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Abstract—Human pose estimation is an active research topic 

since for decades, and it has immediate applications in 

various tasks such as action understanding. Although 

accurate pose estimation is an important requirement, joint 

occlusion and various gestures of a person often result in 

deviated pose predictions. In this paper, we aim to correct 

such outliers included in pose estimation results. We 

propose a method to generate training data which is 

effective for learning models for outlier correction. 

 

Index Terms—human pose estimation, machine learning, 

outlier correction 
 

I.  INTRODUCTION 

Human pose estimation is a fundamental yet 

challenging problem in computer vision. Recently, 

remarkable advances have been achieved in human pose 

estimation because of the appearance of depth sensors 

like Kinect, and the powerful Deep Convolutional Neural 

Networks (DCNN) [1], [2]. Understanding of a person's 

limb articulation location is helpful for high-level vision 

tasks like action recognition, and also serves as a 

fundamental tool in fields such as human-computer 

interaction applications [3], [4]. 

  

Figure 1. Pose estimation results which seem to include outliers. 

Although getting accurate joint locations is crucial in 

human pose estimation, it remains challenging due to the 

highly complex joint configuration, partial or even 

complete joint occlusion, and various gestures of a person. 

For body parts with heavy occlusion or various posture 

change, DCNN may have difficulty to locate each body 

part correctly. For example, some pose estimation results 

including outliers are shown in Fig. 1. They are captured 
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by Kinect v2, which predicts human pose with 

implausible configuration. Since accurate pose estimation 

is an important requirement for activity recognition with 

diverse applications such as human-computer interaction, 

correcting such outliers is necessary. 

There already exists a wide variety of methods trying 

to improve pose inference strategy [5], [6]. Although 

these approaches achieved significant advancement in 

human pose estimation, they often predict human poses 

including outliers. Here, an outlier is an observation of 

joint coordinates that deviate much from a real one. In 

this paper, we aim to correct outliers included in pose 

estimation results. The purpose of this research is not to 

improve pose estimation accuracy like the study [5], [6], 

but to correct outliers of estimated skeleton. Therefore, 

outlier correction that we present can be used in 

conjunction with any existing methods for pose 

estimation. 

The simplest way to correct outliers would be, if the 

input is a video sequence, to correct outliers of a frame 

using its front and rear frame elements. However, it 

depends on time-series data, and there is no guarantee 

that the pose estimation results of front and rear frames 

are correct. Thus, we take an approach to extract skeletal 

features from pose estimation results, and correct outliers 

based on them.  

Since humans perform various poses, it is difficult to 

select features of skeletons manually which is effective 

for outlier correction. We should rely on a machine 

learning method that can automatically extract skeletal 

features. To the best of our knowledge there have been no 

reports which aim at outlier correction in human pose 

estimation, and there is no training data for this task. 

If there are any training data, outliers in pose 

estimation results can be corrected with existing machine 

learning methods. We propose a method to generate 

training data for outlier correction. The probability 

density for the positions of each joint is estimated based 

on observed skeletal data, and by updating the position of 

each joint such that its probability density gets lower, 

skeletal data including plausible outliers is generated. We 

train the model for outlier correction using generated 

skeletal data, and correct outliers by taking skeletal data 

as input to the learned model. Note that the target to 

correct is an implausible skeleton which is rarely 

observed. Generated training data is helpful to modify 

such skeleton to a plausible one with high observation 

probability. 
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To evaluate the effectiveness of the training data 

generated by our proposed method, we train two models 

for outlier correction, and evaluate the correction 

accuracy of each model quantitively. Your goal is to 

simulate the usual appearance of papers in the. We are 

requesting that you follow these guidelines as closely as 

possible. 

II.  RELATED WORK 

Multi-person pose estimation methods can be grouped 

into two types: top-down and bottom-up approaches. 

Top-down approaches [7], [8] employ a person detector 

and then perform single -person estimation for each 

detected person. Bottom-up methods [1], [9] first predict 

all body joints and then group them into full poses of 

different people. Although great progress has been made 

by these methods, there still exist a lot of challenging 

cases, such as occluded joints and crowded background, 

which cannot be well localized. In order to deal with such 

cases, many researches have been made to correct pose 

estimation results, in addition to ordinary pose estimation. 

Most methods perform pose estimation and refinement 

in one go [2], [5], [10], [11]. Carreria et al. [10] proposed 

a self-correcting model that progressively changes an 

initial pose estimation by feeding back error predictions. 

Chen et al. [5] proposed a cascaded pyramid network, 

which integrates global pyramid network and pyramid 

refined network based on online hard keypoint mining. 

Likewise, Newell et al. [2] and Weii it et al. [11] utilized 

an end-to-end trainable multi-stage architecture-based 

network. Each stage tries to refine the pose estimation 

results. All of these methods combine pose estimation 

and refinement into a single model, and each refinement 

module is dependent on estimation. Therefore, the 

refinement modules have different structures, and they 

are not guaranteed to work successfully when they are 

combined with other estimation methods. On the other 

hand, we separate pose estimation and refinement into 

two parts, and focus only on refinement. Our pose 

refinement approach is independent of pose estimation, 

and therefore it is applied to any pose estimation method. 

Note that what we present is not a kind of pose estimation 

but pose refinement. 

There already exist some researches which aim at pose 

refinement [12]-[14]. Fieraru et al. [12] synthesized the 

common failure cases of human pose estimators, and 

proposed a network to refine the pose estimation results 

using synthesized skeletons. Moon et al. [13] pointed out 

that the data augmentation presented by Fieraru et al. [12] 

is not based on actual error statistics, and proposed a 

method to generate training data taking statistical error 

distribution into account. Besides, they designed a coarse-

to-fine estimation pipeline which achieves better result 

than conventional multi-stage architecture-based 

refinement methods. These approaches [12], [13] are the 

post-processing step applied to pose estimation results, 

and work on top of any human pose estimation method 

like our approach. However, they require the ground truth 

of skeletal data and true/false labels when generating 

training data for error correction. They are hard to be 

applied to the scenes where the ground truth and 

true/false labels of skeletal data are not prepared. In 

contrast, our proposed approach generates training data 

for outlier correction using only pose estimation results. 

Since it doesn’t require any labels and ground truth, it can 

be easily used in real-world scenes. Wan et al. [14] 

proposed a method that can be applied to any 3D pose 

estimation approach, and contrary to other methods [12], 

[13], it doesn’t need true/false labels of skeletal data. 

However, the ground truth of 3D skeletal data is essential 

in the training of refinement module. It is also hard to be 

applied when there is not the ground truth of 3D skeletal 

data. 

III. GENERATION OF SKELETAL DATA INCLUDING 

OUTLIERS 

We introduce the composition of training data for 

outlier correction. Then we present our approach to 

generate training data, discussing the requirements of 

outliers included in skeletal data. 

It is possible to train the model for outlier correction 

with training data composed of the pairs of skeletal data 

including outliers and its ground truth. In the proposed 

method, we regard skeletal data z acquired by an existing 

method as ground truth, and generate skeletal data �̃� 

including outliers from z. 

Generating outliers doesn’t mean the joint coordinates 

of skeletal data have only to be changed randomly. This 

method does not take skeletal distribution into account, 

and the resulting outliers do not imitate outliers included 

in pose estimation results. It seems that using plausible 

skeletal data as training data leads to more accurate 

correction of pose estimation results than using skeletal 

data generated randomly. 

Algorithm 1 shows a procedure to generate skeletal 

data by our proposed method. There are two requirements 

to satisfy in generating skeletons with outliers: 

 Observing condition 

A skeleton consists of joints which can actually be 

observed. 

 Outlier condition 

Some joints locate the position where they are hardly 

observed. 

The proposed method generates skeletons satisfying 

both the above observing and outlier condition, which can 

be regarded as outliers. 
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To satisfy such requirements, the frequency of 

observing joints on each coordinate should be modeled. 

We prepare a dataset {𝒛′} to find characteristics of each 

joint coordinate, and calculate the observing frequency of 

each joint thereof. In the proposed method, at first, we 

estimate the probability density of N joints respectively 

using kernel density estimation (KDE). We can estimate 

the probability density on k-th joint position 𝒑𝒌 =
(𝑝1

𝑘, … , 𝑝𝑑
𝑘) as: 

 

    𝐾𝐷𝐸(𝒑𝒌) =
1

𝑛𝑏1⋯𝑏𝑑
∑ ∏ 𝐾(

𝑝𝑗
𝑘−𝑝𝑖𝑗

′𝑘

𝑏𝑗
)𝑑

𝑗=1
𝑛
𝑖=1          (1) 

 

where d is the dimension of joint coordinates, 𝒑𝒊
′𝒌 =

(𝑝𝑖1
′𝑘 , … , 𝑝𝑖𝑑

′𝑘) is the i-th sample included in 𝒛′ , n is the 

number of observations of the sample, 𝐾(∙) is the kernel 

function, and 𝑏1 ⋯ 𝑏𝑛  are the bandwidth. Based on the 

estimated probability density, the gradient of probability 

density is calculated by central difference approximation. 

By using an optimization method like Adam [15] with 

the estimated gradients, joint coordinates of skeletal data 

can be iteratively updated such that its probability density 

gets lower. Since the updated coordinates are the joint 

coordinates with low observation probability, the 

resulting data can be seen as the skeletal data including 

plausible outliers. 

Fig. 2 shows the result of applying the proposed 

method to joints. We can see that they are shifted to the 

region where the probability density is low. Fig. 3 shows 

the example of skeletal data generated by the proposed 

method. By using the proposed method, the position of 

each joint is updated to the position not with no prospect 

of being observed ( 𝐾𝐷𝐸(𝒑 )>0), but with lower 

probability density, which enables us to obtain skeletal 

data satisfying observing and outlier condition in this 

paper. 

Models can learn the mapping �̃� → 𝒛  using �̃� 

generated by the proposed method. The learned models 

output the skeletal data, with outliers being corrected. 

           
         (a)                                            (b) 

Figure 2. Examples of updating joint location by the proposed method. 

(a) The distribution of observation points of wrist joint (red). Around 
the center, joints are densely observed and the probability density is 

high. The area far from the center has low probability density, since 

joints are sparsely observed in that area. (b) The process of updating the 

positions of wrist joints. From the positions where they are observed 

(red), they are iteratively shifted to the positions with lower probability 

density (Magenta). 

            
   (a) 

                 
   (b) 

Figure 3. (a) Examples of skeletal data 𝒛 as ground truth. (b) Examples 

of skeletal data �̃� obtained by the proposed method. 

IV. EXPERIMENT 

We don’t compare outlier correction with other pose 

refinement methods because the task is different from 

others. Existing methods [12]-[14] assume that the 

ground truth and true/false labels of skeletal data are 

prepared when training the model to correct pose 

estimation. By contrast, outlier correction requires neither 

ground truth nor true/false labels. It can train the model 

with only pose estimation results. It's not fair to compare 

methods whose assumptions are different by the same 

evaluation indices. In the experiment, we compare the 

training data generated by the proposed method with 

existing training data for denoising. 

To evaluate the effectiveness of the training data 

generated by the proposed method, we adopt the training 

data for Denoising Autoencoder (DAE) proposed by 

Vincent [16] as baseline. DAE is trained to reconstruct a 

clean input from partially destroyed one which is added 

with random noises following gaussian or uniform 

distribution. It is known that the learned DAE removes 

the noises included in input data, in the process of 

encoding the input into latent representation and decoding 

it. 

In order to compare the effects of each training data on 

outlier correction, we performed the following 

experiments. In addition to the skeletal data generated by 

our proposed method (plausible), we prepared the 

skeletal data added with random values following 

uniform distribution (uniform) and gaussian distribution 

(gaussian), and compared the results of correcting 

outliers using each data as training data. In the 

experiment, we selected training and test data from any 

one of above three types of skeletal data, and measured 

the error 𝑑(𝑓(�̃�), 𝒛) between the ground truth z and the 

output of the learned model 𝑓(�̃�). The error 𝑑(𝑓(�̃�), 𝒛) is 

represented by a sum of all L2 distance between 

corresponding joints of two skeletons. A small error 
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means that the model corrects outliers in test data with a 

high precision. The experiment was performed with every 

possible combinations of skeletal data as training and test 

data. 

From this evaluation, we can see which training data is 

more effective for outlier correction: the data used for 

denoising or the data generated by the proposed method. 

In addition to DAE, we also experimented with the model 

based on Graph Convolutional Network (GCN) [17] to 

demonstrate that the proposed method is effective with 

any model. 

A. Experimental Setting 

The skeletal data are estimated by Kinect v2, and 

composed of three-dimensional coordinates of 25 joints 

(d = 3, N = 25). Before applying KDE, n = 1000 

skeletons used for KDE are translated and rotated 

following the normalization preprocessing step presented 

by Shahroudy et al. [18] to normalize the position, 

direction, and size of each skeleton. In KDE, we used 

Gaussian kernel and allocated bandwidth based on 

Silverman's rule of thumb [19]. We employed Adam 

optimizer [15] for updating joint coordinates, and set the 

update frequency 𝑇𝑗  to a random integer between 1 and 

100. For training and test data, we randomly selected 

10000 and 2000 skeletal data from NTU RGB-D 

respectively, and generated skeletal data �̃�  including 

outliers from them. The noises used as baseline (uniform, 

gaussian) were generated such that the mean of values to 

add to each joint coordinate is equal to zero, and the 

variance is equal to that of outliers generated by the 

proposed method. 

We chose some hyperparameters to tune: the learning 

rate, the batch size for both DAE and GCN, the number 

of hidden layer and nodes in each layer for DAE, and the 

number of convolutional layers and channels in each 

layer for GCN. They were optimized by Optuna [20]. In 

the experiment, we used the models with the above 

hyperparameters optimized on condition that train and 

test data consist of plausible data. 

B. Results 

Table I shows the result of outlier correction with the 

use of DAE and GCN. The error 𝑑(𝑓(�̃�), 𝒛) of the model 

trained with uniform and gaussian represents the 

correction results by the normal denoising network, and 

the rest values correspond to the results of outlier 

correction. We also set uniform, gaussian, plausible as 

test data. Among them, the results using plausible as test 

data are the most crucial, since plausible includes 

plausible outliers. These values should be compared. 

In the case of using DAE, changing the noise (uniform, 

gaussian) used for learning did not make a huge 

difference to the correction accuracy of test data. When 

test data are plausible data, the model learned with 

plausible data corrected test data with the highest 

accuracy among all possible training data. This is 

possibly attributed to the fact that training and test data 

are the skeletal data following the same distribution. 

However, in this case, the error 𝑑(𝑓(�̃�), 𝒛 ) which 

represents the degree of correcting test data was 2.844, 

whereas a normal DAE trained and tested on noises had 

the error of more than 4. This indicates that the learning 

with plausible data is more effective to correct outliers of 

skeletal data than denoising by a normal DAE. Similar 

results were obtained from the experiment using GCN as 

the model. 

Fig. 4 (I) (II) shows input-output examples of DAE 

when test data are plausible data. According to (b), we 

found that the DAE trained with plausible data output the 

skeleton which is the most similar to the ground truth 𝒛 

compared to the one trained with other noises.  

TABLE I.  CORRECTION PERFORMANCE 𝑑(𝑓(�̃�), 𝒛)) OF EACH MODEL 

(a) DAE 

  

test data 

uniform gaussian plausible 

training data 

uniform 4.239 4.179 5.169 

gaussian 4.253 4.189 5.185 

plausible 5.042 5.042 2.844 

 
(b) GCN 

  

test data 

uniform gaussian plausible 

training data 

uniform 4.416 4.776 4.077 

gaussian 4.419 4.376 4.329 

plausible 5.128 5.331 2.693 

 

 

Figure 4. (a) Input: Skeletal data �̃� including outliers. (b) Output: From 

left to right, skeletal data 𝑓(�̃�) corrected by DAE trained with (b-1) 
uniform, (b-2) gaussian, and (b-3) plausible data respectively. (c) 

Skeletal data 𝒛 as ground truth. (d) Corresponding RGB image. 

V.   CONCLUSION 

In this paper, we aim to correct outliers in pose 

estimation results and proposed a method to generate 

training data which is effective for machine learning of 

outlier correction. The experimental results show that the 

training data generated by the proposed method is more 

effective for correcting skeletal data with low observation 

probability than existing training data for denoising. In 

future work, we will apply outlier correction to the 

skeletal data captured in real environments, and evaluate 

the effectiveness of outlier correction qualitatively.  
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