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Abstract—In this paper, a design scheme for hardware 

acceleration for ZYNQ SoC programming and medical 

image processing using SDSoC development software is 

introduced and compared with traditional hardware 

language programming and Vivado HLS programming. In 

SDSoC, developers can use C/C++ language for hardware 

development as well as OpenCV and xfOpenCV library. 

OpenCV is a widely used image processing library, which 

can not only to shorten the development cycle and reduce 

the difficulty of hardware development, but also take up 

more FPGA resources. XfOpenCV is an OpenCV library 

optimized by Xilinx, similar in usage to OpenCV. In this 

paper, several typical images processing algorithms are used 

to test medical image data onto DICOM format, and the 

design of the proposed scheme and the traditional scheme is 

compared with the perspectives of processing speed 

comparison, power consumption, and development cycle. 

Sobel filter, Gaussian smoothing, and Harris corner 

detection are chosen for comparison study for their widely 

usages in image processing. Finally, performance on four 

platforms - CPU, ARM, ZYNQ and GPU are compared and 

evaluated to our method. 

Index Terms—ZYNQ, SDSoC, medical image processing, 

hardware acceleration 

I. INTRODUCTION

With the continuous improvement in medical image 

processing technology, the effect of medical image data 

processing is getting better and better. In recent years, 

more 3d medical image processing methods has been 

emerging [1]. 

However, the more optimized algorithm is 

accompanied by the continuous increase in the amount of 

code. If the Hardware Description Language (HDL) is 

used, the amount of code will increase geometrically. The 

main reason are that the hardware description language is 

aimed at specific hardware, similar to There are few 

libraries such as OpenCV, which leads to a long 

development cycle using hardware description languages, 

and the use of hardware description hardware for medical 

image processing is not widely used. 
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At the same time, the real-time processing 

performance has been low due to the large amount of 

processed medical images. Moreover, both image data 

and processing algorithms may require a certain degree of 

confidentiality. The use of hardware for medical image 

processing acceleration can solve the above two problems 

well. Hardware acceleration can process data onto 

parallel, and the processing speed is greatly accelerated. 

The code of the hardware device does not run on the PC 

side. As a black box, it is not easy to be cracked and 

maintains good confidentiality. It can be seen that using 

hardware to accelerate medical image processing is a 

better optimization solution. 

Given the above problems, this paper proposes a 

medical image processing platform based on ZYNQ, 

which can accelerate the medical image processing 

hardware. ZYNQ SoC is a SoC that integrates ARM and 

FPGA from Xilinx. It has two ARM9 cores. This design 

uses the SDSoC development environment to develop the 

ZYNQ SoC. The advantage of the SDSoC tool is that it 

can use C/C++ language for hardware development 

without writing a hardware language at all. SDSoC can 

also use the OpenCV library [2], which is widely used by 

image processing program developers, greatly reducing 

the difficulty of development and shortening the 

development cycle. Although using the OpenCV library 

takes up more resources than not using it, from the 

perspective of comprehensive consideration of the 

development cycle cost and the use of hardware resources, 

using the library development method can significantly 

reduce development costs. 

The key to hardware development of SDSoC is that it 

integrates with Xilinx’s high-level synthesis tool Vivado 

HLS. The HLS tool is a code synthesis technology. The 

HLS described in this article refers specifically to the 

HLS applied to Xilinx FPGAs. Traditional FPGA 

development tools use register transfer layer code 

synthesis, which is low-level and can only use hardware 

description languages. And HLS are a high-level 

description, you can use C++ and other higher-level 

languages. 

Prototypes of high-level synthesis tools have appeared 

in the 1980s and early 1990s, such as Hebe [3], HAL [4], 

MIMOLA [5], ADAM [6], Hyper [7] popularized. It 
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really started to flourish in the 1990s, when mainstream 

EDA vendors improved RTL tools (behavioral Compiler 

from Synopsys, Monet from Mentor Graphics [8] and 

Visual Architect from Cadence [9]) [10], the first 

commercial HLS tool was born. Since then, HLS tools 

have been widely popularized and applied to many fields, 

such as aerospace applications [11], real-time video 

processing [12], etc. 

The main function of the HLS tool is to reduce the 

development time of the hardware description language. 

We can see the obvious effect of the two pictures (Fig. 1 

and Fig. 2) in the official Xilinx documentation. 

 

Figure 1.  Design time vs. application performance with RTL design 
entry. 

 

Figure 2.  Design time vs. application performance with Vivado HLS 
compiler. 

From the comparison of Fig. 1 and Fig. 2, it can be 

seen that the development time of FPGA using traditional 

RTL tools is much longer than that of DSP and GPU, 

while the development time of FPGA using HLS tools is 

even close to that of x86, and has the highest application 

performance. 

This article introduces several common and somewhat 

complex image processing algorithms, and uses DICOM 

format medical images as data sources, using SDSoC 

development tools, and implemented on the ZYNQ 

XC7z015 platform. The first part is the comparison of 

Sobel algorithm for medical images of different platforms 

and different acceleration schemes. The second part are 

the comparison of different schemes for Guassian Filter 

algorithm, and the comparison between this design and 

the scheme for the paper [10], discussing the advantages 

and disadvantages. The third part are the comparison of 

different schemes for Harris corner detection algorithm. 

The design in this paper is compared with the scheme for 

[13], and the advantages and disadvantages are discussed. 

The rest of this article is structured as follows. In the 

second section, the specific resources of the ZYNQ SoC 

and the characteristics of the SDSoC tool are described. 

In the fourth section, the full text is summarized, and 

some conclusions are drawn. 

II. ZYNQ AND SDSOC 

The hardware platform designed in this article is 

Xilinx's ZYNQ XC7z015 SoC, which integrates ARM 

and FPGA at the same time: two ARM9 (PS part) and 

FPGA logic unit (PL part) are integrated, and the 

execution sequence of the main program is controlled by 

ARM It runs the operating system, and the FPGA part 

performs the parallel operation of the algorithm. Between 

ARM and FPGA, the AXI4 bus protocol is used for high-

speed data transmission. In this design, the Ubuntu 16.4 

operating system is running on one of the ARM9. 

The development tool adopts the SDSoC development 

environment. The SDSoC environment provides a 

framework of developing and delivering hardware-

accelerated embedded processor applications using 

standard programming languages [14]. The SDSoC 

environment provides a framework of developing and 

delivering hardware-accelerated embedded processor 

applications using standard programming languages. 

SDSoC is a development environment provided by Xilinx 

for the SoC platform. SDSoC integrates three 

development tools: SDx, Vivado, and Vivado HLS. 

When the platform template is available, only the SDx 

tool can complete the entire development process. Using 

C/C++ programming in SDx (the design in this article 

uses C++ programming), You can use the OpenCV 

library. If you want to accelerate the program by 

hardware, you only need to select the corresponding 

function of the software. If you want to improve the 

hardware acceleration efficiency, you need to use Vivado 

HLS related syntax to add acceleration code to the 

function. Unlike writing general C/C++ code, writing 

HLS code requires keeping the hardware in mind and 

always paying attention to hardware limitations. There 

are specific pragmas instructions in HLS to further to 

specify the code to achieve higher control over the 

synthesis process. If the constraints are not met, you need 

to modify the programs instruction. The following is an 

example of a programs instruction that implements a 

pipeline: 

#pragma HLS LOOP_TRIPCOUNT min=1 max=COLS/NPC 

#pragma HLS LOOP_FLATTEN off 

#pragma HLS PIPELINE 

It is worth mentioning that Xilinx provides a hardware-

specific xfOpenCV library. This library uses a large 

number of pragmas instructions, and the official fully 

utilizes the acceleration performance of pragmas 

instructions. Of course, the xfOpenCV library is not as 

comprehensive as the OpenCV library, but the two 

libraries can be cross-compiled. 
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Unlike the traditional Vivado HLS direct development 

of IP cores, after compiling in SDx, SDSoC will 

automatically generate Vivado HLS IP cores and Vivado 

projects and create Block Design, copy the generated files 

to the SD card of the ZYNQ hardware device. Run the 

program, which further reduces development time. 

III. CASE STUDIES 

In this section, three typical medical images processing 

algorithms will be introduced: Sobel Filter, Gaussian 

Filter, Harris Corner Detection. As a case study of 

medical image processing hardware acceleration, the 

main reason for using them are that they are the most 

frequently used algorithms among many medical images 

processing algorithms such as medical image 

segmentation and medical image registration. As a 

comparison, each algorithm is implemented using four 

methods to discuss the advantages and disadvantages of 

the solution to this article. The algorithms in the program 

all use the OpenCV library. 

The first step of the medical image processing program 

is to read medical images. Since the OpenCV library is 

used for image processing, the DICOM images read are 

converted into Mat images (Mat is the data structure used 

to store images in OpenCV). After analyzing the DICOM 

image format information, we wrote a DICOM image of 

Mat image program and called it as a general program 

interface. The DCMTK library is not used in the program 

to convert DICOM images. This is to make the program 

have better compatibility and portability. On some SoCs, 

some problems will occur when the DCMTK library is 

compiled, so this article has written the conversion 

program. The following three algorithms are converted 

by this program before execution, and then the medical 

image data can be processed. 

A. Sobel Filter Implementation 

1) Introduction to sobel filter algorithm 

Sobel filters are often used to extract horizontal edges 

(horizontal features) and vertical edges (vertical features) 

of grayscale images. The Sobel operator contains two sets 

of 3x3 matrices, which are horizontal and vertical, and 

convolve them with the image plane to obtain the 

approximate values of the horizontal and vertical 

approximate brightness difference. If A represents the 

original image, and Gx and Gy represent the images 

detected by the horizontal and vertical edges respectively, 

below is the formula: 

𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] × 𝐴        𝐺𝑦 = [
+1 +2 +1
0 0 0
−1 −2 −1

] × 𝐴 

The approximate horizontal and vertical gradients of 

each pixel of the image can be combined with the 

following formula to calculate the size of the gradient: 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 

 

2) The experimental scheme 

In medical image processing, the Sobel filter is often 

used as the first step of the algorithm. As a pixel-level 

processing algorithm, the Sobel filter also consumes 

considerable computing time for medical image 

processing. Therefore, the Sobel filter is implemented on 

hardware It can accelerate image processing to a certain 

extent. 

In order to conduct sufficient comparison and 

verification, the following four methods will be used for 

Sobel medical image processing. They all use the 

OpenCV library. The input image is the same. It is a 

medical image of DIOCM format with a size of 512×512 

and a pixel width of 16 Bit, as shown in Fig. 3. They are: 

(1) Use C++ language programming on the PC side and 

use the CPU to run the program (hereinafter referred to as 

method 1); (2) Use C++ language programming on 

ZYNQ without using function hardware acceleration; (3) 

Use C++ language programming on ZYNQ, Use 

hardware acceleration for the Sobel function; (4) Use 

Python programming on the PC side and use GPU to run 

the program. The reason for using Python is to shorten 

the development cycle. If you use C++ for GPU 

programming, it will increase development time. 

 

Figure 3.  Input DICOM image 

   
(a) Output image of method 1.          (b) Output image of method 2. 

   
(a) Output image of method 3.         (b) Output image of method 4. 

Figure 4.  Output image after Sobel processing. 



The development tool used in Method 1 is Microsoft 

Visual Studio 2019. The program first converts the 

DICOM images to a Mat image and then uses the Sobel 

functions as OpenCV to process the image and output the 

runtime. The output image is shown in Fig. 4(a), and the 

running time statistics are shown in Table I. 

The development tool used in Method 2 is SDSoC. 

Method 2 runs a program similar to Method 1 on ZYNQ. 

The difference is that the library used in SDSoC is 

xfOpenCV. The output image of Method 2 is shown in 

Fig. 4(b). The Vivado tool integrated into the SDSoC 

development environment can automatically generate 

Block Design and can also generate detailed resource 

usage and power consumption reports. The Block Design 

of Method 2 is shown in Fig. 5(a), and the report result is 

shown in Fig. 6(a). 

Method 3 is the design method introduced into this 

article. The development tools and procedures of Method 

3 and Method 2 are the same. The xfOpenCV library is 

also used. The difference is that Method 3 selects the 

Sobel functions as the hardware acceleration function of 

SDSoC. The output image of Method 3 is shown in Fig. 

4(c), Block Design is shown in Fig. 5(b), and the report 

results are shown in Fig. 6(b). 

Method 4 runs on the PC. The development tool used 

is the Spyder tool for Anaconda Navigator. Similarly, the 

OpenCV library is also used and accelerated by the GPU. 

The specific models and parameters are listed in Table I. 

The operation result is shown in Fig. 4(d). 

3) Experimental results and analysis 

 

 
(a) Block design of method 2. 

 
(b) Block design of method 3. 

Figure 5.  Block design of method 2 and method 3. 

 

 
(a) Project summary of method 2. 

 

 
(b) Project summary of method 3. 

Figure 6.  Project summary of method 2 and method 3. 
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It can be concluded from the comparison of the four 

images of Fig. 4 that the different methods of use will not 

affect the results of the image processing. It can be seen 

from Fig. 5(a) that there is no IP core generated by the 

HLS tool for Block Design, which means that there is no 

hardware acceleration. At this time, the program is 

completely running in the ARM part of the ZYNQ SoC, 

that is, at this time ZYNQ SoC is equivalent to an ARM 

microcontroller. As can be seen from Fig. 5(b), there are 

4 IP cores (parts with Vivado HLS icon) generated by 

HLS in Block Design, which means that hardware 

acceleration has been used. 

In Table I, we compare the processor model, operating 

frequency, development cycle, operating environment, 

operating speed and power consumption of the four 

methods (SDSoC function hardware acceleration used in 

Method 3 is referred to as SDSoC-hard), from the table in 

comparison, we can compare the advantages and 

disadvantages of each method. Since Method 3 is the 

method mainly introduced into this article, the following 

will compare Method 1, Method 2, Method 4, and 

Method 3. 

TABLE I.  COMPARISON TABLE OF SOBEL FILTER IMPLEMENTATIONS 

IN DIFFERENT METHODS 

 

Method1 

(x64) 
Method2 

(SDSoc) 

Method3 

(SDSoC-
hard) 

Method4 

(GPU) 

Platform 

Intel i7-

8700 
CPU 

ZYNQ 

XC7z015 

ZYNQ 

XC7z015 

GTX- 

1080 
GPU 

Clock 

Frequency 
(MHz) 

3200 150 150 
1607-

1733 

Development 

Time (man-
days) 

0.5 0.7 0.7 0.5 

Processing 

Time(ms) 
15 243.42 2.73 4.17 

Power 
Consumption 

(W) 

>65 1.645 1.864 >180 

TABLE II.  METHOD 3 COMPARED WITH THE REFERENCE [10] DATA

Graphics 
RTL  

Designer 

SW  

Designer 

Method3(S

DSoC-

hard) 

Platform 
ZYNQ 

XC7z020 

ZYNQ 

XC7z020 

ZYNQ 

XC7z015 

Clock Frequency 

(MHz) 
200 200 150 

Development Time 
(man-days) 

12 1 0.7 

Processing Time (ms) 0.398 0.498 2.73 

Image Size 320×240 320×240 512×512 

Number of Slice LUTs 1111 21946 31684 

Number of Slice 
Registers 

748 25439 49353 

Number of Block 

RAMs 
3 18 62 

 

First, compare method 1 and method 3. Compared with 

CPU, ZYNQ runs at a speed difference in 

0.015/0.0044=3.4 times, and the processing speed has a 

very significant improvement. In terms of power 

consumption, the power consumption of method 4 is only 

2.01W, and the lowest power consumption of method 1 is 

65W. The difference in power consumption is 

65/2.01=34.87 times. The huge power consumption gap 

can often bring greater power to design products. 

Development space and economic benefits. Comparing 

the development cycles of Method 1 and Method 3, there 

is not much difference between the two. Overall, Method 

3 is obviously more advantageous than Scheme 1. 

Next, compare Method 2 and Method 3. Since method 

2 runs on ARM, its speed is the slowest, and other 

parameters are the same, but method 2 cannot be 

executed in parallel, and the frequency is always much 

lower than method 1 and method 4, so this method is the 

same as the usual use The method of ARM is basically 

the same, only has advantages in power consumption, but 

the processing time is too long. In general, method 3 has 

advantages over method 2. 

Finally, compare method 4 with method 3. Method 4 

uses the GPU. GPU is the commonly used hardware 

acceleration method. Due to its parallel data processing 

structure, it is much faster than CPU in processing large 

amounts of data. Therefore, although method 4 consumes 

twice as much power as method 1, it still has More 

advantages than Option 1. But compared to method 3, the 

power consumption gap is too large, with a difference of 

120/2.01=59.7 times. In large-scale data centers, this gap 

is very important. 

In addition, when querying related designs, It was 

found that [10] also conducted a similar study. Here, the 

same algorithm case of [10] can be used as a comparison. 

The comparison objects of [10] are RTL Designer 

(Vivado HLS) and SW Designer (Vivado HLS). With 

OpenCV), and compare some of its data, as shown in 

Table II. The data onto Table II shows that SDSoC uses 

xfOpenCV and function hardware acceleration compared 

to Vivado HLS with OpenCV, which can further to 

shorten the development time and save resources such as 

Slice LUTs, Slice Registers, Block RAMs, etc. However, 

In contrast, Block RAMs are not There is not much 

reduction, because the program can make more 

reasonable use of SoC resources during sub-automatic 

synthesis, and more programs instructions are used in 

xfOpenCV to allocate Block RAMs resources, which can 

improve data throughput. The data onto the table also 

shows that [10]’s Vivado HLS with OpenCV has a 

shorter processing time. This is mainly because (1) [10] 

and method 3 have different image sizes, and the amount 

of data are different (320×240)/(512×512)=3.413 times; 

(2). The difference in clock frequency is 200/150=1.33 

times. Of course, the resource occupancy of the two 

solutions is higher than that of RTL Designer, but under 

the huge development time advantage, the resource 

occupancy is very cost-effective. Based on the 

comparison of data onto Table II, It is obvious that the 

design of this design has more advantages. 

B. Gaussian Filter Implementation 

1) Introduction to Gaussian filter algorithm 

Gaussian filtering is a linear smoothing filter, suitable 

for eliminating Gaussian noise, and is widely used in the 
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noise reduction process of image processing. It can be 

simply understood that Gaussian filter denoising is the 

weighted average of the pixel values of the entire image. 

The value of each pixel is obtained by the weighted 

average of its value and other pixel values in the 

neighborhood. 

The specific operation is: use the template (or 

convolution, mask) specified by the user to scan each 

pixel in the image and use the weighted average gray 

value of the neighborhood pixels determined by the 

template to replace the center pixel of the template, as 

shown in Fig. 7. 

The two-dimensional Gaussian distribution formula is 

as follows: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
ⅇ
−
𝑥2+𝑦2

2𝜎2  

 

   
(a) 3×3 Gaussian kernel coordinates. (b) Gaussian kernel weight matrix. 

 
(c) Gaussian kernel weight matrix with sum of 1. 

Figure 7.  Gaussian kernel weight calculation matrix. 

2) The experimental scheme 

The Gaussian filter also uses four methods of 

comparison. The four methods are exactly the same as the 

four methods of 3.1 above. So, this paper won’t repeat 

them here, and are still referred to as methods 1-4. For a 

better comparison, the input image is still shown in Fig. 3. 

As the results of the four output images are basically the 

same, only the output results of SDSoC with xfOpenCV 

(Method 3 in 3.1 in the text) are shown here, shown in 

Fig. 8. 

As mentioned in 3.1, Method 2 only runs on ARM of 

hardware connections, so Block Design and Project 

Summary are the same as in 3.1, as shown in Fig. 5(a) 

and Fig. 6(a). The Block Design and Project Summary of 

Method 3 is shown in Fig. 9 and Fig. 10. Method 3 uses a 

3-core design, which is determined by the on-chip 

resources of ZYNQ XC7z015. The limitation lies mainly 

in the number of LUTs. As can be seen from Fig. 10, the 

utilization rate of LUTs has reached 70%. 

 

Figure 8.  Output image of Gaussian filter. 

 

Figure 9.  Block design of method 3. 

 

 

Figure 10.  Project summary of method 3. 

3) Experimental results and analysis 

Compared with method 1 and method 3, method 3 has 

a speedup of 18/3.646=4.9369 times and saves 

65/2.356=27.589 times of power consumption. Method 3 

still has great advantages compared to method 1. 

Journal of Image and Graphics, Vol. 8, No. 4, December 2020

©2020 Journal of Image and Graphics 103



The conclusion obtained by comparing method 2 with 

method 3 is the same as that in 3.1, and will not be 

repeated here. 

Compared with Method 3, the processing time is the 

same, and the gap is narrowed. As mentioned above, this 

is because the resources of Method 3 are limited. In terms 

of power consumption, method 3 achieves 

180/2.356=76.4 times power saving, which still has huge 

advantages. 

Similarly, this article found a similar experiment in 

another paper [13], using its experimental data as a 

comparison, the data statistics are in Table III. In [13], 

Gaussian kernels of various sizes are used for comparison. 

The Gaussian kernel used in this paper is 5×5, so the 5×5 

data in Table IV in [13] is used for comparison. It can be 

seen from the data onto the table that method 3 in this 

paper has a greater advantage in speed, which is mainly 

due to the difference in image size. The size ratio of the 

image data is converted to the time ratio. The speed of the 

two schemes is the same. [13] The development tool used 

is Vivado HLS. According to the comparison data onto 

3.1, Method 3 in this paper has the advantage of a short 

development cycle. 

TABLE III.  COMPARISON  OF GAUSSIAN FILTER 

IMPLEMENTATIONS IN DIFFERENT METHODS 

 
Method1 

(x64) 
Method2 

(SDSoc) 

Method3 
(SDSoC-

hard) 

Method4 

(GPU) 

Platform 

Intel i7-

8700 
CPU 

ZYNQ 

XC7z015 

ZYNQ 

XC7z015 

GTX- 

1080 
GPU 

Clock 

Frequency 
(MHz) 

3200 150 150 
1607-

1733 

Development 

Time(man-
days) 

0.5 0.7 0.7 0.5 

Processing 

Time(ms) 
18 287.67 3.646 3.34 

Power 

Consumption 

(W) 

>65 1.645 2.356 >180 

TABLE IV.  METHOD 3 COMPARED WITH THE REFERENCE [14] DATA 

Graphics Vivado HLS Method 3 

Platform ZYNQ XC7z020 ZYNQ XC7z015 

Clock Frequency(MHz) 157 150 

Kernel Size 5×5 5×5 

Processing Time(ms) 13.209 3.646 

Image Size 
1920×1080（8-

bit per pixel） 

512×512（16-bit 

per pixel） 

Number of Slice LUTs 20656 32271 

FFs 17724 46296 

Number of Block RAMs 2 54 

C. Harris Corner Detection Implementation 

1) Introduction to Harris corner detection algorithm 

Harris Corner Detection is often used in medical image 

registration algorithms. The basic idea of Harris 

algorithm is to use a fixed window to slide into any 

direction on the image, and compare the degree of change 

of the pixel gray scales in the window before and after the 

sliding. If the sliding in any direction has a large gray 

scale change, then we can think that there are corner 

points in the window. The Harris image corners detection 

algorithm is summarized as follows, divided into the 

following five steps: (1). Calculate the gradient of the 

image of X and Y. (2) Calculate the product of the 

gradients in the two directions of the image. (3) Use 

Gaussian functions to perform Gaussian weighting (take 

sigma=1) to generate elements A, B, and C of matrix M. 

(4) Calculate the Harris response value R of each pixel, 

and set R that is less than a certain threshold t to zero. (5) 

Perform non-maximum suppression in a 3×3 or 5×5 

neighborhood, and the local maximum point is the corner 

point in the image. 

2) The experimental scheme 

This section also uses a similar structure of the 

previous two sections, and also uses four methods to 

achieve Canny edge detection. Some conclusions are 

found through the comparison of different methods. The 

four methods are the same as the four methods of 3.1 

above, which will not be repeated here, and are still 

simply referred to as methods 1-4. The results of the four 

output image are the same, and only one output image is 

displayed-Fig. 11. 

3) Experimental results and analysis 

 

Figure 11.  Output image of Canny edge detection. 

 

Figure 12.  Block design of method 3. 
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TABLE



 

 

Figure 13.  Project summary of method 3. 

TABLE V.  COMPARISON TABLE OF HARRIS CORNER DETECTION 

IMPLEMENTATIONS IN DIFFERENT METHODS 

 
Method1 

(x64) 
Method2 

(SDSoc) 

Method3

(SDSoC-

hard) 

Method4 

(GPU) 

Platform 
Intel i7-

8700 

CPU 

ZYNQ 

XC7z015 

ZYNQ 

XC7z015 

GTX- 
1080 

GPU 

Clock 

Frequency 
(MHz) 

3200 120 120 
1607-

1733 

Development 

Time(man-
days) 

0.5 0.7 0.7 0.5 

Processing 

Time(ms) 
18 335.43 6.61 3.8 

Power 

Consumption 

(W) 

>65 1.645 2.144 >180 

 

As can be seen from Fig. 12, Method 3 uses a 2-core 

design, which is determined by the limitations of on-chip 

resources. It can be seen from Fig. 13 that the use of 

BRAM has reached 83%, which is the key to limiting the 

number of parallel algorithm cores. 

The data comparison of the four methods is shown in 

Table V, and it can be seen that the processing speed of 

Method 3 is still much faster than that of the CPU, 

achieving an acceleration of 18/6.61=2.72 times. 

However, as the frequency of the ZYNQ SoC decreases, 

the processing time of Method 3 is pulled away by 

Method 4, but this does not mean that Method 3 is 

inferior to GPU in complex algorithm processing. ZYNQ 

XC7z015 is just a low-end chip in the Xilinx chip. 

Xilinx's high-end chips are fully capable of complex 

algorithm processing and can achieve faster processing 

speed through a multi-stage parallel connection. 

IV. CONCLUSION 

This paper uses SDSoC development environment to 

implement three common algorithms in medical image 

processing on ZYNQ SoC. The important significance of 

the research is that the hardware acceleration of medical 

image processing greatly shortens the processing time of 

medical images and improves the real-time nature of 

medical image processing. Medical image processing is 

an interdisciplinary subject, and the requirements for 

developers are high. Another important significance of 

this article is the reduction of the development threshold 

for medical image processing. SDSoC can use the 

OpenCV library and the xfOpenCV library. Among them, 

OpenCV is familiar to the majority of software designers, 

which greatly shortens the development cycle of the 

project. The usage of xfOpenCV and OpenCV is very 

similar. There is no development threshold for developers 

familiar with OpenCV. The xfOpenCV is officially 

“#pragma” instruction has been optimized for library 

functions, running faster and saving hardware resources. 

In this paper, the Sobel Filter, Gaussian Filter, Canny 

Edge Detection three algorithms are compared using four 

methods, after testing on four platforms CPU, ARM, 

ZYNQ, GPU, the data are compared and discussed. It can 

be seen that the use of SDSoC for hardware acceleration 

of medical image processing on ZYNQ SoC is the most 

advantageous, mainly reflected on/off: fast running speed, 

short development cycle, low power consumption, 

difficult situations in traditional hardware development. 

Next, the design scheme for this article is undoubtedly a 

good way to solve the problem. At the same time, the 

design scheme for this article has good scalability, which 

can use multiple ZYNQ SoCs in parallel, or use SoCs 

with more on-chip resources. The design in this article 

mainly uses dual cores. In the case of sufficient resources, 

more cores can be used for parallel computing, and the 

processing time is almost unchanged. This means that 

more cores can double the operating speed. Of course, the 

power consumption will also There is a certain 

improvement. 
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