

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 98
doi: 10.18178/joig.8.4.98-106

Design of Medical Image Hardware Acceleration

Platform by SDSoC for ZYNQ SoC

Liang Mu, Tao Wei, Yuyu Tao, and Chang Liang
School of Computer, Electronics and Information, Guangxi University, Nanning, China

Email: alvismuliang@163.com, 429197597@qq.com, yuyu.tao@foxmail.com, 1659382158@qq.com

Xuejun Zhang
Guangxi Key Laboratory of Multimedia Communications and Network Technology, Nanning, China

Email: xjzhang@gxu.edu.cn

Abstract—In this paper, a design scheme for hardware

acceleration for ZYNQ SoC programming and medical

image processing using SDSoC development software is

introduced and compared with traditional hardware

language programming and Vivado HLS programming. In

SDSoC, developers can use C/C++ language for hardware

development as well as OpenCV and xfOpenCV library.

OpenCV is a widely used image processing library, which

can not only to shorten the development cycle and reduce

the difficulty of hardware development, but also take up

more FPGA resources. XfOpenCV is an OpenCV library

optimized by Xilinx, similar in usage to OpenCV. In this

paper, several typical images processing algorithms are used

to test medical image data onto DICOM format, and the

design of the proposed scheme and the traditional scheme is

compared with the perspectives of processing speed

comparison, power consumption, and development cycle.

Sobel filter, Gaussian smoothing, and Harris corner

detection are chosen for comparison study for their widely

usages in image processing. Finally, performance on four

platforms - CPU, ARM, ZYNQ and GPU are compared and

evaluated to our method. 

Index Terms—ZYNQ, SDSoC, medical image processing,

hardware acceleration

I. INTRODUCTION

With the continuous improvement in medical image

processing technology, the effect of medical image data

processing is getting better and better. In recent years,

more 3d medical image processing methods has been

emerging [1].

However, the more optimized algorithm is

accompanied by the continuous increase in the amount of

code. If the Hardware Description Language (HDL) is

used, the amount of code will increase geometrically. The

main reason are that the hardware description language is

aimed at specific hardware, similar to There are few

libraries such as OpenCV, which leads to a long

development cycle using hardware description languages,

and the use of hardware description hardware for medical

image processing is not widely used.

Manuscript received July 4, 2020; revised November 3, 2020.

At the same time, the real-time processing

performance has been low due to the large amount of

processed medical images. Moreover, both image data

and processing algorithms may require a certain degree of

confidentiality. The use of hardware for medical image

processing acceleration can solve the above two problems

well. Hardware acceleration can process data onto

parallel, and the processing speed is greatly accelerated.

The code of the hardware device does not run on the PC

side. As a black box, it is not easy to be cracked and

maintains good confidentiality. It can be seen that using

hardware to accelerate medical image processing is a

better optimization solution.

Given the above problems, this paper proposes a

medical image processing platform based on ZYNQ,

which can accelerate the medical image processing

hardware. ZYNQ SoC is a SoC that integrates ARM and

FPGA from Xilinx. It has two ARM9 cores. This design

uses the SDSoC development environment to develop the

ZYNQ SoC. The advantage of the SDSoC tool is that it

can use C/C++ language for hardware development

without writing a hardware language at all. SDSoC can

also use the OpenCV library [2], which is widely used by

image processing program developers, greatly reducing

the difficulty of development and shortening the

development cycle. Although using the OpenCV library

takes up more resources than not using it, from the

perspective of comprehensive consideration of the

development cycle cost and the use of hardware resources,

using the library development method can significantly

reduce development costs.

The key to hardware development of SDSoC is that it

integrates with Xilinx’s high-level synthesis tool Vivado

HLS. The HLS tool is a code synthesis technology. The

HLS described in this article refers specifically to the

HLS applied to Xilinx FPGAs. Traditional FPGA

development tools use register transfer layer code

synthesis, which is low-level and can only use hardware

description languages. And HLS are a high-level

description, you can use C++ and other higher-level

languages.

Prototypes of high-level synthesis tools have appeared

in the 1980s and early 1990s, such as Hebe [3], HAL [4],

MIMOLA [5], ADAM [6], Hyper [7] popularized. It

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 99

really started to flourish in the 1990s, when mainstream

EDA vendors improved RTL tools (behavioral Compiler

from Synopsys, Monet from Mentor Graphics [8] and

Visual Architect from Cadence [9]) [10], the first

commercial HLS tool was born. Since then, HLS tools

have been widely popularized and applied to many fields,

such as aerospace applications [11], real-time video

processing [12], etc.

The main function of the HLS tool is to reduce the

development time of the hardware description language.

We can see the obvious effect of the two pictures (Fig. 1

and Fig. 2) in the official Xilinx documentation.

Figure 1. Design time vs. application performance with RTL design
entry.

Figure 2. Design time vs. application performance with Vivado HLS
compiler.

From the comparison of Fig. 1 and Fig. 2, it can be

seen that the development time of FPGA using traditional

RTL tools is much longer than that of DSP and GPU,

while the development time of FPGA using HLS tools is

even close to that of x86, and has the highest application

performance.

This article introduces several common and somewhat

complex image processing algorithms, and uses DICOM

format medical images as data sources, using SDSoC

development tools, and implemented on the ZYNQ

XC7z015 platform. The first part is the comparison of

Sobel algorithm for medical images of different platforms

and different acceleration schemes. The second part are

the comparison of different schemes for Guassian Filter

algorithm, and the comparison between this design and

the scheme for the paper [10], discussing the advantages

and disadvantages. The third part are the comparison of

different schemes for Harris corner detection algorithm.

The design in this paper is compared with the scheme for

[13], and the advantages and disadvantages are discussed.

The rest of this article is structured as follows. In the

second section, the specific resources of the ZYNQ SoC

and the characteristics of the SDSoC tool are described.

In the fourth section, the full text is summarized, and

some conclusions are drawn.

II. ZYNQ AND SDSOC

The hardware platform designed in this article is

Xilinx's ZYNQ XC7z015 SoC, which integrates ARM

and FPGA at the same time: two ARM9 (PS part) and

FPGA logic unit (PL part) are integrated, and the

execution sequence of the main program is controlled by

ARM It runs the operating system, and the FPGA part

performs the parallel operation of the algorithm. Between

ARM and FPGA, the AXI4 bus protocol is used for high-

speed data transmission. In this design, the Ubuntu 16.4

operating system is running on one of the ARM9.

The development tool adopts the SDSoC development

environment. The SDSoC environment provides a

framework of developing and delivering hardware-

accelerated embedded processor applications using

standard programming languages [14]. The SDSoC

environment provides a framework of developing and

delivering hardware-accelerated embedded processor

applications using standard programming languages.

SDSoC is a development environment provided by Xilinx

for the SoC platform. SDSoC integrates three

development tools: SDx, Vivado, and Vivado HLS.

When the platform template is available, only the SDx

tool can complete the entire development process. Using

C/C++ programming in SDx (the design in this article

uses C++ programming), You can use the OpenCV

library. If you want to accelerate the program by

hardware, you only need to select the corresponding

function of the software. If you want to improve the

hardware acceleration efficiency, you need to use Vivado

HLS related syntax to add acceleration code to the

function. Unlike writing general C/C++ code, writing

HLS code requires keeping the hardware in mind and

always paying attention to hardware limitations. There

are specific pragmas instructions in HLS to further to

specify the code to achieve higher control over the

synthesis process. If the constraints are not met, you need

to modify the programs instruction. The following is an

example of a programs instruction that implements a

pipeline:

#pragma HLS LOOP_TRIPCOUNT min=1 max=COLS/NPC

#pragma HLS LOOP_FLATTEN off

#pragma HLS PIPELINE

It is worth mentioning that Xilinx provides a hardware-

specific xfOpenCV library. This library uses a large

number of pragmas instructions, and the official fully

utilizes the acceleration performance of pragmas

instructions. Of course, the xfOpenCV library is not as

comprehensive as the OpenCV library, but the two

libraries can be cross-compiled.

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 100

Unlike the traditional Vivado HLS direct development

of IP cores, after compiling in SDx, SDSoC will

automatically generate Vivado HLS IP cores and Vivado

projects and create Block Design, copy the generated files

to the SD card of the ZYNQ hardware device. Run the

program, which further reduces development time.

III. CASE STUDIES

In this section, three typical medical images processing

algorithms will be introduced: Sobel Filter, Gaussian

Filter, Harris Corner Detection. As a case study of

medical image processing hardware acceleration, the

main reason for using them are that they are the most

frequently used algorithms among many medical images

processing algorithms such as medical image

segmentation and medical image registration. As a

comparison, each algorithm is implemented using four

methods to discuss the advantages and disadvantages of

the solution to this article. The algorithms in the program

all use the OpenCV library.

The first step of the medical image processing program

is to read medical images. Since the OpenCV library is

used for image processing, the DICOM images read are

converted into Mat images (Mat is the data structure used

to store images in OpenCV). After analyzing the DICOM

image format information, we wrote a DICOM image of

Mat image program and called it as a general program

interface. The DCMTK library is not used in the program

to convert DICOM images. This is to make the program

have better compatibility and portability. On some SoCs,

some problems will occur when the DCMTK library is

compiled, so this article has written the conversion

program. The following three algorithms are converted

by this program before execution, and then the medical

image data can be processed.

A. Sobel Filter Implementation

1) Introduction to sobel filter algorithm

Sobel filters are often used to extract horizontal edges

(horizontal features) and vertical edges (vertical features)

of grayscale images. The Sobel operator contains two sets

of 3x3 matrices, which are horizontal and vertical, and

convolve them with the image plane to obtain the

approximate values of the horizontal and vertical

approximate brightness difference. If A represents the

original image, and Gx and Gy represent the images

detected by the horizontal and vertical edges respectively,

below is the formula:

𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] × 𝐴 𝐺𝑦 = [
+1 +2 +1
0 0 0
−1 −2 −1

] × 𝐴

The approximate horizontal and vertical gradients of

each pixel of the image can be combined with the

following formula to calculate the size of the gradient:

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2

2) The experimental scheme

In medical image processing, the Sobel filter is often

used as the first step of the algorithm. As a pixel-level

processing algorithm, the Sobel filter also consumes

considerable computing time for medical image

processing. Therefore, the Sobel filter is implemented on

hardware It can accelerate image processing to a certain

extent.

In order to conduct sufficient comparison and

verification, the following four methods will be used for

Sobel medical image processing. They all use the

OpenCV library. The input image is the same. It is a

medical image of DIOCM format with a size of 512×512

and a pixel width of 16 Bit, as shown in Fig. 3. They are:

(1) Use C++ language programming on the PC side and

use the CPU to run the program (hereinafter referred to as

method 1); (2) Use C++ language programming on

ZYNQ without using function hardware acceleration; (3)

Use C++ language programming on ZYNQ, Use

hardware acceleration for the Sobel function; (4) Use

Python programming on the PC side and use GPU to run

the program. The reason for using Python is to shorten

the development cycle. If you use C++ for GPU

programming, it will increase development time.

Figure 3. Input DICOM image

(a) Output image of method 1. (b) Output image of method 2.

(a) Output image of method 3. (b) Output image of method 4.

Figure 4. Output image after Sobel processing.

The development tool used in Method 1 is Microsoft

Visual Studio 2019. The program first converts the

DICOM images to a Mat image and then uses the Sobel

functions as OpenCV to process the image and output the

runtime. The output image is shown in Fig. 4(a), and the

running time statistics are shown in Table I.

The development tool used in Method 2 is SDSoC.

Method 2 runs a program similar to Method 1 on ZYNQ.

The difference is that the library used in SDSoC is

xfOpenCV. The output image of Method 2 is shown in

Fig. 4(b). The Vivado tool integrated into the SDSoC

development environment can automatically generate

Block Design and can also generate detailed resource

usage and power consumption reports. The Block Design

of Method 2 is shown in Fig. 5(a), and the report result is

shown in Fig. 6(a).

Method 3 is the design method introduced into this

article. The development tools and procedures of Method

3 and Method 2 are the same. The xfOpenCV library is

also used. The difference is that Method 3 selects the

Sobel functions as the hardware acceleration function of

SDSoC. The output image of Method 3 is shown in Fig.

4(c), Block Design is shown in Fig. 5(b), and the report

results are shown in Fig. 6(b).

Method 4 runs on the PC. The development tool used

is the Spyder tool for Anaconda Navigator. Similarly, the

OpenCV library is also used and accelerated by the GPU.

The specific models and parameters are listed in Table I.

The operation result is shown in Fig. 4(d).

3) Experimental results and analysis

(a) Block design of method 2.

(b) Block design of method 3.

Figure 5. Block design of method 2 and method 3.

(a) Project summary of method 2.

(b) Project summary of method 3.

Figure 6. Project summary of method 2 and method 3.

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 101

It can be concluded from the comparison of the four

images of Fig. 4 that the different methods of use will not

affect the results of the image processing. It can be seen

from Fig. 5(a) that there is no IP core generated by the

HLS tool for Block Design, which means that there is no

hardware acceleration. At this time, the program is

completely running in the ARM part of the ZYNQ SoC,

that is, at this time ZYNQ SoC is equivalent to an ARM

microcontroller. As can be seen from Fig. 5(b), there are

4 IP cores (parts with Vivado HLS icon) generated by

HLS in Block Design, which means that hardware

acceleration has been used.

In Table I, we compare the processor model, operating

frequency, development cycle, operating environment,

operating speed and power consumption of the four

methods (SDSoC function hardware acceleration used in

Method 3 is referred to as SDSoC-hard), from the table in

comparison, we can compare the advantages and

disadvantages of each method. Since Method 3 is the

method mainly introduced into this article, the following

will compare Method 1, Method 2, Method 4, and

Method 3.

TABLE I. COMPARISON TABLE OF SOBEL FILTER IMPLEMENTATIONS

IN DIFFERENT METHODS

Method1

(x64)
Method2

(SDSoc)

Method3

(SDSoC-
hard)

Method4

(GPU)

Platform

Intel i7-

8700
CPU

ZYNQ

XC7z015

ZYNQ

XC7z015

GTX-

1080
GPU

Clock

Frequency
(MHz)

3200 150 150
1607-

1733

Development

Time (man-
days)

0.5 0.7 0.7 0.5

Processing

Time(ms)
15 243.42 2.73 4.17

Power
Consumption

(W)

>65 1.645 1.864 >180

TABLE II. METHOD 3 COMPARED WITH THE REFERENCE [10] DATA

Graphics
RTL

Designer

SW

Designer

Method3(S

DSoC-

hard)

Platform
ZYNQ

XC7z020

ZYNQ

XC7z020

ZYNQ

XC7z015

Clock Frequency

(MHz)
200 200 150

Development Time
(man-days)

12 1 0.7

Processing Time (ms) 0.398 0.498 2.73

Image Size 320×240 320×240 512×512

Number of Slice LUTs 1111 21946 31684

Number of Slice
Registers

748 25439 49353

Number of Block

RAMs
3 18 62

First, compare method 1 and method 3. Compared with

CPU, ZYNQ runs at a speed difference in

0.015/0.0044=3.4 times, and the processing speed has a

very significant improvement. In terms of power

consumption, the power consumption of method 4 is only

2.01W, and the lowest power consumption of method 1 is

65W. The difference in power consumption is

65/2.01=34.87 times. The huge power consumption gap

can often bring greater power to design products.

Development space and economic benefits. Comparing

the development cycles of Method 1 and Method 3, there

is not much difference between the two. Overall, Method

3 is obviously more advantageous than Scheme 1.

Next, compare Method 2 and Method 3. Since method

2 runs on ARM, its speed is the slowest, and other

parameters are the same, but method 2 cannot be

executed in parallel, and the frequency is always much

lower than method 1 and method 4, so this method is the

same as the usual use The method of ARM is basically

the same, only has advantages in power consumption, but

the processing time is too long. In general, method 3 has

advantages over method 2.

Finally, compare method 4 with method 3. Method 4

uses the GPU. GPU is the commonly used hardware

acceleration method. Due to its parallel data processing

structure, it is much faster than CPU in processing large

amounts of data. Therefore, although method 4 consumes

twice as much power as method 1, it still has More

advantages than Option 1. But compared to method 3, the

power consumption gap is too large, with a difference of

120/2.01=59.7 times. In large-scale data centers, this gap

is very important.

In addition, when querying related designs, It was

found that [10] also conducted a similar study. Here, the

same algorithm case of [10] can be used as a comparison.

The comparison objects of [10] are RTL Designer

(Vivado HLS) and SW Designer (Vivado HLS). With

OpenCV), and compare some of its data, as shown in

Table II. The data onto Table II shows that SDSoC uses

xfOpenCV and function hardware acceleration compared

to Vivado HLS with OpenCV, which can further to

shorten the development time and save resources such as

Slice LUTs, Slice Registers, Block RAMs, etc. However,

In contrast, Block RAMs are not There is not much

reduction, because the program can make more

reasonable use of SoC resources during sub-automatic

synthesis, and more programs instructions are used in

xfOpenCV to allocate Block RAMs resources, which can

improve data throughput. The data onto the table also

shows that [10]’s Vivado HLS with OpenCV has a

shorter processing time. This is mainly because (1) [10]

and method 3 have different image sizes, and the amount

of data are different (320×240)/(512×512)=3.413 times;

(2). The difference in clock frequency is 200/150=1.33

times. Of course, the resource occupancy of the two

solutions is higher than that of RTL Designer, but under

the huge development time advantage, the resource

occupancy is very cost-effective. Based on the

comparison of data onto Table II, It is obvious that the

design of this design has more advantages.

B. Gaussian Filter Implementation

1) Introduction to Gaussian filter algorithm

Gaussian filtering is a linear smoothing filter, suitable

for eliminating Gaussian noise, and is widely used in the

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 102

noise reduction process of image processing. It can be

simply understood that Gaussian filter denoising is the

weighted average of the pixel values of the entire image.

The value of each pixel is obtained by the weighted

average of its value and other pixel values in the

neighborhood.

The specific operation is: use the template (or

convolution, mask) specified by the user to scan each

pixel in the image and use the weighted average gray

value of the neighborhood pixels determined by the

template to replace the center pixel of the template, as

shown in Fig. 7.

The two-dimensional Gaussian distribution formula is

as follows:

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
ⅇ
−
𝑥2+𝑦2

2𝜎2

(a) 3×3 Gaussian kernel coordinates. (b) Gaussian kernel weight matrix.

(c) Gaussian kernel weight matrix with sum of 1.

Figure 7. Gaussian kernel weight calculation matrix.

2) The experimental scheme

The Gaussian filter also uses four methods of

comparison. The four methods are exactly the same as the

four methods of 3.1 above. So, this paper won’t repeat

them here, and are still referred to as methods 1-4. For a

better comparison, the input image is still shown in Fig. 3.

As the results of the four output images are basically the

same, only the output results of SDSoC with xfOpenCV

(Method 3 in 3.1 in the text) are shown here, shown in

Fig. 8.

As mentioned in 3.1, Method 2 only runs on ARM of

hardware connections, so Block Design and Project

Summary are the same as in 3.1, as shown in Fig. 5(a)

and Fig. 6(a). The Block Design and Project Summary of

Method 3 is shown in Fig. 9 and Fig. 10. Method 3 uses a

3-core design, which is determined by the on-chip

resources of ZYNQ XC7z015. The limitation lies mainly

in the number of LUTs. As can be seen from Fig. 10, the

utilization rate of LUTs has reached 70%.

Figure 8. Output image of Gaussian filter.

Figure 9. Block design of method 3.

Figure 10. Project summary of method 3.

3) Experimental results and analysis

Compared with method 1 and method 3, method 3 has

a speedup of 18/3.646=4.9369 times and saves

65/2.356=27.589 times of power consumption. Method 3

still has great advantages compared to method 1.

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 103

The conclusion obtained by comparing method 2 with

method 3 is the same as that in 3.1, and will not be

repeated here.

Compared with Method 3, the processing time is the

same, and the gap is narrowed. As mentioned above, this

is because the resources of Method 3 are limited. In terms

of power consumption, method 3 achieves

180/2.356=76.4 times power saving, which still has huge

advantages.

Similarly, this article found a similar experiment in

another paper [13], using its experimental data as a

comparison, the data statistics are in Table III. In [13],

Gaussian kernels of various sizes are used for comparison.

The Gaussian kernel used in this paper is 5×5, so the 5×5

data in Table IV in [13] is used for comparison. It can be

seen from the data onto the table that method 3 in this

paper has a greater advantage in speed, which is mainly

due to the difference in image size. The size ratio of the

image data is converted to the time ratio. The speed of the

two schemes is the same. [13] The development tool used

is Vivado HLS. According to the comparison data onto

3.1, Method 3 in this paper has the advantage of a short

development cycle.

TABLE III. COMPARISON OF GAUSSIAN FILTER

IMPLEMENTATIONS IN DIFFERENT METHODS

Method1

(x64)
Method2

(SDSoc)

Method3
(SDSoC-

hard)

Method4

(GPU)

Platform

Intel i7-

8700
CPU

ZYNQ

XC7z015

ZYNQ

XC7z015

GTX-

1080
GPU

Clock

Frequency
(MHz)

3200 150 150
1607-

1733

Development

Time(man-
days)

0.5 0.7 0.7 0.5

Processing

Time(ms)
18 287.67 3.646 3.34

Power

Consumption

(W)

>65 1.645 2.356 >180

TABLE IV. METHOD 3 COMPARED WITH THE REFERENCE [14] DATA

Graphics Vivado HLS Method 3

Platform ZYNQ XC7z020 ZYNQ XC7z015

Clock Frequency(MHz) 157 150

Kernel Size 5×5 5×5

Processing Time(ms) 13.209 3.646

Image Size
1920×1080（8-

bit per pixel）

512×512（16-bit

per pixel）

Number of Slice LUTs 20656 32271

FFs 17724 46296

Number of Block RAMs 2 54

C. Harris Corner Detection Implementation

1) Introduction to Harris corner detection algorithm

Harris Corner Detection is often used in medical image

registration algorithms. The basic idea of Harris

algorithm is to use a fixed window to slide into any

direction on the image, and compare the degree of change

of the pixel gray scales in the window before and after the

sliding. If the sliding in any direction has a large gray

scale change, then we can think that there are corner

points in the window. The Harris image corners detection

algorithm is summarized as follows, divided into the

following five steps: (1). Calculate the gradient of the

image of X and Y. (2) Calculate the product of the

gradients in the two directions of the image. (3) Use

Gaussian functions to perform Gaussian weighting (take

sigma=1) to generate elements A, B, and C of matrix M.

(4) Calculate the Harris response value R of each pixel,

and set R that is less than a certain threshold t to zero. (5)

Perform non-maximum suppression in a 3×3 or 5×5

neighborhood, and the local maximum point is the corner

point in the image.

2) The experimental scheme

This section also uses a similar structure of the

previous two sections, and also uses four methods to

achieve Canny edge detection. Some conclusions are

found through the comparison of different methods. The

four methods are the same as the four methods of 3.1

above, which will not be repeated here, and are still

simply referred to as methods 1-4. The results of the four

output image are the same, and only one output image is

displayed-Fig. 11.

3) Experimental results and analysis

Figure 11. Output image of Canny edge detection.

Figure 12. Block design of method 3.

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 104

TABLE

Figure 13. Project summary of method 3.

TABLE V. COMPARISON TABLE OF HARRIS CORNER DETECTION

IMPLEMENTATIONS IN DIFFERENT METHODS

Method1

(x64)
Method2

(SDSoc)

Method3

(SDSoC-

hard)

Method4

(GPU)

Platform
Intel i7-

8700

CPU

ZYNQ

XC7z015

ZYNQ

XC7z015

GTX-
1080

GPU

Clock

Frequency
(MHz)

3200 120 120
1607-

1733

Development

Time(man-
days)

0.5 0.7 0.7 0.5

Processing

Time(ms)
18 335.43 6.61 3.8

Power

Consumption

(W)

>65 1.645 2.144 >180

As can be seen from Fig. 12, Method 3 uses a 2-core

design, which is determined by the limitations of on-chip

resources. It can be seen from Fig. 13 that the use of

BRAM has reached 83%, which is the key to limiting the

number of parallel algorithm cores.

The data comparison of the four methods is shown in

Table V, and it can be seen that the processing speed of

Method 3 is still much faster than that of the CPU,

achieving an acceleration of 18/6.61=2.72 times.

However, as the frequency of the ZYNQ SoC decreases,

the processing time of Method 3 is pulled away by

Method 4, but this does not mean that Method 3 is

inferior to GPU in complex algorithm processing. ZYNQ

XC7z015 is just a low-end chip in the Xilinx chip.

Xilinx's high-end chips are fully capable of complex

algorithm processing and can achieve faster processing

speed through a multi-stage parallel connection.

IV. CONCLUSION

This paper uses SDSoC development environment to

implement three common algorithms in medical image

processing on ZYNQ SoC. The important significance of

the research is that the hardware acceleration of medical

image processing greatly shortens the processing time of

medical images and improves the real-time nature of

medical image processing. Medical image processing is

an interdisciplinary subject, and the requirements for

developers are high. Another important significance of

this article is the reduction of the development threshold

for medical image processing. SDSoC can use the

OpenCV library and the xfOpenCV library. Among them,

OpenCV is familiar to the majority of software designers,

which greatly shortens the development cycle of the

project. The usage of xfOpenCV and OpenCV is very

similar. There is no development threshold for developers

familiar with OpenCV. The xfOpenCV is officially

“#pragma” instruction has been optimized for library

functions, running faster and saving hardware resources.

In this paper, the Sobel Filter, Gaussian Filter, Canny

Edge Detection three algorithms are compared using four

methods, after testing on four platforms CPU, ARM,

ZYNQ, GPU, the data are compared and discussed. It can

be seen that the use of SDSoC for hardware acceleration

of medical image processing on ZYNQ SoC is the most

advantageous, mainly reflected on/off: fast running speed,

short development cycle, low power consumption,

difficult situations in traditional hardware development.

Next, the design scheme for this article is undoubtedly a

good way to solve the problem. At the same time, the

design scheme for this article has good scalability, which

can use multiple ZYNQ SoCs in parallel, or use SoCs

with more on-chip resources. The design in this article

mainly uses dual cores. In the case of sufficient resources,

more cores can be used for parallel computing, and the

processing time is almost unchanged. This means that

more cores can double the operating speed. Of course, the

power consumption will also There is a certain

improvement.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

During the process of writing this paper, Liang Mu

was responsible for writing the paper and designing the

hardware and software; Dr. Zhang directs the experiment;

Wei Tao was responsible for the analysis of experimental

data; Yuyu Tao helped modify the software program;

Chan liang helped revise the paper. All authors had

approved the final version.

ACKNOWLEDGMENT

This work is supported by the National Natural

Science Foundation of China (Grants Nos. 81460274 and

81760324); and Natural Science Foundation of Guangxi

(Grant No. 2017JJA170765y).

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 105

REFERENCES

[1] S. E. Mahmoudi, et al., “Web-based interactive 2D/3D medical
image processing and visualization software,” Computer Methods

and Programs in Biomedicine, vol. 98, no. 2, pp. 172-182, 2010.

[2] G. Bradski, “The opencv library,” Dr Dobb's J. Software Tools,
vol. 25, pp. 120-125, 2000.

[3] A. P. Chandrakasan, et al., “HYPER-LP: A system for power

minimization using architectural transformations,” in Proc.
IEEE/ACM International Conference on Computer-aided Design,

1992.

[4] P. G. Paulin, J. P. Knight, and E. F. Girczyc, “HAL: A multi-
paradigm approach to automatic data path synthesis,” in Proc.

23rd ACM/IEEE Design Automation Conference, 1986.
[5] G. D. Micheli, et al., “The Olympus synthesis system,” IEEE

Design & Test of Computers, vol. 7, no. 5, pp. 37-53, 1990.

[6] J. Granacki, D. Knapp, and A. Parker, “The ADAM advanced
design automation system: Overview, planner and natural language

interface,” in Proc. 22nd ACM/IEEE Design Automation

Conference, 1985.
[7] P. Marwedel, “The MIMOLA design system: Tools for the design

of digital processors,” in Proc. 1st Design Automation Conference,

1984.
[8] J. P. Elliott, Understanding Behavioral Synthesis: A Practical

Guide to High-Level Design, Springer Science & Business Media,

1999.
[9] A. Hemani, et al., “Application of high-level synthesis in an

industrial project,” in Proc. International Conference on Vlsi

Design, 1994.
[10] A. Cortes, I. Velez, and A. Irizar, “High level synthesis using

Vivado HLS for Zynq SoC: Image processing case studies,” in

Proc. Conference on Design of Circuits and Integrated Systems,
2016.

[11] P. J. Pingree, et al., “Implementing legacy-C algorithms in FPGA

co-processors for performance accelerated smart payloads,” in

Proc. IEEE Aerospace Conference, 2008.

[12] K. Denolf, S. Neuendorffer, and K. Vissers, “[IEEE 2009

International Conference on Field Programmable Logic and
Applications (FPL) - Prague, Czech Republic (2009.08.31-

2009.09.2)] 2009 International Conference on Field

Programmable Logic and Applications - Using C-to-gates to
program streaming image processing kernels efficiently on

FPGAs,” 2009, pp. 626-630.

[13] O. Shipitko and A. Grigoryev, “Gaussian filtering for FPGA based
image processing with high-level synthesis tools,” in Proc. IV

International Conference on Information Technology and

Nanotechnology, 2018.
[14] V. Kathail, et al., “SDSoC: A higher-level programming

environment for Zynq SoC and Ultrascale+ MPSoC,” in Proc.

ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2016.

Copyright © 2020 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Liang Mu was born in Taiyuan, Shanxi,
China in 1993. He received the B.S. degree in

Measurement and Control Technology and

Instrumentation from the College of
Instrumentation and Electronics, North

University of China in 2017, Taiyuan, Shanxi.

He is currently pursuing the M.E. degree with
the school of Computer and Electronic

Information, Guangxi University, majoring in

electronic and communication engineering.
The current research area is FPGA hardware acceleration of medical

image processing.

Xuejun Zhang received the B.S. degree in

Physics from Guangxi University, PR China

in 1991; the M.S. degree in Electronics and
Information Systems Engineering from Gifu

University, Japan, in 2001; and the Ph.D.

degree in Electronics and Information
Systems Engineering from Gifu University,

Japan, in 2004. From 2004 to 2007, he

continued his research in Computer-Aided
Diagnosis as a postdoctoral researcher at

Department of Intelligent Image Information, Division of Regeneration

and Advanced Medical Science, Graduate School of Medicine, Gifu
University. Since 2007, he was a Professor of School of Computer and

Electronic Information, Guangxi University, Nanning, Guangxi, China.

His research interests include computer aided diagnosis system, image
segmentation, pattern recognition, visualization in medicine. He has

published over 70 papers in Journals, Proceedings, Book chapters and

Scientific Magazines.

Tao Wei was born in Hechi, Guangxi, China

in 1994. He received the B.S. degree from
Wuhan University, Wuhan, Hubei, China, in

2017. He is currently pursuing the M. E.

degree with the School of Computer,
Electronics and Information, Guangxi

University, Nanning. His research area is
Deep Learning and Medical image processing.

Yuyu Tao was born in Guangxi, China in

1994. He received the B.E. degree in
Electronic science and technology from the

School of Physical Science and Technology,

Guangxi University, Nanning, China in 2017,
where he is currently pursuing the M.E.

degree with the School of Computer,

Electronic and Information, Guangxi
University, Nanning, China. He current

research areas include the design of the optical

fiber surface plasmon resonance sensors and their applications.

Chan Liang was born in Yulin, Guangxi,

China in 1995. She received the B.S. degree
from Guangxi University, Nanning, Guangxi,

China in 2018. She is currently pursuing the

M.S. degree with the School of Computer,
Electronics and Information, Guangxi

University, Nanning. Her research area is

Medical image processing.

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 106

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

