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Abstract—The goal of our study is to segment and quantify 

brain ventricles in infants with hydrocephalus. The 

Hydrocephalus is a brain disease in which cerebrospinal 

fluid accumulates in the ventricles, which expand 

abnormally. The ventricles then press on other brain tissues, 

leading to the risk of multiple functional and developmental 

disorders. Segmenting brain ventricles is necessary for early 

detection and surgical follow-up. Unfortunately, there are 

few studies on patients with hydrocephalus and infant 

ventricles are complex and diverse with limited data. 

Moreover, using conventional automatic segmentation by 

atlas and machine learning with handcrafted features is 

difficult to segment the infant brain ventricles with 

hydrocephalus because of the above data-specific issues. 

Here, we propose a deep automatic method based on 2.5D 

U-Net and transfer learning to segment the infant brain 

ventricles with hydrocephalus. We apply a network 

architecture that combines low-level features with high-level 

features to improve learning efficiency, and to maintain the 

correlation in the slice direction. The input images of the 

network are multi-slice images (the target slice image and its 

neighbor slices). Furthermore, we apply transfer learning 

using adult datasets to deal with limited data and fine-

tuning in the hydrocephalus infant datasets. In our 

experiments, our proposed method outperforms 

conventional methods and improves the DICE from 58% to 

72%. 

 

Index Terms—deep learning, 2.5D, U-net, transfer learning, 

hydrocephalus infant ventricular, MRI 
 

I. INTRODUCTION 

Our study focuses on infant patients with 

hydrocephalus. The hydrocephalus is a brain disease in 

which cerebrospinal fluid accumulates in the ventricles, 

which is expanded abnormally, leading to the risk of 

multiple functional and developmental disorders [1]. The 

difference between normal, hydrocephalus adult and 

infant are shown in Fig. 1. Shunt surgery is an effective 

treatment, and it is necessary for surgical follow-up to 

quantitatively evaluate the ventricular volume before and 
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after surgery and for surgical follow-up. An automatic 

segmentation method is needed because manual 

segmentation requires more burden and highly 

experienced labor resources. 

 

Figure 1. Axial slice of normal, hydrocephalus adult and infant. 

Conventional methods based on basic ventricular 

features [2] or using a brain atlas [3] are difficult to be 

applied to segmentation of infant brain ventricles with 

hydrocephalus because of their complicated and diverse 

shapes. Moreover, machine-learning methods with 

handcrafted features [4], [5] have problems with the mis-

segmentation of similar regions (e.g., neighboring tumors) 

and face overfitting problems due to the limited data. 

Therefore, we propose a deep automatic segmentation 

model called 2.5D U-Net for hydrocephalus-affected 

infant brain ventricles. Our proposed method and 

contributions are as follows. 

 2.5D U-Net: multi-slice inputs including the target 

slice image and its neighbored slices enable us to 

segment the 3D data effectively because of 

considering the correlation in the slice direction. 

 Transfer Learning (TL) with an adult dataset: we 

show that TL with an adult dataset could improve 

the segmentation accuracy of hydrocephalus-

affected infant brain ventricles. This is beneficial 

because more adult data are available and 

hydrocephalus-affected adult brain ventricles are 

easy to segment (automatically or manually). 

Therefore, we have more data for training. 

 The proposed method outperforms conventional 

methods: the DICE is improved from 58% to 72%. 

The proposed method improves the accuracy of the 

conventional method and enables robust segmentation 

even for limited data. 
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The structure of the paper is as follows. The related 

work is summarized in Section II. The proposed method 

is described in Section III. The experimental results are 

presented in Section IV, and finally a summary is given 

in Section V. 

II. RELATED WORK 

Recently, Fully Convolutional Networks (FCNs) [6] 

are widely used for semantic segmentation. U-Net is one 

of FCNs and is often used for medical image 

segmentation [7]. The architecture of U-Net is shown in 

Fig. 2. It is composed of encoder for extracting features 

and decoder for reconstruction of images. In order to 

combine low level features and high level features and to 

achieve accurate localization, skip connections (white 

arrows in Fig. 2) are used to connect the encoders and 

decoders. Since U-Net is proposed for 2D image 

segmentation, the segmentation of 3D structures such as 

medical volume images is realized by repeating the 

segmentation slice by slice. This approach do not include 

the context information along the z axis, the consistency 

among slices is lost. 

 

Figure 2. U-net architecture. 

In order to do 3D image segmentation, 3D U-Net [8], 

[9] is also proposed as an extension of U-Net. In 3D U-

Net, each layer of U-Net is replaced with 3D convolution 

and 3D max pooling respectively. Though the 3D U-Net 

can include the context information along the z axis, it 

has many parameters and leads to overfitting if the 

training dataset is small. 

Moreover, the transfer learning is attracting attention, 

and is considered as an important issue in medical 

imaging because of the limited training data [10]-[14]. 

ImageNet or other non-medical image datasets are widely 

used for pre-training.  

III. PROPOSED METHODS 

A. 2.5D U-Net 

In our study, though we also use a U-Net-based 

network for remaining location information of the 

ventricle, which is in the central part of the brain, we 

propose a 2.5D U-Net that uses multi-slice features as 

input to keep the spatial information in the slice direction. 

Since the proposed method is based on the 2D model, the 

method is possible to effectively segment 3D tissues 

without overfitting. 

 
Figure 3. Overview of 2.5D U-net with TL. 

The overview of the proposed 2.5D U-Net is indicated 

in Fig. 3. It has 2×T+1 input channels, which corresponds 

to the target slice and its neighboring slices (-T ~T slices). 

The input-output function of the proposed 2.5D network 

is shown in (1): 

𝑦𝑡 = 𝑓(𝑥𝑡−𝑇 , … , 𝑥𝑡+𝑇| 𝛉)                     (1) 

where 𝑦𝑡 is the output of the target slice 𝑡, 𝑥𝑡 is the input 

target slice, 𝑇 is the number of neighboring slices, which 

is an arbitrary constant and determines how many 

neighbored slices are included in the input to the network. 

𝛉 is the model parameters.  

We apply focal loss, which enables efficient learning 

with fewer data and prevents overfitting with complex 

and diverse datasets [15], while binary cross-entropy, in 

which each pixel uses the same weight, leads to a poorly 

trained network with insufficient data. Here, more 

efficient learning is required owing to the complex and 

diverse datasets. Therefore, we apply a focal loss that 

reduces the weights of the high-probability regions and 

places the focus on learning in difficult regions, such as 

the complex boundaries of hydrocephalus infant brain 

ventricles; this can be expressed as (2),  

Focal Loss = − ∑ 𝛼(1 − 𝑝𝑖)𝛾 log(𝑝𝑖)

𝑖∈𝑃

      

− ∑(1 − 𝛼)𝑝𝑖
𝛾

log(1 − 𝑝𝑖)

𝑖∈𝑁

              (2) 

here, 𝛼 and 𝛾 are constants, 𝑝𝑖  is the probability at pixel 𝑖, 
and 𝑃  and 𝑁  are label sets (positive and negative, 

respectively). By changing α, the weight of each label is 

adjusted, whereas γ adjusts the focus degree applied to 

the lower-probability area. 

B. Transfer Learning with Adult Datasets 

Medical imaging often deals with abnormal cases, 

unlike natural images. There are complex and diverse 

data, and situations with limited data often occur. This 

makes it difficult to obtain features for machine learning 

and may lead to overfitting. In order to overcome this 

problem, Transfer Learning (TL) using ImageNet or other 

non-medical image dataset is widely used to pre-train the 

network. After the pre-training, the limited medical 

training data are used for fine-tuning. In this study, we 

propose to use adult datasets for pre-training and fine-
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tuning with target data from infant patients with 

hydrocephalus. This is the first experiment to 

demonstrate the effectiveness of applying TL to 

hydrocephalus infant brain ventricular segmentation. 

Compared with conventional ImageNet or other non-

medical image dataset, the adult brain datasets have 

similar structure with the target infant brain and is more 

suitable for pre-training. When discussing transfer 

learning, we should consider for updating or frozen the 

weight of each layer of the network, and which dataset is 

effective with transfer learning for the task. However, the 

discussion will remain in the future, or refer to the [10]-

[14], which indicate transfer learning is more accurate 

than the scratch. Therefore, all encoder decoder layer 

weights are fine-tuned in our experiments. 

IV. EXPERIMENTS AND RESULTS 

In order to demonstrate the effectiveness of the 

proposed method, we conducted several experiments to 

compare the proposed 2.5D with the conventional K-

mean [4], and U-Net [7]. We also compared cases with 

and without transfer learning (TL).  

A. Experimental Settings 

Table I shows the experimental settings. The dataset 

was provided by Kansai Medical University. We applied 

leave-one-out cross-validation on six infants patients with 

hydrocephalus and took the average value of 

segmentation accuracy for quantitative performance 

evaluation. The training and validation inputs had a 

volume size of 64×256×256. We used an Adam optimizer 

[16] for the optimization. The learning rate was 10-4, the 

batch size was 4, and the epoch was 100. Batch 

normalization is applied after two convolution and 

dropout is applied after activation in the decoder. The 

dropout probability is 0.5 during training and 0.0 during 

testing. 

TABLE I.  EXPERIMENTAL SETTINGS 

Batch size 4 

Epochs  100 

Volume size 64 × 256 × 256 

Pretraining dataset 30 adults 

Target dataset 6 infants 

Optimizer Adam [16] 

α (focal loss) 0.25 

γ (focal loss) 2 

 

 

Figure 4. Axial slice of adult data for transfer learning 

The setting of transfer learning using adult patient data 

is as same as fine-tuning with hydrocephalus infant 

patients. As shown in Fig. 4, they are adult patient's brain. 

During Pre-training, total or 30 volumes are used, each 

volume is used by cropping 64×256×256, and the number 

of epochs, optimizer, batch size, loss and parameters are 

the same as fine tuning of infant hydrocephalus patients. 

B. Evaluation Metrics 

We used two quantitative measures for the evaluation: 

DICE and the Volume Ratio (VR). DICE is a measure of 

the similarity of the ground truth to the prediction, and 

VR is the ratio of the ground truth and the predicted 

volume used to quantitatively evaluate the ventricular 

volume change before and after surgery. The equations 

for these metrics are as follows (3) and (4): 

DICE =
2 ∑ 𝑃𝑖 ∙𝑖 𝐺𝑖 

∑ 𝑃𝑖
2 +𝑖 ∑ 𝐺𝑖

2 𝑖
                          (3) 

VR =
𝑉𝑃

𝑉𝐺
                                  (4) 

where 𝑃𝑖  is the prediction result and 𝐺𝑖 is the ground truth, 

each being a binary vector, and VP and VG represent the 

volumes of the prediction and ground truth, respectively. 

C. Results 

Table II shows the accuracy of each model. The 

proposed 2.5D U-Net achieved higher DICE than U-Net. 

In particular, T=2, 3, which increase neighbored slices is 

higher DICE than T=1 , while DICE of T=4  is slightly 

worse than T=3. From these results, it can be said while a 

model that gives correlation by considering neighbored 

slices is effective, increasing the number of input slices is 

not enough to cause that overfitting may occur due to the 

number of model parameters increases. Therefore, it is 

necessary to adjust the effective number of slices 

according to the degree of correlation in the slice 

direction for each target. As shown in Fig. 5, the 2.5D U-

Net has less noise than the U-Net, and the segmented 

region is more clearly. As shown in Fig. 6, while U-Net 

has a lot of noise segmented and structural defects, 2.5D 

U-Net is continuous in the slice direction and can be 

segmented as a lump.  

TABLE II.  DICE AND VR FOR EACH MODEL 

Model DICE VR 

K-means++ [4] 0.53±0.18 3.30±2.61 

U-Net [8] 0.58±0.11 1.14±0.27 

2.5D U-Net (𝑇 = 1) 0.61±0.19 1.21±0.46 

2.5D U-Net (𝑇 = 2) 0.62±0.21 1.14±0.49 

2.5D U-Net (𝑇 = 3) 0.66±0.17 1.17±0.42 

2.5D U-Net (𝑇 = 4) 0.64±0.16 1.44±0.62 

2.5D U-Net (𝑇 = 1) + TL 0.72±0.11 0.99±0.09 

2.5D U-Net (𝑇 = 2) + TL 0.68±0.15 1.16±0.23 

2.5D U-Net (𝑇 = 3) + TL 0.69±0.12 1.11±0.24 

2.5D U-Net (𝑇 = 4) + TL 0.66±0.18 1.09±0.22 

 

In case that effectiveness of transfer learning with the 

adult dataset, as shown in Table II, the DICE of each 

model with transfer learning is higher than that without 

transfer learning. In addition, the DICE of 2.5D U-Net 

(T=1) with TL is higher than those of other U-Net + TL 

(T=2, 3, 4 ). Therefore, it can be said that the transfer 

learning using adult patients is effective for segmentation 
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of infant patients because the network learned the general 

features of the ventricle as prior knowledge via the pre-

training. The transfer learning enables to perform stable 

learning and improve the segmentation accuracy. The 

reason why T=1 is more accurate than T=2 , T=3 and T=4 

is the difference in ventricular characteristics between 

adult patients and infant hydrocephalus patients. In the 

case of T=2, T=3 and T=4 the feature of adults is captured 

strongly by using more parameters in the pre-training. 

However, since ventricular features differ between adults 

and infant hydrocephalus. Then T=1 , which can 

effectively perform fine-tuning with the appropriate 

number of parameters than the others. In addition, as 

shown in Fig. 5, the segmentation of 2.5D U-Net using 

transfer learning is more stable and clearer. As shown in 

Fig. 6, the 3D visualization also indicates that 2.5D U-

Net with transfer learning is closest to the ground truth 

and can be segmentation stably.  

 

Figure 5. Qualitative results for the middle axial slices of the selected 

models. 

 

Figure 6. 3D visualization of the selected models. 

V. CONCLUSIONS 

In this paper, we proposed a 2.5D U-Net model and TL 

method with adult datasets for segmentation of 

hydrocephalus infant ventricular. The proposed method 

can include the context information along the z axis with 

a 2D network architecture resulting accurate 3D 

segmentation even with limited training samples. In our 

experiments, our proposed method achieved better results 

(DICE was improved from 58% to 72%) compared to 

conventional segmentation methods. 
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