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Abstract—Understanding and monitoring changes of the 

treated vessel after Endovascular aneurysm repair is crucial 

for the prediction of complications and risk assessment to 

facilitate timely intervention. Due to the complexity of the 

stent-graft wire frame enveloping the aortic blood lumen 

and the inherent artifacts caused by the metal wire, 

segmenting the structures required for simulation and 

further analysis is a non-trivial task. In this paper we 

present a fully automatic segmentation architecture 

combining two 3D U-Nets in a novel patching approach 

leveraging knowledge of the target anatomy. We evaluated 

our approach on a real world clinical dataset against a 

competitive baseline, yielding results that surpass the 

baseline in both accuracy and computation time. On our 

data we achieve a median Dice similarity coefficient of 0.97 

for the blood lumen and 0.88 for the stent-graft 

segmentation. We point out two common flaws in current 

segmentation models: undersampling and indiscriminate 

patching. By addressing them appropriately, our approach 

gains an advantage that may benefit a multitude of 

segmentation tasks.  

 

Index Terms—segmentation, patch-based, centerline, U-net, 

stent graft, abdominal aneurysm 
  

I. INTRODUCTION 

Endovascular Aneurysm Repair (EVAR) was chosen 

for 65% of surgical interventions of Abdominal Aortic 

Aneurysms (AAA) between 2010 and 2013 [1], and has 

therefore found its place as a minimally-invasive 

alternative to open surgery for suited patients. EVAR 

greatly reduces the intraoperative stress on patients and 

shortens the period of convalescence. However, the 

procedure also entails a high reintervention rate of 20% 

[2], rendering postoperative monitoring indispensable. In 

an endeavour to improve postoperative risk assessment 

by predicting complications, we plan to automatically 

analyse blood-flow simulations based on segmentations 

of the treated abdominal aorta and stent-graft prosthesis 

(i.e., the blood lumen and wire frame). The main obstacle 

in streamlining and deploying such an analysis to clinical 

practice is the dependence on said segmentations.  
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Computed Tomography Angiography (CTA) is 

acquired within the standard clinical monitoring 

procedure of AAA patients [3]. A practically viable 

workflow must therefore rely on this imaging modality 

for the segmentations. Creating these segmentations 

semi-automatically is, however, a time-consuming task 

due to the complex structure of the stent-graft wire frame 

and the imaging artifacts it introduces. Segmenting the 

target structures in one scan takes a trained expert 

between 25 and 40 minutes. In this paper, we present a 

method to automatically create combined segmentations 

of both the blood lumen and the stent-graft wire frame. 

A. Related Work 

There are several publications on the segmentation of 

the abdominal aorta blood lumen and stent-graft wire 

frame, respectively, and some of them describe fully 

automated methods. We are, however, not aware of any 

approach that encloses both segmentation tasks. As 

generalized approaches for blood lumen segmentation 

struggle due to the unique challenges introduced by the 

aneurysm thrombus and stent-graft wire frame, 

specialized methods for segmentation of AAAs and aortic 

dissections are better suited for the first segmentation task. 

While purely intensity-based methods fail due to 

indistinct boundaries and strong imaging artifacts, these 

methods often rely on graph-based techniques or 

deformable models.  

Graph-based techniques [4]-[7] utilize shape 

constraints to prevent leakage into neighbouring 

structures. The methods rely on a rough blood lumen 

segmentation (or centerline information [5]) that is 

acquired in a semi-automatic manner (e.g., using a graph-

cut technique [6]) and subsequently refined. Approaches 

based on deformable models [8], [9] try to automatically 

fit contours to the target structures, but depend on seed 

points for the determination of the initial contour. While 

Kovács et al. [8] describe an automatic calculation of 

these seed points, their method suffers from a general 

lack in accuracy, especially for postoperative scans. More 

exotic approaches make use of radial models [10], level-

set methods [11] and tracking [12], again depending on 

manual selection of seed points for initialization. Of the 

above methods, [6], [8] and [9] are the only ones tested 
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with postoperative scans. Another recurring issue is the 

dependence on highly optimized parameters based on 

undisclosed datasets.  

As for learning-based methods, Maiora et al. [13] 

employ a random forest classifier to segment lumen, 

thrombus and bone simultaneously in an active learning 

approach. While it reports high accuracy and offers a 

comparison with a set of other classifiers, no evaluation 

against ground truth segmentations is provided. López-

Linares et al. [14] achieve a mean Dice Similarity 

Coefficient (DSC) score of 0.80 and 0.88, respectively, 

using a 2D and 3D CNN for the segmentation of the 

thrombus volume in postoperative scans. Zheng et al. [15] 

yield a DSC of 0.82 with a U-Net for thrombus 

segmentation given a dataset of pre-operative scans. The 

model used by Li et al. [16] for the segmentation of 

Type-B aortic dissection is based on the 3D U-Net and 

achieves a DSC of 0.92 for the aorta. 

Regarding the segmentation of stent-graft wire frames, 

the literature is much more limited. Klein et al. [17] 

present a graph-based method to segment the stent-graft 

wire frame, which focuses, however, on the known 

topology of two stent-types and disregards the blood 

lumen altogether. As the structures of blood lumen and 

stent-graft are highly entangled, segmenting them 

separately would introduce another challenge when trying 

to consistently merge them. Instead, in this work we 

focus on the 3D U-Net, which is capable of segmenting 

multiple structures simultaneously and has performed 

well in similar segmentation tasks. 

As of today, the most crucial limitation of 3D U-Nets 

remain their hardware requirements, calling for a trade-

off between the extent of the region of interest and 

segmentation accuracy. Our segmentation task challenges 

both aspects as it requires the extraction of large 

abdominal structures (the aortic blood lumen) as well as 

minute details (the stent-graft wire frame with a diameter 

as small as 0.4mm [18]). This dilemma is generally 

approached by using patch-based models which in turn 

are prone to segmentation artifacts at the patch borders 

and incapable of capturing relations beyond the scale of 

the patches. There are methods to reduce these issues 

(such as overlapping patches, test-time augmentation and 

multi-scale architectures; all used by Isensee et al. [19]), 

however, these methods also exponentially increase the 

computational costs and fail to address the underlying 

problem of ill-placed patches. Another often neglected 

issue of U-Nets is the prerequisite of a common spacing 

within the input image data, necessitating intermediate 

resampling that may significantly distort the information 

if not considering the Nyquist-Shannon sampling theorem. 

Nevertheless, a common approach is to resample to the 

median voxel spacing within the training dataset (see 

Isensee et al. [19]).  

In this paper, we propose an approach using a 

combination of two 3D U-Nets to reliably and efficiently 

create high-resolution segmentations of the blood lumen 

and stent-graft wire frame. Specifically, we present an 

architecture using a novel patching method to overcome 

some of the limitations of U-Nets. We validated both our 

approach and the state of the art segmentation framework 

nnU-Net [19] based on our dataset of 76 abdominal CTA 

scans and manual segmentations. Our approach yielded 

significantly better results for the segmentation of aortic 

blood lumen and stent-graft wire frame than the nnU-Net.  

II. THE DATASET 

A dataset consisting of 76 postoperative scans of 36 

AAA patients (4 female, 31 male, mean age of 71 years) 

treated with EVAR was provided by the Kepler 

University Hospital Linz. Five different stent-types are 

present in the dataset: Anaconda, Gore EXCLUDER, 

Medtronic ENDURANT, Medtronic ENDURANT II and 

Ovation TRIVASCULAR. The scans originate from 

Siemens Somatom hardware (Force, Sensation Cardiac 

64 and Sensation Open) and vary in size and voxel 

spacing as outlined in Table I.  

TABLE I.  STATISTICS OF SPACING, RESOLUTION AND SIZE OVER THE 

76 SCANS IN THE DATASET. F: FRONTAL, S: SAGITTAL, L: 
LONGITUDINAL 

 Spacing (mm) Resolution (voxel) Size (mm) 

 F/S L F/S L F/S L 

Mean 0.677 1.361 512 411.39 346.49 508.59 

Median 0.695 1.500 512 341.50 356.00 473.25 

Minimum 0.404 0.800 512 155.00 207.00 390.00 

Maximum 0.977 3.000 512 873.00 500.00 732.00 

 

The segmentations have been created semi-

automatically by trained experts using the protocol 

outlined in Fig. 1: The Active Contour Segmentation [20] 

featured in the software ITK-Snap 3.8.0 [21] was used to 

create the initial blood lumen segmentations (a) from 

below the heart to the second bifurcation of the iliac 

arteries. The stent-graft wire frame was then segmented 

(b) by thresholding a region of interest around the blood 

lumen segmentation. The final segmentations (c) were 

then obtained by manually correcting the segmentation 

labels using ITK-Snap. To the bottom of Fig. 1 are 

examples of the manual segmentations in our dataset 

featuring different stent-types like Anaconda (d), 

Medtronic Endurant (e) and Medtronic Endurant II (f).  

   
a b c 

   
d e f 

Figure 1. Steps for obtaining the ground truth segmentations (a, b, c; 
see text) and exemplary segmentations of our dataset (d, e, f). 
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Figure 2. Overview of the method’s workflow. 

We conducted a 5-fold cross-validation for both our 

approach and the nnU-Net, using the same fold 

configuration. For some patients, several postoperative 

scans exist, which has been accounted for via a grouping 

criterion in our fold-stratification to avoid a configuration 

where scans of the same patient occur in both the training 

and the validation set. 

III. METHOD 

The general architecture of our 3D U-Net models 

closely resembles the one used by Isensee et al. for the 

BRATS 2017 challenge [22]. Distinctive features of our 

approach are the combination of two models and a novel 

patching method in a process that is outlined in Fig. 2.  

A. Definitions 

Let 𝑋 be the set of CTA scans and 𝑇 the corresponding 

ground truth segmentations in our dataset: Our method 

can be described as a function 𝑓: 𝑋 → 𝑌, where 𝑋 is the 

set of input scans and 𝑌 the set of resulting segmentations. 

We use two models, ℳlow and ℳhigh, that are trained on 

preprocessed data 𝑋′  and 𝑇′  (see the following section) 

and can be used for inference in the form ℳ:𝑋′ → 𝑌. 

ℳlow  is trained to segment the blood lumen using 

instances of the large-area low resolution scans 𝑋′low and 

truth 𝑇′low . The resulting low-resolution blood lumen 

masks 𝑌low are used to extract the centerline graphs 𝐺CL. 

ℳhigh  is trained to segment blood lumen and stent-

graft in patches extracted from the high resolution scans 

𝑋′high and truth 𝑇′high. Patches are extracted at positions 

along the entire span of the respective centerline graph 

𝑔 ∈ 𝐺CL  and finally merged into a high-resolution 

segmentation 𝑦 ∈ 𝑌.  

B. Data Preprocessing 

With the CTA scans of our dataset varying 

considerably in physical extent and voxel spacing as 

outlined in Table I, the first step is to resample and crop 

the scans and ground truth for each segmentation model.  

For ℳlow  a voxel spacing of 1×1×3mm (frontal, 

sagittal, longitudinal) proved sufficient to capture enough 

detail in the resulting blood lumen segmentation to 

facilitate the extraction of centerline information. We 

then crop the scans to a large Volume of Interest (VOI) of 

192×192×128 voxels (i.e., 192×192×384mm).  

For ℳhigh  we do not use the optimal voxel spacing 

(according to the Nyquist rate, i.e., half of the minimum 

within the dataset: 0.202×0.202×0.4mm) but rather a 

more feasible resolution of 0.35×0.35×0.75mm, which is 

considerably higher than the median voxel spacing of 

0.695×0.695×1.5mm. We then crop the images to VOIs 

of 580×580×512 voxels (i.e., 203×203×384mm). 

We use third order B-spline interpolation to resample 

each scan in the set of scan volumes 𝑋, clip the intensity 

values to the interval between the 0.5th and 99.5th 

percentile to remove outliers and further normalize by 

subtracting the mean and dividing through the standard 

deviation of the clipped intensity values. These steps are 

done individually for each segmentation model over the 

set of all scans to yield the preprocessed sets of scans 

𝑋′low  and 𝑋′high . The ground truth segmentations 𝑇  are 

equally resampled using the label-linear interpolation 

suggested by Schaerer et al. [23] to yield the 

preprocessed sets 𝑇′low and 𝑇′high. 

C. Model Architecture 

Based on David G. Ellis’ implementation [24] of the 

Isensee et al. model [22], we adjusted some configurable 

parameters such as the model-depth (number of layers), 

number of segmentation levels (used to create secondary 

segmentation maps for deep supervision) and base-filters 

(number of output filters for the first convolution kernel). 

The parameter changes are based on a grid-search for 

each model.  

We configured ℳlow  with 3 segmentation levels, a 

model-depth of 5 and base-filters set to 8. The input size 

was set to the full scan size of 192×192×128 (i.e., 

203×203×384mm), and the target label is aorta.  

ℳhigh  was configured with 5 segmentation levels, a 

model-depth of 7 and base-filters set to 8. The patch size 

was set to 256×256×192 (i.e., 90×90×144mm), and the 

target labels are aorta and stent. 

The models each yield a volume where every voxel is 

assigned a set of softmax values corresponding to the 

target labels. The output is processed into a label-map 

volume 𝑦  by assigning the label corresponding to the 

largest softmax value to each voxel or the background 

label if that value is below a threshold of 0.5.  

D. Training Procedure 

We train the models using a weighted multi-class Dice 

loss as used by Isensee et al. [22] computed for the 

respective target labels. The setup consists of an Adam 

optimizer with an initial learning rate 𝜂0 = 5 ⋅ 10−4 , a 

learning rate drop criterion set to 10 epochs with a drop 

factor of 𝜆𝜂 = 0.5 and an early stopping criterion set to 

50 epochs, with the training continuing for 70 to 120 

epochs of 200 training samples per epoch. With ℳlow 

low-res data  

(𝑋′
low

,  𝑇′
low) 

blood-lumen masks 

(𝑌′
𝑙𝑜𝑤) 

centerline graphs  

(𝐺CL) 
high-res patches high-res data 

(𝑋′
high

, 𝑇′
high) 

final segmentations 

(𝑌′
high) 
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being trained on the full scans 𝑋′low  before ℳhigh , the 

resulting segmentations 𝑌low are used to locate the aorta 

centerline for the training of ℳhigh . The largest 

connected region of voxels with the aorta label is masked 

and skeletonized (according to Lee et al. [25]) to extract 

the centerline graph 𝐺CL . The center coordinates of the 

patches extracted from 𝑋′high and used for the training of 

ℳhigh  are retrieved by randomly sampling equally 

distributed positions along the edges of the respective 

centerline graph 𝑔 ∈ 𝐺CL. 

E. Inference 

During inference, instead of sampling random 

coordinates along the centerline graph 𝑔 ∈ 𝐺CL  we 

equally distribute 𝑛 coordinates along all combined edges 

to center the patches at. For our experiments 𝑛 = 20 

patches were sufficient. The softmax outputs for each 

patch are further combined into a volume spanning the 

full extent of the preprocessed scan 𝑥′ ∈ 𝑋′high . The 

softmax values for each target label are interpolated using 

weights from a Gaussian kernel to attenuate values at the 

patch borders. This was done to account for the inherent 

uncertainty at the patch borders. The resulting softmax 

volume is resampled to the original spacing of the 

respective input volume 𝑥 ∈ 𝑋 using a first order B-spline 

interpolation before computing the final label-map 

volume 𝑦 . The resampling step is necessary since we 

compare the results to the original ground truth 𝑇 for our 

evaluation against the nnU-Net. By resampling the 

softmax volume rather than the label-map, fine structures 

like the stent-graft are preserved more accurately. If used 

for mesh reconstruction, one may skip downsampling and 

leverage the high resolution segmentations instead. 

IV. EVALUATION 

We evaluated both our approach and the nnU-Net on 

our dataset in a 5-fold cross-validation. The DSC scores 

were calculated based on the respective label-map output 

and the original ground truth. The results are a median 

DSC (aorta and stent-graft respectively) of 0.969 and 

0.879 for our approach and 0.964 and 0.866 for the nnU-

Net, with our approach yielding slightly better results. 

This is particularly interesting as the nnU-Net uses an 

improved U-Net architecture and additional techniques – 

such as test-time augmentation – compared to our 

relatively simple implementation. Adjusting our 

architecture and adapting techniques used by the nnU-Net 

might further improve the performance of our approach. 

 
nnU-Net ours ours (native) ground truth 

    

    

    

Figure 3. Comparison of meshes created from different segmentations of the same CTA scan. 3DSlicer [26] was used to create the meshes with a 

smoothing factor of either 0 (first two rows) or 0.3 (bottom row). The columns show (from left to right): the results of the nnU-Net, our approach 
resampled to the original voxel-spacing, our approach in the model’s native spacing, and the original ground truth. 
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The main advantage of our method, however, is its 

ability to natively segment at a high resolution, while 

taking up significantly less computation time. In contrast 

to the nnU-Net, which uses the dataset’s median voxel 

spacing of 0.695×0.695×1.5mm, our model segments at 

0.35×0.35× 0.75mmm - increasing the resolution by a 

factor of almost 7. Both experiments were run on the 

same workstation featuring an NVIDIA Titan RTX GPU 

(24 GB VRAM). The resulting segmentations are 

optically clearly distinguishable, with our approach 

yielding clean reconstructions of the stent-graft structure 

whereas the structure is fragmented in the results of the 

nnU-Net as shown in Fig. 3. Yet, by resampling to the 

original voxel spacing information is lost or distorted due 

to resampling, especially at the fine structure of the stent-

graft, making segmentations in our models high native 

resolution the preferable source for mesh reconstruction. 

Other than the segmentation quality, we also compared 

the processing time for both approaches. While nnU-Net 

took 10 minutes and 24 seconds on average (and up to 21 

minutes), our approach performed considerably faster as 

it took 1 minute and 53 seconds on average (and up to 2 

minutes 58 seconds) per volume, which makes a huge 

difference in terms of clinical practicability. Table II 

shows a comprehensive comparison of our approach, 

which features median values for the FNE (False 

Negative Error), FPE (False Positive Error), JSC (Jaccard 

Similarity Coefficient) and AHD (Average Hausdorff 

Distance) as defined in [27] as additional evaluation 

metrics. Fig. 4 to Fig. 8 outline the statistical distribution 

of the results for each metric. We explain the discrepancy 

in Fig. 5 with the fact that our approach, though it is more 

accurate (as apparent from the DSC metric), is picking up 

calcifications along the aorta more frequently. These can 

be located distant from the stent-graft and affect the AHD 

disproportionally. Apart from that, our approach yields 

better or equivalent results, while outperforming the nnU-

Net in terms of processing time. 

TABLE II.  DETAILED EVALUATION OF OUR APPROACH AGAINST THE 

NNU-NET (MEDIAN SCORES FOR EACH METRIC) 

Approach Target DSC FNE FPE JSC AHD 

Ours 

Blood lumen 0.969 0.018 0.040 0.939 0.027 

Stent-Graft 0.879 0.117 0.108 0.783 0.198 

Time 1min 53secs 

nnU-Net 

Blood lumen 0.964 0.025 0.039 0.931 0.043 

Stent-Graft 0.866 0.121 0.141 0.764 0.127 

Time 10min 24secs 

 

Figure 4. Dice Similarity Coefficient (DSC). 

 

Figure 5. Average Hausdorff Distance (AHD). 

 

Figure 6. Jaccard Similarity Coefficient (JSC). 

 

Figure 7. False Negative Error (FNE). 

 

Figure 8. False Positive Error (FPE). 

V. CONCLUSION AND FUTURE WORK 

We have proposed a fully automated segmentation 

architecture combining two 3D U-Nets with a novel 

patching approach in order to segment both the aortic 

blood lumen and the stent-graft wire frame in abdominal 

CTA scans. The resulting meshes can be used for blood-

flow simulations, facilitating a fully automated pipeline 

for post-EVAR risk assessment and prediction of 

complications based on CTA scans.  
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We showed that our approach is able to surpass the 

state of the art segmentation framework nnU-Net, despite 

lacking advanced techniques like test-time augmentation, 

while taking a fraction of the time on the same hardware. 

We attribute this to the high native resolution of our 

segmentation model as well as the strategic placement of 

the patches during training and inference. By choosing a 

small voxel spacing, we can reduce the distortion 

introduced by resampling. Using topological knowledge 

of the target geometry allowed us to drastically reduce the 

amount of patches needed, while still maintaining 

superior segmentation quality. 

Apart from the direct application to other elongated 

structures like various vessels and bones, our method can 

benefit any segmentation task where the target structure 

covers the input volume only partially, as it facilitates 

more efficient training/inference and thus segmentation at 

a higher resolution. For the future, we plan to apply our 

approach to other anatomical structures and evaluate it on 

public datasets.  
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