in Sec. II-C and "Mix" denotes a random mix of 
all images before splitting into training and evaluation images. 

To confirm that a missing extrapolation capability is 

causal, we conduct an experiment where all 2000 images 

are mixed randomly before 40% are chosen for training. 

Fig. 4 shows this training ("Mixed"). As can be seen, the 

MAE is vastly improved to 0.7525 for static count and 

0.402/0.472 for the dynamic count. However, we do not 

add this result to Table I as this experimental setup is not 

comparable to the one above. 

An interesting observation during these trainings is that 

the number of filters in the convolutional layer should 

depend on the generality of the training set. Generally 

speaking, a CNN should be small with a low number of 

filters to be fast. Thus, we use two filters in the 

convolutional layer in case of a training as described in 

[2]. However, our "mixed" setup leads to a more general 

training set and a larger number of filters can benefit 

from this. Therefore, we use 8 convolutional filters in this 

case. 

C. TRANCOS 

The TRANCOS dataset contains 1244 images in 

various resolutions of different traffic scenes for counting 

cars, see Fig. 5 for an example. It is split into a training 

set with 403 images, an evaluation set with 420 images 

and a test set with 421 images. We trained our NCNN 

with the training images only and utilized the evaluation 

set to improve the shape of the convolutional layer and to 

choose training parameters. The test set is used only for 

reporting the results.  

 

Figure 5. Example picture of the TRANCOS dataset for counting 

vehicles, here 27 according to ground truth data. 

The training set is well distributed and thus, as 

described above, we use 8 filters in the first layer and do 

not use shuffling. We resize all images to a unified 

resolution of 640x480 and set the filter size to 15x15, 

suitably for the higher resolution of the images compared 

to the UCSD pedestrian dataset. 

TABLE II.  MAE OF DIFFERENT APPROACHES COUNTING CARS ON THE 

TRANCOS DATASET [12] 

Approach MAE 

[4] 17.77 

[3] 13.76 

CCNN [9] 12.49 

Hydra 2s [9] 11.41 

Hydra 3s [9] 10.99 

Hydra 4s [9] 12.92 

NCNN 10.79 

 

After training 100 epochs we found the lowest MAE 

using the evaluation images at epoch 18. Later epochs 

seem to be overfitted. We decided to use this model 

(trained for 18 epochs) and achieve an MAE on the test 

images of 10.791 which outperforms all known methods 

applied to this dataset, see Table II. Note that due to our 

approach we can only give the GAME(0) metric [9] 

which is the MAE. 

IV. CONCLUSION 

This paper proposes a possibly evident solution for 

counting objects and persons utilizing a CNN, the 
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Number CNN (NCNN). It's distinction to other methods 

involving a CNN is the self-contained approach by 

directly giving the desired number as an output of the net. 

Thus, it is a very simple approach that can be quickly 

adapted to new problem statements and requires only 

training images with counts as ground truth data. While 

being simple it is able to count with respect to a moving 

direction which is uncommon for a CNN utilized for 

counting. 

As the evaluation points out, a self-contained counting 

solution based mostly on machine learning reveals poor 

extrapolation capabilities. Using well-formed training 

data the evaluation shows that the proposed NCNN 

outperforms state of the art methods comparing the mean 

absolute error. 

Future work should not specialize the NCNN for 

particular problem statements like person counting to 

improve performance. Rather research must be conducted 

to further generalize the training data beyond the 

capabilities of the image shuffling utilized here. This 

should not require other or new labels for training data to 

keep the generality of NCNN. Thus, Generative 

Adversarial Networks [18] are a promising approach. 
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