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Abstract—Detecting image correspondences by feature 

matching forms the basis of numerous computer vision 

applications. Several detectors and descriptors have been 

presented in the past, addressing the efficient generation of 

features from interest points (keypoints) in an image. In this 

paper, we investigate eight binary descriptors (AKAZE, 

BoostDesc, BRIEF, BRISK, FREAK, LATCH, LUCID, and 

ORB) and eight interest point detector (AGAST, AKAZE, 

fStarDetector). We have decoupled the detection and 

description phase to analyze the interest point detectors and 

then evaluate the performance of the pairwise combination 

of different detectors and descriptors. We conducted 

experiments on a standard dataset and analyzed the 

comparative performance of each method under different 

image transformations. We observed that: (1) the FAST, 

AGAST, ORB detectors were faster and detected more 

keypoints, (2) the AKAZE and KAZE detectors performed 

better under photometric changes while ORB was more 

robust against geometric changes, (3) in general, descriptors 

performed better when paired with the KAZE and AKAZE 

detectors, (4) the BRIEF, LUCID, ORB descriptors were 

relatively faster, and (5) none of the descriptors did 

particularly well under geometric transformations, only 

BRISK, FREAK, and AKAZE showed reasonable resiliency. 


Index Terms—interest point detector, keypoint detector, 

descriptor, evaluation, image features, binary descriptor 

I. INTRODUCTION

Detecting interest points and locating correspondences 

between two images play a crucial role in numerous 

computer vision applications such as: object detection 

and pose estimation [1], visual odometry [2], 

simultaneous localization and mapping [3], augmented 

reality [4], image mosaicing and panorama stitching [5]. 

Generally, interest point detectors are used to extract the 

candidate points, and descriptors are used to form the 

description of the image structure surrounding that 

keypoint. Subsequently, a comparison is done on the 

extracted descriptors in different images using relevant 

similarity metrics to determine the corresponding interest 

points. This assumes that the same feature will be 

Manuscript received October 25, 2020; revised January 20, 2021. 
The code is available at https://github.com/paul-shuvo/detector-

descriptor-evaluation. 

detected in two or more different images of the same 

scene, and that descriptors extract the essential 

information that encodes the visual information in the 

regions surrounding the interest points. Ideally, this 

description of the same scene for points seen from 

different viewpoints or subject to other image 

transformations should be similar. Therefore, an ideal 

detector should detect the same keypoints present in the 

scene and the descriptor should be invariant to any 

photometric or geometric image transformation. 

In 2004, D. Lowe published his seminal work SIFT [6], 

and later H. Bay et al. presented SURF [7], a speeded-up 

version of SIFT. Both of these methods are two of the 

most widely used techniques for local feature extraction. 

These methods helped address many computer vision 

problems with great accuracy and are known for their 

robustness under image transformations. However, this 

reliability of performance comes at a high computational 

cost as storing high dimensional descriptors in floating 

point representation not only takes a significant amount 

of memory but also requires more time for matching 

descriptors. Although a few other variants of SIFT and 

SURF were proposed to address these limitations, they 

were not efficient enough for devices with limited 

computational resources. 

In recent times, the wide adoption of handheld devices, 

e.g. mobile phones, digital cameras, etc. has popularized

vision-based applications that include visual search,

augmented reality, image filters, wearable computing, etc.

However, most of these devices do not have the ample

computational capability required to maintain a minimum

execution speed for such applications, due to the

manipulation of high dimensional floating point numbers.

This warranted for more efficient techniques for interest

point detection and feature description.

During the last two decades, several new feature 

detectors and binary descriptors have been developed. All 

of them had a significant improvement in terms of 

execution speed but are not as robust compared to SIFT 

and SURF. Although some of these feature detectors and 

descriptors work well under certain image 

transformations, there is no one solution that is feasible in 

all situations. Moreover, different devices have various 

computing resources and different applications have 

specific requirements, thus selecting a feature-detector-
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descriptor combination that balances speed and accuracy 

is a critical decision for developing a solution. 

For this evaluation, we selected eight detectors and 

eight binary descriptors that are included in the popular 

OpenCV library. The detectors are HarrisLaplace [8], 

FAST [9], AGAST [10], KAZE [11], AKAZE [12], ORB 

[13], BRISK [14], and StarDetector [15], and the binary 

descriptors are BRIEF [16], AKAZE [12], BoostDesc 

[17], [18], LATCH [19], LUCID [20], BRISK [14], ORB 

[13], and FREAK [21]. 

We evaluated the detectors in terms of processing time, 

the number of keypoints detected, and repeatability ratio 

with respect to different degrees of photometric changes: 

blur, illumination, jpeg-compression. All of these 

detectors were then combined with all the descriptors 

(except for AKAZE which only supports KAZE and 

AKAZE detectors) to measure the combined performance 

under different photometric and geometric image 

transformations. 

Our goal in this work is to present an analysis of the 

recent developments in feature detectors and descriptors 

that can guide on selecting the optimum detector-

descriptor combination that requires lower computing 

resources. Additionally, we provide a publicly available 

evaluation framework that can not only be used to 

compare and analyze other detector and descriptor 

techniques but also to evaluate the already included 

methods on different image sequences. 

This paper is outlined as follows: in the next section, 

we provide a brief overview of previous evaluations. 

Next, we describe the dataset and image sequences. The 

following chapters include our evaluation containing 

experimental results and observations. Finally, we 

conclude this paper by summarizing our work. 

II. RELATED WORK 

In [22], Christensen et al. presented empirical 

evaluation techniques that allow objective comparative 

assessment of computer vision algorithms. Schmid et al. 

[23] evaluated interest point detectors based on 

repeatability rate criterion and information content 

criterion; repeatability rate is defined as the number of 

points repeated between two images with respect to the 

total number of detected points and information content is 

a measure of the distinctiveness of an interest point. 

Mikolajczyk et al. [24] provided a set of benchmark 

image sequences (the Oxford dataset) for testing the 

effects of blur, compression, exposure, scale/rotation, and 

perspective change; since these image sequences have 

been widely adopted in vision research, we used them in 

our evaluation for compatibility. 

In 2005, Mikolajczyk and Schmid [25] compared 

several descriptors computed for local interest regions 

and investigated if and how their performance is 

depended on the interest region detectors. Later, Misksik 

and Mikolajczyk evaluated mostly binary descriptors in 

[26], together with other detectors to determine detector-

descriptor dependencies. Heinly et al. [27] compared the 

performance of three binary descriptors with other 

gradient based descriptors by pairing them all with 

different interest point detectors. 

Other comparison articles were dedicated to a specified 

task. Moreels and Perona [28] explored the performance 

of several feature detectors and descriptors in matching 

3D object features across different viewpoints and 

lighting conditions. Fraundorfer et al. [29] presented a 

method to evaluate the performance of local detectors 

that allows the automatic verification of detected 

corresponding points and regions for non-planar scenes. 

Gauglitz et al. [30] compared both interest point detectors 

and feature descriptors in isolation along with all the 

detector-descriptor combinations for visual tracking. Ali 

et al. [31] analyzed the performance of various feature 

detectors and descriptors for panorama image stitching. 

Tareen et al. [32] did a comparative study of popular 

detector-descriptor methods for image registration. Shi et 

al. [33] investigated several feature descriptors under 

rotational changes in various image features extracted 

from monocular thermal and photo camera images. Dahl 

et al. [34] evaluated some of the most popular descriptor 

and detector combinations on the DTU Robot dataset, 

which is a systematic data aimed at two view matching. 

Mandalin [35] compared six descriptors applied to face 

recognition using different distance measures with 

Nearest Neighbor and SVM as classifiers. Aanæs et al. 

[36] evaluated detectors based on spatial invariance of 

interest points under changing acquisition parameters of a 

large dataset. 

SIFT and SURF are well studied and often used as a 

benchmark in the literature. It is well established that 

both methods generally perform well under different 

image transformations but have slower run time. Rather 

than comparing with these two methods or their variants, 

we focus on doing a comparative analysis on the faster 

detector and binary descriptor methods. 

III. DATASET 

Our evaluation was done on the Oxford affine dataset 

[25] which contains eight sequences, each corresponding 

to different photometric and geometric image 

transformations that include change of blur, viewpoint, 

rotation and zoom, jpeg-compression, and illumination. 

Each image has a medium resolution (approximately 

800×640 pixels). Each image sequence is composed of 

six images (enumerated from 0 to 5) and the ground truth 

homographies between the first and the rest of the images 

in the sequence. For simplicity we would refer the first 

image as Train image T and the rest of the images in the 

sequence as Query image Q. Each subsequent query 

image has more variance than the prior image in the 

sequence, for example, Q𝑖+1 would contain more variance 

than Q𝑖 (Q0, in this case, would be image T). Although 

the image numbers on the x-axis in the Fig. 1, and Fig. 2 

appear in linear scale, this does not represent linear 

change – it simply indicates the addition of more variance 

on the subsequent images in the sequence. 

2

Journal of Image and Graphics, Vol. 9, No. 1, March 2021

©2021 Journal of Image and Graphics



 

Figure 1. Detected keypoints over different levels of variance. 

 

Figure 2. Repeatability ratio of the detectors under different levels of variances. 

IV. EVALUATION 

We measured the number of detected keypoints, and 

repeatability rate of each detector under different degrees 

of photometric changes along with the average processing 

time. Subsequently, we paired the descriptors with all the 

other detectors (except for AKAZE which only supports 

KAZE and AKAZE detector) and measured their average 

processing time and average accuracy, precision, and 

recall. We have selected the default variant for each 

method implemented in OpenCV; Table I arranges the 

memory size of the default variants of descriptors that are 
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evaluated in ascending order and Table II lists the 

average processing time for each of the detector methods 

in ascending order. Color gradients are used on Table III, 

Table IV, and Table V to illustrate the comparative 

performance of the methods arranged in rows; darker 

value indicates better performance. We have used the 

following abbreviations to accommodate the results on 

Table IV and Table V: HL (HarrisLaplace), FT(FAST), 

AG (AGAST), KZ (KAZE), AZ (AKAZE), OB(ORB), 

BK (BRISK), SD (StarDetector), BF (BRIEF), BD 

(BoostDesc), LT (LATCH), LD (LUCID), BK (BRISK), 

OB (ORB), and FK (FREAK). Color gradients are used 

on Table III, Table IV, and Table V to illustrate the 

comparative performance of the methods arranged in 

rows; darker value indicates better performance. 

TABLE I.  MEMORY SIZE OF THE DESCRIPTORS 

Descriptor 
Size 

(bytes) 

LUCID 27 

LATCH 32 

ORB 32 

BoostDesc 32 

BRIEF 32 

AKAZE 61 

FREAK 64 

BRISK 64 

TABLE II.  AVERAGE PROCESSING TIME TAKEN BY EACH DETECTOR 

Detector Processing Time 

FAST 0.002 

AGAST 0.007 

ORB 0.01 

StarDetector 0.02 

AKAZE 0.07 

BRISK 0.2 

KAZE 0.33 

HarrisLaplace 0.68 

A. Number of Detected Keypoints 

We start our evaluation by examining how photometric 

changes affect the detection capability of the detectors at 

each stage of added variance. Fig. 1(a, b, c) illustrates the 

change in number of keypoints detected at different 

variance levels and Table III tabulates the average rate of 

change (absolute) in number of keypoints detected; the 

values in Table III essentially indicate the stability of the 

detectors under different image transformations; smaller 

values (darker cells) denotes lower sensitivity. In most 

cases FAST, AGAST, and ORB detected a much higher 

number of keypoints when a lower amount of variance 

was present, but at the same time, as more variance was 

introduced the number of keypoints detected was 

significantly reduced. Although this reduction was nearly 

proportionate to other detectors (Table III) under 

illumination variance, for variance in blur and jpeg-

compression the differences were more significant. 

For variance in jpeg compression, AKAZE, KAZE, 

Harris Laplace, and Star detector had almost zero change 

in detection rate. Even though all the detectors picked up 

pixelated edges and corners as keypoints, BRISK in 

particular was more prone to this error and as a result, 

detected more keypoints at the highest compression level. 

TABLE III.  DETECTOR SENSITIVITY UNDER DIFFERENT LEVELS OF 

VARIANCE 

B. Repeatability Ratio 

Next, we measured the detector performance in terms 

of repeatability ratio within the overlapping region S. The 

overlapping region is the part of the image in both T and 

Q that contains the same part of a scene. In other words, 

all the points in T that have corresponding points in Q 

form the overlapping region S (1). 

 

S = Q ∩ TH                                (1) 

 

TS and QS denotes the part of the train image T, and query 

image Q containing the overlap region S. KTS, KQS 

denotes the set of extracted keypoints from TS and QS 

respectively. Using the label (homography matrix H) we 

computed the corresponding locations of keypoints in KTS 

in Q and compared with KQS to find the matching 

keypoints. The repeatability ratio 𝜌 (2) is the ratio of the 

total number of matched keypoints and the total number 

of keypoints detected in TS. 

𝜌 =
#(𝐾𝑇𝑆 ∩ 𝐾𝑄𝑆)

#𝐾𝑇𝑆

                             (2) 

Fig. 2 shows that KAZE and AKAZE had better 

repeatability ratios for lower variance in illumination but 

for higher variance ORB performed better. For blurred 

images, KAZE and AKAZE were the winners by a 

significant margin. Under different jpeg-compression 

levels, again KAZE and AKAZE produced better results. 

In the case of perspective, and zoom and rotation 

variance, ORB consistently outperformed other methods. 

These results indicate that KAZE and AKAZE 

detectors are relatively more resilient to photometric 

changes while ORB is more resilient to geometric 

changes. 

         Variance 

 

Detector 

Illumination Blur 
Jpeg-

compression 

AGAST 0.17 0.48 0.23 

KAZE 0.16 0.2 0.025 

AKAZE 0.22 0.16 0.039 

FAST 0.17 0.49 0.26 

BRISK 0.22 0.39 0.13 

ORB 0.21 0.38 0.1 

HarrisLaplace 0.17 0.27 0.032 

StarDetector 0.24 0.32 0.027 
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C. Processing Time 

Instead of computing execution time per keypoint, we 

measured the average execution time taken for each of 

the methods to process the entire image in the dataset. 

This information is more relevant from a development 

standpoint. For instance, a certain detecting algorithm 

having lower execution time per detected keypoint may 

generate a much higher number of keypoints, resulting in 

higher processing time for an entire image. The 

processing time was measured on a machine equipped 

with Intel®Core™i7-8750H Processor (2.20GHz, up to 

4.10GHz) with 16-gigabyte memory. 

TABLE IV.  AVERAGE EXECUTION TIME FOR DIFFERENT DETECTOR-
DESCRIPTOR COMBINATIONS UNDER VARIANCES IN (A) BLUR, (B) 

ILLUMINATION, AND (C) JPEG-COMPRESSION. ROWS ARE DESCRIPTORS, 
COLUMNS ARE DETECTORS 

  AG KZ AZ FT BK OB HL SD 

LT 0.13 0.053 0.048 0.12 0.05 0.17 0.019 0.011 

LD 0.004 0.003 0.003 0.003 0.003 0.004 0.002 0.002 

FK 0.052 0.033 0.033 0.044 0.032 0.044 0.028 0.026 

BD 0.13 0.049 0.045 0.13 0.054 0.19 0.021 0.012 

AZ - 0.094 0.097 - - - - - 

BF 0.012 0.006 0.006 0.012 0.006 0.014 0.004 0.003 

BK 0.19 0.15 0.15 0.17 0.15 0.18 0.14 0.14 

OB 0.007 0.009 0.008 0.007 0.009 0.014 0.009 0.003 

(A) Variance: Blur 

  AG KZ AZ FT BK OB HL SD 

LT 0.27 0.055 0.037 0.25 0.12 0.34 0.074 0.012 

LD 0.005 0.002 0.002 0.005 0.003 0.005 0.002 0.002 

FK 0.076 0.033 0.03 0.072 0.041 0.058 0.035 0.026 

BD 0.33 0.061 0.035 0.32 0.12 0.32 0.079 0.013 

AZ - 0.068 0.067 - - - - - 

BF 0.019 0.005 0.004 0.02 0.01 0.026 0.008 0.002 

BK 0.2 0.14 0.14 0.2 0.17 0.21 0.15 0.14 

OB 0.009 0.007 0.005 0.008 0.01 0.018 0.009 0.002 

(B) Variance: Illumination 

  AG KZ AZ FT BK OB HL SD 

LT 0.56 0.11 0.093 0.54 0.38 0.96 0.086 0.037 

LD 0.008 0.003 0.002 0.008 0.005 0.011 0.002 0.002 

FK 0.11 0.039 0.037 0.11 0.078 0.18 0.036 0.029 

BD 0.67 0.12 0.096 0.67 0.41 1 0.091 0.035 

AZ - 0.067 0.07 - - - - - 

BF 0.037 0.008 0.008 0.038 0.027 0.063 0.008 0.004 

BK 0.25 0.16 0.15 0.25 0.21 0.34 0.16 0.14 

OB 0.017 0.008 0.007 0.016 0.016 0.031 0.008 0.003 

(C) Variance: Jpeg-compression 

We measured the processing time for feature extraction 

of each descriptor and detector combination under 

different photometric changes (Table II). Since the 

number of detected keypoints decreases at different rates 

for different detectors under photometric changes (as seen 

in Section IV-A), the processing time to generate the 

descriptors would be different as well. Table IV shows 

the processing time for each descriptor when paired with 

all the other detectors. BRIEF, LUCID, and ORB were 

consistently the faster solutions under all the changes and 

BRISK was the slowest in most cases. 

D. Accuracy, Precision, Recall 

Finally, we analyzed the matching performance of all 

the possible detector-descriptor combinations. To match 

the keypoints we used K-nearest-neighbor and then 

further pruned the result using the distant ratio test [37]. 

We used the standard distant ratio of 0.7 for the test. We 

then categorized the keypoints in KTS as unmatched and 

matched. Afterward, we used the homography model and 

an inlier distance threshold of 2.5 to determine good 

matches amongst the matched group of points; these 

keypoints were then classified as true positive and the rest 

as false positive. For the unmatched group, we executed 

the same procedure; keypoints that had a corresponding 

point on the image Q were then classified as false 

negative and the rest true negative. These results can vary 

depending on the initial matching technique, the values of 

the distance ratio, and the inlier distance threshold. We 

computed three metrics: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, and 

𝑅𝑒𝑐𝑎𝑙𝑙 (also known as inlier-ratio) using (3). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                        (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑇𝑃(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒), 𝐹𝑃(𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒), 

𝑇𝑁(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒), 𝐹𝑁(𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) 

 

The results for each of the detector-descriptor 

combinations are assembled in Table V. In almost all the 

cases AKAZE detector-descriptor performed better than 

other combinations. None of the descriptors performed 

particularly well under geometric changes, BRIEF and 

LATCH in particular had zero inliers. LUCID’s 

performance was significantly poorer compare to other 

descriptors. In most cases, the descriptors showed better 

performance when paired with the KAZE or AKAZE 

detectors. Furthermore, AKAZE had better matching 

performance than all other descriptor methods. 
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TABLE V.  AVERAGE ACCURACY, PRECISION, AND RECALL FOR DIFFERENT VARIANCES. ROWS ARE DESCRIPTORS, COLUMNS ARE DETECTORS 

 Accuracy 

 

Precision 

 

Recall \ Inlier-Ratio 

B
lu

r 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 

AG 0.05 0.15 0.01 0.01 - 0.07 0.01 0.04 
 

AG 0.09 0.01 0.02 0.02 - 0.11 0.02 0.07 
 

AG 0.06 0.01 0.01 0.01 - 0.08 0.01 0.05 

KZ 0.17 0.15 0.12 0.07 0.4 0.24 0.11 0.19 
 

KZ 0.32 0.06 0.24 0.14 0.54 0.42 0.22 0.35 
 

KZ 0.22 0.04 0.15 0.1 0.49 0.3 0.16 0.24 

AZ 0.13 0.13 0.12 0.06 0.41 0.26 0.12 0.11 
 

AZ 0.27 0.08 0.25 0.15 0.62 0.45 0.25 0.24 
 

AZ 0.17 0.04 0.16 0.09 0.51 0.32 0.17 0.15 

FT 0.05 0.15 0.01 0.01 - 0.07 0.01 0.04 
 

FT 0.1 0.01 0.02 0.02 - 0.12 0.02 0.07 
 

FT 0.07 0.01 0.01 0.01 - 0.08 0.01 0.05 

BK 0.03 0.13 0.05 0.02 - 0.08 0.07 0.04 
 

BK 0.06 0.02 0.11 0.04 - 0.15 0.13 0.08 
 

BK 0.04 0.01 0.07 0.02 - 0.1 0.09 0.05 

OB 0.03 0.08 0.11 0.03 - 0.07 0.16 0.05 
 

OB 0.07 0.01 0.19 0.04 - 0.14 0.27 0.11 
 

OB 0.05 0.01 0.14 0.03 - 0.1 0.19 0.08 

HL 0.05 0.21 0.03 0.02 - 0.09 0.03 0.05 
 

HL 0.06 0.03 0.04 0.01 - 0.1 0.03 0.06 
 

HL 0.04 0.02 0.02 0.01 - 0.07 0.02 0.04 

SD 0.17 0.26 0.09 0.07 - 0.2 0.1 0.12 
 

SD 0.31 0.14 0.19 0.15 - 0.35 0.22 0.23 
 

SD 0.21 0.08 0.12 0.09 - 0.24 0.13 0.15 

                                                            

Il
lu

m
in

a
ti

o
n

 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 

AG 0.19 0.08 0.06 0.07 - 0.2 0.12 0.17 
 

AG 0.36 0 0.15 0.14 - 0.37 0.26 0.34 
 

AG 0.25 0 0.09 0.09 - 0.26 0.17 0.23 

KZ 0.17 0.08 0.1 0.13 0.29 0.21 0.18 0.19 
 

KZ 0.36 0 0.23 0.27 0.48 0.4 0.35 0.39 
 

KZ 0.23 0 0.13 0.17 0.36 0.26 0.23 0.24 

AZ 0.13 0.1 0.11 0.11 0.27 0.23 0.2 0.13 
 

AZ 0.28 0 0.24 0.25 0.48 0.44 0.39 0.29 
 

AZ 0.17 0 0.14 0.15 0.34 0.29 0.26 0.17 

FT 0.19 0.08 0.07 0.08 - 0.21 0.13 0.18 
 

FT 0.37 0 0.15 0.15 - 0.39 0.27 0.36 
 

FT 0.26 0 0.1 0.1 - 0.27 0.18 0.25 

BK 0.07 0.08 0.09 0.03 - 0.2 0.14 0.07 
 

BK 0.17 0 0.2 0.06 - 0.38 0.3 0.18 
 

BK 0.1 0 0.12 0.03 - 0.25 0.18 0.1 

OB 0.07 0.05 0.15 0.04 - 0.15 0.19 0.08 
 

OB 0.18 0 0.31 0.07 - 0.33 0.36 0.2 
 

OB 0.1 0 0.16 0.04 - 0.2 0.23 0.11 

HL 0.07 0.17 0.02 0.02 - 0.09 0.02 0.05 
 

HL 0.13 0 0.03 0.02 - 0.14 0.03 0.07 
 

HL 0.1 0 0.02 0.01 - 0.11 0.02 0.05 

SD 0.2 0.18 0.11 0.11 - 0.21 0.14 0.17 
 

SD 0.41 0 0.24 0.26 - 0.42 0.31 0.37 
 

SD 0.25 0 0.13 0.13 - 0.25 0.18 0.22 

 
     

                            

J
p

eg
-c

o
m

p
re

ss
io

n
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 

AG 0.15 0.04 0.06 0.04 - 0.17 0.08 0.13 
 

AG 0.36 0.02 0.18 0.13 - 0.4 0.22 0.32 
 

AG 0.18 0.01 0.07 0.05 - 0.19 0.09 0.14 

KZ 0.37 0.1 0.28 0.16 0.74 0.42 0.33 0.39 
 

KZ 0.68 0.17 0.61 0.41 0.92 0.76 0.58 0.71 
 

KZ 0.39 0.05 0.3 0.18 0.76 0.45 0.36 0.41 

AZ 0.3 0.12 0.27 0.14 0.56 0.48 0.36 0.3 
 

AZ 0.59 0.2 0.56 0.38 0.84 0.78 0.61 0.6 
 

AZ 0.33 0.05 0.3 0.15 0.59 0.51 0.38 0.33 

FT 0.18 0.05 0.07 0.05 - 0.19 0.1 0.15 
 

FT 0.39 0.03 0.22 0.15 - 0.44 0.25 0.36 
 

FT 0.2 0.01 0.09 0.06 - 0.22 0.12 0.17 

BK 0.1 0.06 0.15 0.03 - 0.23 0.2 0.12 
 

BK 0.27 0.07 0.39 0.09 - 0.48 0.42 0.31 
 

BK 0.13 0.03 0.18 0.03 - 0.27 0.24 0.15 

OB 0.14 0.04 0.34 0.04 - 0.18 0.38 0.18 
 

OB 0.33 0.05 0.74 0.14 - 0.43 0.67 0.4 
 

OB 0.16 0.02 0.35 0.05 - 0.21 0.41 0.21 

HL 0.23 0.12 0.16 0.09 - 0.26 0.19 0.24 
 

HL 0.48 0.13 0.41 0.25 - 0.53 0.44 0.51 
 

HL 0.26 0.05 0.18 0.1 - 0.29 0.22 0.27 

SD 0.48 0.17 0.35 0.19 - 0.51 0.38 0.41 
 

SD 0.82 0.32 0.71 0.53 - 0.86 0.71 0.75 
 

SD 0.5 0.08 0.36 0.2 - 0.52 0.39 0.43 

 
     

                            

P
e
r
sp

ec
ti

v
e 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 

AG 0 0.08 0.01 0 - 0.01 0.01 0.02 
 

AG 0 0.12 0.25 0.05 - 0.34 0.19 0.25 
 

AG 0 0 0.01 0 - 0 0.01 0 

KZ 0 0.1 0.02 0 0 0.01 0.02 0.01 
 

KZ 0 0.2 0.4 0.07 0.02 0.21 0.37 0.41 
 

KZ 0 0 0.01 0 0 0 0.02 0 

AZ 0 0.11 0.02 0.02 0.03 0.01 0.03 0.02 
 

AZ 0.12 0.84 0.37 0.64 0.45 0.44 0.49 0.45 
 

AZ 0 0.01 0.02 0.02 0.03 0 0.02 0.01 

FT 0 0.08 0.01 0 - 0.01 0.01 0.02 
 

FT 0 0.11 0.47 0.01 - 0.33 0.21 0.27 
 

FT 0 0 0.01 0 - 0 0.01 0 

BK 0 0.08 0.03 0.01 - 0 0.03 0.01 
 

BK 0.28 0.35 0.79 0.42 - 0.21 0.68 0.65 
 

BK 0 0 0.03 0.01 - 0 0.03 0.01 

OB 0 0.05 0.02 0 - 0 0.02 0.02 
 

OB 0.27 0.69 0.6 0.26 - 0.21 0.45 0.43 
 

OB 0 0 0.02 0 - 0 0.02 0.01 

HL 0 0.13 0 0 - 0.01 0 0.01 
 

HL 0 0.1 0.21 0 - 0 0 0 
 

HL 0 0 0 0 - 0 0 0 

SD 0 0.19 0.02 0 - 0.01 0.02 0.01 
 

SD 0 0.76 0.36 0.22 - 0.42 0.57 0.26 
 

SD 0 0.01 0.01 0 - 0 0.02 0 

 
     

                            

S
c
a

le
 a

n
d

 R
o

ta
ti

o
n

 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 
 

  LT LD FK BD AZ BF BK OB 

AG 0 0.1 0 0 - 0.01 0 0 
 

AG 0 0.6 0.01 0 - 0 0.02 0 
 

AG 0 0 0 0 - 0 0 0 

KZ 0 0.12 0.01 0 0 0 0.02 0 
 

KZ 0 0.41 0.7 0.2 0.2 0.01 0.53 0 
 

KZ 0 0 0.01 0 0 0 0.02 0 

AZ 0 0.13 0.01 0.01 0.07 0.01 0.02 0.01 
 

AZ 0.02 0.23 0.52 0.75 0.88 0.01 0.78 0.24 
 

AZ 0 0 0.01 0.01 0.07 0 0.02 0.01 

FT 0 0.1 0 0 - 0.01 0 0 
 

FT 0 0.4 0.02 0 - 0 0.23 0 
 

FT 0 0 0 0 - 0 0 0 

BK 0 0.1 0.02 0.01 - 0 0.04 0.01 
 

BK 0 0.6 0.76 0.44 - 0.2 0.79 0.25 
 

BK 0 0 0.02 0 - 0 0.04 0.01 

OB 0 0.08 0.03 0 - 0 0.04 0.01 
 

OB 0 0.6 0.69 0.41 - 0.2 0.83 0.71 
 

OB 0 0 0.02 0 - 0 0.03 0.01 

HL 0 0.16 0 0 - 0 0 0 
 

HL 0 0.4 0.2 0 - 0 0.2 0.2 
 

HL 0 0 0 0 - 0 0 0 

SD 0 0.18 0.02 0 - 0.01 0.02 0.01 
 

SD 0 0.46 0.79 0.2 - 0.01 0.62 0 
 

SD 0 0 0.02 0 - 0 0.02 0 

 

V. CONCLUSION 

In this paper, we have presented a comparative 

evaluation of eight detectors and eight descriptors in the 

presence of different geometric and photometric 

transformations. The aim was to compare these methods 

in order to give an insight into which combinations may 

yield optimal performance in terms of speed and accuracy. 

Amongst the detectors, FAST, AGAST, and ORB 

detected more keypoints on average and were 

significantly faster. This can be due to the fact that both 

AGAST and ORB detectors are variants of FAST. 

However, in terms of repeatability rate, KAZE and 

AKAZE showed to perform better under photometric 

changes, while ORB was more robust under geometric 

transformations. In general, descriptors performed better 

when paired with the KAZE and AKAZE detectors. As 

for the descriptors, BRIEF, LUCID, and ORB were faster 

than other methods while AKAZE consistently produced 

better results at matching keypoints 
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