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Abstract—Single Image Super Resolution (SISR) 

reconstruction aims to recover high-resolution images from 

corresponding Low-Resolution (LR) versions, which is 

essentially an ill-posed inverse problem. In recent years, 

learning-based methods have been frequently exploited to 

tackle this problem, which correspond to promising 

calculation efficiency and performance, especially in image 

sharpening processing based on deep neural networks. 

Learning-based methods can be generally categorized as 

conventional methods and deep learning-based methods. 

This survey aims to review deep learning-based image 

super-resolution methods, including Convolutional Neural 

Networks (CNN) and Generative Adversarial Networks 

(GAN) based on internal network structure. Furthermore, 

this paper describes the applications of single-frame image 

super resolution in various practical fields. In addition, a 

few future research directions of image super resolution 

techniques are identified.  

 

Index Terms—single image super-resolution reconstruction, 

deep learning, convolutional neural networks, generative 

adversarial networks  
  

I. INTRODUCTION 

Image Super Resolution (SR) technology refers to the 

use of existing Low Resolution (LR) imaging systems to 

obtain the original images, and restore corresponding 

High-Resolution (HR) image through related algorithms. 

HR images can provide more detailed information, it has 

been widely applied in various fields [1]-[8]. SR 

technology was firstly proposed by Harris [9], and the 

research achievements of conventional SR algorithms are 

summarized in [10]-[12]. SISR is a special case of SR, 

which can correct image quality degradations caused by 

different conditions such as weather and hardware 

equipment. SISR algorithms [10] include interpolation-

based methods [13]-[15], reconstruction-based methods 

[16]-[18], and learning-based methods [19]-[22]. 
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Specifically, traditional algorithms often use complex 

prior knowledge to constrain the solution, but they are 

extremely complicated to restore the lost details in higher 

magnification factors. In this case, the reconstruction 

effect of these methods can’t meet the practical demands 

[17]. The learning-based methods obtain prior 

information from an external training database by 

learning the mapping relationship between HR and LR 

images, and then reconstruct high resolution images. 

Although this method overcomes the defects of the 

previous ones, they rely too much on external training 

sets and often results in unwanted artifacts in the 

reconstructed HR image [23].  

In recent years, due to the powerful representation 

abilities of Deep Learning (DL) models, the ill-posed 

inverse problem of SISR has been successfully tackled to 

a certain extent. By adopting the end-to-end non-mapping 

relationship between LR and HR images, it can 

adaptively learn the deep features to recover the texture 

details, and achieve more advanced performances. 

Numerous deep learning SISR algorithms such as Super-

Resolution based on Convolutional Neural Network 

(SRCNN) [24], Very Deep Convolutional Networks 

(VDSR) [25], and Deeply Recursive Convolutional 

Network (DRCN) [26] have been proposed since 2014. In 

addition, scholars have also reviewed various deep 

learning based image super resolution algorithms [27]-

[30] to contribute the development of this field. This 

paper summarizes the single-frame deep SISR 

reconstruction algorithms, introduces the most popular 

methods in detail, and lists traditional learning-based 

methods. Besides, this survey focuses on exploring 

different deep network-based SR methods, which divides 

these methods into two categories for analysis and 

comparison, and describes the applications of SISR 

reconstruction in four major areas. 

The remainder of this paper is organized as follows. 

Section II introduces three traditional learning-based 

methods. Section III divides the current mainstream deep 
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SISR methods into two categories, including 

convolutional neural network models and generation 

adversarial network models. Section IV summarizes the 

benchmarking datasets and experimental evaluation 

criteria of SR technology. Section V describes the 

applications of SISR reconstruction in various specific 

fields. Section VI discusses the future research directions 

of SISR.  

II. THE THEORETICAL BACKGROUND OF SISR 

TECHNOLOGY 

A. Imaging Model 

Single-image SR reconstruction refers to the effective 

recovery of high-frequency detail information lost in a 

single LR image, and finally obtaining an HR image. 

Assuming Y is the degraded LR image and X  is the HR 

image, the entire degradation process can be illustrated as 

Fig. 1. The HR image is finally degraded into LR image 

through motion deformation M , blurring B, down-

sampling S, additional noise N and H is the transfer 

function of the imaging process. The degradation model 

is expressed as in (1). 

Y=HX+N, H=MBS                      (1) 

The problem of SR reconstruction is an inverse process 

of reconstructing X from Y. Because detailed information 

has been lost during the image acquisition process from 

HR to LR, the input LR image corresponds to many 

possible HR solutions. To obtain a stable solution, 

various regularization techniques have been proposed and 

introduced into the conventional restore framework. 

B. Learning-Based Methods 

Traditional algorithms include neighbor embedding 

method [31], sparse representation method [32], local 

linear regression method [33], [34]. In 2004, Chang [31] 

proposed a Neighbor Embedding (NE) method. The main 

idea of this method is using a similar local structure to 

reconstruct the HR image block. However, the fixed K 

neighborhood size may cause overfitting or underfitting. 

To tackle this disadvantage, Gao [20] combined sparse 

neighborhood search with clustering histograms of 

oriented gradients-based subsets [35] to reduce 

calculation time and maintain SR quality. Based on 

compressed sensing theory [36], Yang [32] proposed a 

sparse representation method in 2008, which takes the 

sparsity of the image as a prior constraint and combines 

the sparse representation of the LR image block with the 

dictionary
HD to generate HR image details. However, 

this method generates heavy calculation burden when 

solving sparse coding coefficients. Yang [22] proposed a 

coupled dictionary learning method based on LR-HR 

patch feature space, which directly uses the network to 

regress the sparse coefficients and further reduce the 

computation time. In 2013, Timofte [33], [34] proposed 

the Anchored Neighbor Regression (ANR) algorithm, 

which converts 
1L  norm into 

2L  norm to constrain the 

least squares problem, and directly calculates the 

dictionary atoms of the sample neighborhood. 

All three traditional methods obtain LR and HR data 

from external training sets, and they use manifold 

learning and sparse representation to learn the mapping 

relationship between LR-HR image-pairs. Compared with 

interpolation and reconstruction methods, learning-based 

methods enhance the image resolution and image quality 

to a certain degree, and the reconstruction results are 

better with a larger amplification factor. But its training 

process is time-consuming and relies overmuch on the 

similarity between external training sets and the test 

image, which has a poor effect on suppressing aliasing 

artifacts in reconstructed images [23]. Recently, the deep 

learning methods have shown great advantages that the 

deep learning SR model directly establishes the end-to-

end relationship from LR and HR images using multi-

layer neural networks. It broke the bottleneck problem of 

traditional methods with efficient computing efficiency 

and powerful data processing capability, and the quality 

of reconstructed image is improved. By learning a 

nonlinear network structure to represent the input LR data, 

deep learning methods automatically learn the abundance 

of input and output information directly from the data 

[37]. Therefore, the network’s ability of automatic 

learning image features is crucial. 

 

Figure 1. Degradation model of a single image.

III. SISR BASED ON DEEP LEARNING 

In 2006, Hinton [37] proposed the concept of DL, 

which is a new branch of machine learning algorithms. 

DL methods directly learn the mapping relationship 

between LR and HR images through an end-to-end 

training model and have strong automatic learning 

capabilities, which are widely applied in many fields such 

as image classification [38], object recognition [39]. 

Recently, many scholars have conducted extensive 

researches on the SISR problem, which address ill-posed 

problems by using various deep learning-based 

techniques.  

This section introduces SISR techniques based on deep 

learning, which are mainly summarized as the CNN-

based SISR method and GAN-based SISR method. Fig. 2 

illustrates the overall classification of various models. 
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The convolutional neural network-based methods are 

further divided into linear structure, recursive structure, 

dense convolutional structure, multi-scale reconstruction 

network and the networks combined attention mechanism.  

A. Convolutional Neural Network 

1) Linear structure 

The linear structure is achieved by stacking several 

convolutional layers together and sequentially 

transmitting to the output layer through the input layer. 

The network performs different upsampling operations 

for LR images, including predefined upsampling and 

post-upsampling. 

Interpolation pre-processing methods: The predefined 

upsampling uses a linear network to perform upsampling 

on the input LR image. In other words, the size of the 

input LR image is enlarged similarly as the target HR 

image using interpolation pre-processing techniques and 

so on. It is worth noting that the input LR image is of 

arbitrary size or upscaling factor. SRCNN was firstly 

proposed for image SR reconstruction. Fig. 3 shows the 

overall structure of SRCNN, f1, f2, and f3 to respectively 

represent the size of the convolution kernel. The SRCNN 

consists of feature extraction of image blocks, feature 

mapping to high-dimensional feature vectors, and image 

reconstruction. Compared with traditional methods, 

SRCNN combines  Sparse  Coding (SC) with CNN to

enhance the reconstruction speed and performance. 

Because the network is too shallow and convolution 

kernel is small, the reconstruction performance is affected 

and the deep features of image can’t be obtained.  

Compared with the simple structure of SRCNN, Kim 

[25] proposed a deep VDSR network. In the training 

phase, the network uses higher learning rate and residual 

learning [40] to accelerate the network convergence, and 

suppresses the problem of gradient explosion through 

adjustable gradient clipping, to improve the stability of 

network training. The mathematical formula of VDSR is 

shown in (2). Where d represents the number of 

convolutional layers, f denotes the convolution layer 

output function, x and y are input and output of VDSR 

respectively. 

( )( )( )( )Rec d 1 d 2 1y f f f kf x k x− −= +              (2) 

Based on predefined upsampling methods, the input 

LR image uses an interpolated image of any size and 

scale factor, which has noise amplification and blurring 

issues. Some methods have been designed to solve this 

problem. For example, Zhang [41] used feed-forward 

denoising convolutional neural network to improve image 

denoising performance; Zhang [42] proposed to use CNN 

denoiser in a model-based optimization method. 

 

Figure 2. Overall classification of deep learning SISR methods. 

 

Figure 3. SRCNN network structure [24]. 

Post-upsampling processing methods: Although the 

predefined upsampling methods improve the training 

speed of the convolutional network, it increases the 

computational complexity. Researchers proposed sub-

pixel convolutional or deconvolutional layers to solve the 

above shortcomings. The core concept of post-

upsampling processing is to send low-resolution images 

to deep CNN for processing without increasing the 

resolution and to apply upsampling processing at the end 

of the network.  

Ref. [43] proposed fast SR method based on CNN 

(FSRCNN), which introduces a deconvolution layer to 

realize the upsampling process. Shi [44] proposed a high-
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The main idea is replacing the ordinary bicubic 

interpolation method with a zero-filled sub-pixel 

interpolation method. The original LR image is sampled 

as the HR image through the convolutional network, and 

the LR feature map is gathered through the sub-pixel 

convolutional layer at the end of the network. Because 

the feature extraction process of the ESPCN is performed 

in a low-dimensional space, the resolution is improved at 

the sub-pixel layer, this method reduces the amount of 

calculation and space complexity. 

In the predefined upsampling method, SRCNN 

combines SC with CNN to generate HR images. VDSR 

uses a deeper structure (20 layers) to reconstruct better 

quality HR images. In the post-upsampling method, 

FSRCNN and ESPCN methods directly perform feature 

extraction on LR images, and use deconvolution and sub-

pixel convolution for upsampling at the end of the 

network to improve the speed of reconstruction.  

2) Recursive structure 

The recursive network uses recursively connected units 

to deepen the convolutional layer and improve the 

reconstruction quality of SR [26]. While reducing the 

problem of more parameters caused by the deep network, 

the model can obtain better generalization ability [45]. 

Deep recursive network: Although the deep network 

layer can expand the receptive field and exploit more 

context information to describe high-frequency details, it 

also brings problems such as more parameters, difficulty 

in network training and storage. To control the model 

parameters, Kim [26] introduced a Deep Recursive 

Convolutional Network (DRCN). As the number of 

recursive layers increases, numerous parameters remain 

unchanged due to weight sharing. In the training strategy, 

the recursive multi-supervision [46] is used to alleviate 

effects of disappearing/explosive gradients. Also, the 

input LR image and HR image in SR are related and 

share the same information to a certain extent. Long [47] 

uses skip connections to reduce the difficulty of DRCN 

training convergence. The result shows that the 

combination of recursive network and skip connection 

enhances the feature learning ability of the network and is 

superior to SRCNN and VDSR in the reconstruction of 

reference images. The mathematical formula of DRCN is 

expressed in (3). Li [48] proposed a Deep Recursive Up-

down Sampling Network (DRUDN). The main concept is 

performing nonlinear mapping through recursive up-

down sampling blocks and applying upsampling 

processing at the end of the network. The reconstruction 

accuracy of this network is higher than DRRN. Where T 

represents the number of recursions in DRCN, and f 

represents the output function of the convolutional layer, 

x and y are input and output of DRCN respectively. 

( ) ( )( )( )( )T t

t Rec 2 1t 1
y W f f f x x

=
= +             (3) 

Deep recursive residual network: Ref. [45] proposed a 

Deep Recursive Residual Network (DRRN) which is 

similar to DRCN. Without increasing any weight 

parameters, the network is deepened to 52 layers through 

residual recursive block stacking, which reduces the 

computational cost and improves the performance of SR. 

In terms of training strategy, DRRN combines global 

residual learning and multi-path local residual learning to 

reduce the difficulty of deep network training. The 

mathematical formula of DRRN is expressed as (4). 

Where B and R represent the number of remaining 

recursive blocks and the output function of the recursive 

module respectively, x and y are input and output of 

DRRN respectively. Lin [49] used split-concatenate-

residual to reduce parameters, improve image quality and 

save run time in the recursive network.  

( )( )( )( )( )Rec B B 1 1y f R R k R x k x−= +          (4) 

Super-resolution feedback network: Most previous 

algorithms (SRCNN, FSRCNN, etc.) share the 

information of the network layer in a feed-forward 

manner, so that the former layer of the network can’t 

access the useful information of the latter layer, which 

limits the accuracy of reconstruction. Li [50] proposed a 

Super-Resolution Feedback Network (SRFBN) based on 

a recursive structure, which realizes feedback connection 

through RNN, and uses high-resolution information to 

recursively refine low-resolution information. SRFBN 

uses Feedback Block (FB) as the basic module, and 

utilizes the information in multiple sets of up-down 

sampling layers through dense skip connections. It 

effectively handles the feedback information flow and 

function reusing. Besides, when there are multiple types 

of degradation in the LR image, the use of curriculum 

learning strategies can help the model to train well. 

Compared with the linear network, the recursive 

structure has deeper network layer, which can alleviate 

the problem of more training parameters caused by the 

network depth. The above three methods have differences 

in network complexity, SR framework, and key strategies. 

Among them, DRCN mainly achieves the information 

transmission between layers; DRRN combines global and 

local residual information to reduce the difficulty of 

training, and the basic module is the residual unit; 

SRFBN directly extracts features from the original LR 

image, using feedback connection method to learn LR 

information. 

3) Densely connected structure 

Most CNN-based deep SR models can’t fully exploit 

the feature information of the original LR image, which 

leads to relatively poor reconstruction quality. In the 

process of reconstructing HR images, the input LR 

images are expected to obtain more information, which 

requires a large receptive field and hierarchical feature 

information extracted from the network layer [51].  

Memory network: Ref. [52] proposed memory network 

(MenNet) with 80 convolutional layers, which are 

currently the deepest network model. The network 

consists of three parts: Feature extraction network - 

extracts LR images features; A series of memory blocks 

stacked in densely connected structures - retains high 

frequency information; Reconstruction network - 

reconstruct residual images. In the network structure, the 

basic module of MenNet is a Memory Block (MB) (each 
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layer has different weights), which includes a recursive 

unit and a gate unit. The gate unit learns the adaptive 

weights of different memories to achieve long-term 

memory. Compared to MenNet (MemNet-NL) [52] 

without persistent memory, MemNet uses multi-path 

structure dense connection between memory blocks to 

facilitate information transmission on the network and 

strengthen the recovery of medium and high frequency 

signals. 

Super-resolution using dense skip connections: Tong 

presented a SR network using dense skip connections 

(SR-DenseNet) [53]. SR-DenseNet is a 64-layer deep 

network and adapts Dense Blocks (DB) as the basic 

module. This method learns the dense network blocks of 

high-level features, and merges low-level/high-level 

features through dense skip connections. Finally, the HR 

image is reconstructed. Unlike DRCN and DRRN, SR-

DenseNet continuously uses deconvolution layers at the 

end of the network to implement the up-sampling process, 

which improves the efficiency of SR reconstruction. 

Because the dense skip connection method combines the 

information of low-level and high-level features, it 

provides richer details for reconstructing HR images and 

effectively avoids the problem of gradient disappearance. 

Compared with SRCNN, the Peak Signal to Noise Ratio 

(PSNR) value of this method is improved by about 1.0 dB. 

Compared with VDSR, the PSNR value is improved by 

about 0.5 dB. 

Residual dense network: Ref. [54] designed a Residual 

Dense Network (RDN) that combines dense connection 

and residual learning. Compared with the previous 

models (MenNet, DRCN, DRRN), the advantage of RDN 

is to direct extraction of hierarchical features from the 

original LR image, which reduces the computational 

complexity. In addition, the network uses Residual Dense 

Block (RDB) as the basic module to extract rich local 

features, integrates the global hierarchical features of the 

previous layer in the LR space and improves the sharing 

of information at various levels by establishing a 

continuous memory mechanism. the experimental results 

show that the HR image details recovered by the 

algorithm are more refined. 

Inspired by the feedback network, Haris [55] proposed 

an SR Dense Deep Back-Projection Network (D-DBPN). 

Using the iterative up-sampling SR framework, the 

network directly learns the feedback error signal between 

LR and HR images through iterative back-projection. Liu 

[56] proposed a so-called Residual Feature Aggregation 

Network, which effectively utilizes the hierarchical 

features on the residual branches and improves the 

performance of dense networks. 

Among the three SR algorithms based on dense 

connections, the MenNet method exploits multi-path 

dense connected memory blocks to effectively process 

the information flowing between layers. But the original 

LR image needs to be interpolated pre-processing at first; 

SR-DenseNet directly inputs LR images in the network, 

and dense skip connections are used between dense 

blocks; the RDN method uses global feature fusion 

strategy to achieve the transmission of information 

between layers. 

4) Multi-scale reconstruction structure 

Both the post upsampling SR frameworks FSRCNN 

and ESPCN can’t satisfy the requirement of multi-scale 

super-resolution. Therefore, the deep laplacian pyramid 

super-resolution network (LapSRN) proposed by Lai [57]. 

This network can handle multi-scale SR with a large 

magnification factor. The cascaded CNN gradually 

reconstructs high-resolution images and refines them by 

CNNs. This greatly reduces the learning difficulty, 

especially in the case of large factors, the algorithm 

reconstruction effect is better. Secondly, some scholars 

have considered combining traditional methods with deep 

neural networks. For example, Wang [58] proposed a 

Sparse Coding-Based Network (SCN) using the learned 

 

estimate sparse coding. The main advantage of this 

algorithm is all parts of the sparse coding are jointly 

trained through back-propagation, and multiple cascaded 

SCNs achieve SR with any amplification factor. It solves 

the time-consuming reasoning problem in traditional 

sparse coding and increases the model’s flexibility. 

5) Attention mechanism 

The SR model of the attention mechanism can select 

more important activation values, and assign more 

weights, thereby improving the reconstruction effect. Dai 

[60] proposed a Second-Order Attention Network (SAN). 

the network uses second-order channel attention as a 

basic module, which adopts second-order feature 

statistics to adaptively adjust the channel to learn more 

expressing the relationship between features. From the 

perspective of channel attention, Residual Channel 

Attention Networks (RCAN) [61] uses the residual 

channel attention module to enable the network to assign 

different weights to different characteristic channels, 

thereby constructing a very deep network.  

B. Generative Adversarial Network 

In 2014, Goodfellow [62] proposed GAN. GAN is 

composed of generator G and discriminator D. The 

generator and the discriminator compete with each other 

until the discriminator can’t distinguish between real and 

fake sample images. The main purpose of GAN training 

is to output high-probability real samples for D; So that D 

gives high-probability sample data for G. i.e., achieve 

Nash equilibrium [63]. In recent years, many scholars 

attempt to use GAN for image SR reconstruction tasks to 

generate visually high-quality HR images.  

1) Improved method based on SRGAN 

In 2017, Ledig [64] applied GAN to SISR for the first 

time, proposed an image Super Resolution Generative 

Adversarial Network (SRGAN). As shown in Fig. 4, the 

depth generator network is accumulated by residual 

blocks to generate HR images. the discriminator network 

is composed of 8 convolutional layers to optimize the 

pixel loss function is limited in capturing high-frequency 

details, sometimes the PSNR value is high but the quality 

of the reconstructed image is poor [65]. Therefore, 
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SRGAN introduces perceptual loss to make the generated 

image with excellent visual effects [66]. As shown in (5), 

the perceptual loss consists SRL  of two parts: content loss 
SR

XL  and confrontation loss SR

GenL . 

SR SR 3 SR

X Gen
L L 10 L

−
= +                         (5) 

SRGAN can generate explicit image details, but some 

created textures are distorted. Wang [67] improved the 

SRGAN network and proposed a residual block-based 

encoder module, which removed the batch standard layer 

and added a micro-encoder network to extract key feature 

information. Compared with the original SRGAN, the 

improved network improves evaluation performance and 

generates clearer and more natural images. Wang [68] 

proposed the enhanced SRGAN (ESRGAN), which uses 

Residual-in-Residual Dense Block (RRDB) as the basic 

network unit, by removing Batch Normalization (BN) 

layer and merging dense blocks to improve the artifact 

problem in SRGAN to obtain more realistic images.  

2) Attention generation network  

The generation network utilizes the attention 

mechanism model to screen important activation values, 

and assigns more weights to improve the quality of the 

reconstructed image. Wang [69] proposed an SR 

reconstruction based on self-attention GAN (SRAGAN), 

which combines the self-attention mechanism and 

residual module to form a deep generator. The global 

feature information of the self-attention layer is used to 

re-construct the HR image. SRAGAN is superior to 

current algorithms in objective evaluation indicators, 

improves the richness of the HR image, and makes the 

generated image more realistic. Xu [70] proposed the 

Attentional Generative Adversarial Networks (AttnGAN) 

for fine grained text to image synthesis. The model 

consists of two parts including AttnGAN and Deep 

Attentional Multimodal Similarity Model (DAMSM). 

Among them, DAMSM provides additional fine-grained 

image-text matching loss for the training generator, and 

the initial score on the COCO dataset is increased by 

170.25%. It proves the effectiveness of the attention 

mechanism and the performance of the GAN model is 

improved.  

 

Figure 4. SRGAN structure [64]. 

C. Other Networks  

Additionally, researchers have also proposed 

Restricted Boltzmann Machine (RBM) and Deep Belief 

Nets (DBNs). other methods such as RBM proposed by 

Gao [71] regards the sparsity of the image as a prior 

constraint and synthesizes HR images by learning 

dictionary pairs. The hidden layer of RBM is used to 

calculate the sparsity coefficient, and the HR-LR image 

blocks are obtained through the observation layer. 

Experiments show that the algorithm has strong 

robustness to different initialization parameters. 

Nakashika [72] used the SR method based on DBNs 

including the training and recovery phases. In the training 

stage, it uses the two-dimensional discrete cosine 

transform coefficients to train the DBNs so that the 

interpolated low score image is the same size as the 

image block of the training data. In the recovery stage, 

the trained DBN is used to restore the missing high 

frequency components after the image is transformed into 

the frequency domain. 

D. Analysis and Performance Comparison 

Most super-resolution algorithms mainly report PSNR 

and SSIM (structural similarity image measurement) 

values on the benchmark data sets for performance 

evaluation. Table I compares the performance of existing 

SISR methods with the experimental data taken from the 

original literature. Compared with the traditional 

techniques based on low-level features, the SR algorithms 

based on deep learning directly establish an end-to-end 

relationship between the LR and HR images using a 

multi-layer neural network, and achieve better 

reconstruction performance. 

Comparing shallow and deep structures of deep 

learning algorithms, the PSNR and SSIM values of 

certain shallow networks including SRCNN (3 layers), 

FSRCNN (8 layers), and ESPCN (3 layers) are slightly 

lower than other deep networks. The depth of the network 

layer also has significant impact on the reconstruction 

effect. When the network layer number decreases, the 

receptive field will be smaller, and its ability to acquire 

deep features and the reconstruction effect become more 

limited. In the deep network, the implementation of 

residual learning, recursive learning, dense connection 

and attention mechanism strategies plays an important 

role in improving the quality of image super-resolution. 

VDSR (20 layers) uses global residual learning to 

increase the network’s stability. DRCN (20 layers) 

exploits an inter-layer link information sharing structure 

while combining global residuals and recursive learning, 

which can improve network’s performance. SR-DenseNet 

and RDN adapt a dense connection method to better 

integrate the information transmission between network 

layers, and achieves test results with higher ranks.  

Especially, the SAN and RCAN models obtain the best 

reconstruction effect, which fully demonstrates the 

effectiveness of the channel attention mechanism. 
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TABLE  I.  EXPERIMENTAL RESULTS OF DIFFERENT SR ALGORITHMS IN FOUR TEST DATASETS (WITH UPSCALING FACTOR ×2, ×3, ×4) 

Method Scale 
Set5 Set14 BSD100 Urban100 

PSNR/SSIM 

Bicubic 

×2 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 

×3 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 

×4 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 

SRCNN [24] 

×2 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 

×3 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 

×4 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 

FSRCNN [43] 

×2 36.98/0.9556 32.62/0.9087 31.50/0.8904 29.85/0.9009 

×3 33.16/0.9140 29.42/0.8242 28.52/0.7893 26.41/0.8064 

×4 30.70/0.8657 27.59/0.7535 26.96/0.7128 24.60/0.7258 

ESPCN [44] 

×2 - - - - 

×2 33.13/ 29.49/ - - 

×2 30.90/ 27.73/ - - 

VDSR [25] 

×2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 

×3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 

×4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 

DRCN [26] 

×2 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 

×3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 

×4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 

DRRN [45] 

×2 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 

×3 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 

×4 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638 

MemNet [52] 

×2 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 

×3 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 

×4 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 

RDN [54] 

×2 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 

×3 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653 

×4 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 

SR 

DenseNet [53] 

×2 - - - - 

×3 - - - - 

×4 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 

SAN [60] 

×2 38.35/0.9619 34.44/0.9244 32.50/0.9038 33.73/0.9416 

×3 34.89/0.9306 30.77/0.8498 29.38/0.8121 29.29/0.8730 

×4 32.70/0.9013 29.05/0.7921 27.86/0.7457 27.23/0.8169 

RCAN [61] 

×2 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34 0.9384 

×3 34.74/0.9299 30.65/0.8482 29.32/0.8111 29.09/0.8702 

×4 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 

 

IV. PUBLIC DATASETS AND EVALUATION CRITERIA 

A. Public Datasets 

Many image SR datasets are available differing in 

image quantity, quality, resolution, and diversity. The 

current datasets of image super-resolution mainly include 

public datasets and datasets for specific fields. Common 

datasets refer to natural image datasets for academic 

research, and specific datasets refer to datasets for 

specific research objects, such as face image datasets, 

medical image datasets, small objects image datasets, etc. 

Wang [30] reviewed some public available benchmark 

datasets and evaluation indicators. In the past year, many 

researchers have also published SR image datasets 

obtained from real scenes, such as City100 [73], SR-

RAW [74], and RealSR [75]. The SISR data sets 

commonly used by scholars and the specific description 

of its year, number of HR images, image format, and 

other related introductions are shown in Table II. The 

representative sample images of the commonly used 

datasets are shown in Fig. 5. 

B. Evaluation Criteria 

Generally, the performance of the SR algorithm is 

evaluated through the following two aspects: 

Subjective evaluation: This method mainly based on 

the subjective evaluation of image quality by physical 

eyes. But different people have different perceptions of 

the same image. This evaluation method contains many 

subjective factors and individual differences, such 

commonly named as the Mean Opinion of Score (MOS). 

In most cases, objective evaluation is required to compare 

different reconstruction algorithms. 
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Objective evaluation: The input LR image is usually 

obtained by the degraded model of HR image in the SR 

algorithm. The objective evaluation method refers to the 

implementation of calculation methods to decide the 

similarity between the original image and the 

reconstructed HR image. Then, it evaluates the quality of 

the reconstructed image by a certain algorithm. Objective 

evaluation methods are still the current mainstream 

method. Two most frequently applied objective standards 

are PSNR and SSIM. 
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where MSE is the mean square error of X  and Y . X  is 

the original HR image, Y  is the reconstructed HR image, 

and M  and N  represent the image size. The smaller the 

error between X and Y is, the higher the PSNR value will 

be. SSIM compares the similarity between X and Y based 

on the brightness, contrast, and structure. The larger this 

value is, the higher the similarity and the better the 

reconstruction effect will be. The unit of PSNR is the 

decibel (dB), and the value of SSIM ranges between 0-1. 

V. DOMAN-SPECIFIC APPLICATION OF SISR 

The problem of poorly captured image quality brings 

great difficulties to subsequent image processing tasks in 

real life, such as remote sensing [7], target detection [2]. 

In this case, scholars are committed to improve the spatial 

resolution of images through software technology and 

provide promising research directions in the future.  

TABLE  II. COMMON PUBLIC DATASETS 

Name Years Number of pictures Image format Related introduction 

ImageNet [76]  2009 400,000 JPEG ILSVRC detection dataset 

Set14 [77] 2010 14 PNG 
Test data set, images include humans, animals, insects, flowers, 

vegetables, comics, slides, etc. 

Set5 [78] 2012 5 PNG Test data set, images contain child, bird, butterfly, head, woman 

BSD300 [79] 2001 300 JPG 200 images for training, 100 for testing 

Urban100 [80] 2015 100 PNG 100 high-resolution pictures of buildings 

MS-COCO [81] 2014 328,000 JPG Contains 91 easily identifiable object classes 

DIV2K [82] 2017 1000 PNG 

800 training images, 100 verification images and 100 test images, 

including people, handmade products and environment (city, 

village), natural scenery, etc. 

T91 [21] 2010 91 PNG Training set, including cars, flowers, fruits, human faces, etc. 

  

 

Figure 5. Sample images of part of the datasets. 

A. Remote Sensing Image Super-Resolution 

The SISR algorithms for remote sensing images are 

mainly divided into self-learning methods and example 

learning methods. For the self-learning methods, 

Vishnukumar [83] utilized the self-similarity in images, 

and linearly combined the dictionary of HR image blocks 

with the sparse representation coefficients of LR image 

blocks to obtain the final HR image, which doesn’t 

require an external database. For the example-based 

methods, Pan [84] presented the Residual Dense Back 

Projection Network (RDBPN), which uses residual back 

projection block structure to improve the resolution of 

large-scale factor remote sensing images. In the real 

world, LR remote sensing images may not be generated 

by a specific down-sampling method, and hence the 

trained supervised learning algorithm is usually not 

effective in real applications. Wang [85] proposed an 

unsupervised learning network based on cyclic CNN, 

which consists of two cyclic generation networks. the 

unsupervised method has stronger robustness and exhibits 

better results in reconstructing the GaoFen-2 satellite 

image, compared to the supervised algorithms. In present, 

the main challenge for remote sensing image SR is how 

to improve the existing SR method to process numerous 

remote sensing images taken from satellites.  
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B. Face Image Super-Resolution 

Face SR images are captured from surveillance 

cameras or other imaging systems, which provide 

important information for human visual perception and 

criminal investigation cases. Due to the limitation of 

imaging conditions, LR face image loses the structural 

details and hence can’t be accurately restored in many 

cases. Talab [86] proposed a face recognition technique, 

which combines ESPCN and CNN. Specifically, ESPCN 

network converts the LR image into an original HR 

image while CNN network obtains the final HR face 

image. Liu [87] proposed to combine dense connections 

with attention mechanisms to improve the accuracy of 

low-resolution face recognition. Zhong [88] proposed 

high quality face images based on GAN. Specifically, the 

basic unit of the generator is the residual dense block 

without the BN layer, which is combined with the 

inception framework to depict LR images better. The 

combination of deep learning and image SR 

reconstruction can restore important details of the face, 

and the recovery effect is poor in practical applications 

because of the uncertain factors of the imaging systems. 

C. Medical Imaging Super-Resolution 

CT imaging is a clinical diagnosis technique. Due to 

hardware limitations, the resolution of CT images is 

limited and hence doctors can’t determine the smaller 

lesion areas accurately, which would affect the treatment 

of patients. In this case, SR technology is applied to 

improve the spatial resolution of CT images. Jiang [89] 

proposed an improved SRGAN, which enhances image 

quality through adapting dilated convolution in the 

generator module and deleting BN layer in the Residual 

Block (RB). Li [90] studied the method of combining 

compressed sensing and similarity constraints, which uses 

the non-local similarity to search for similar blocks in the 

entire image, and trains different block dictionaries 

according to textures. The algorithm has been tested on 

the Brainweb dataset and has achieved good results, 

which improves the quality of the restored brain MRI 

image. The main challenge of the SR algorithm in 

medical diagnosis is how to ensure the algorithm 

reconstruction with high accuracy, limited errors, and 

strong robustness. 

D. Visual High-Level Features 

SISR reconstruction is a typical low-level feature task, 

and now many researchers use it to improve high-level 

vision. Dai [91] proved that SR algorithm can improve 

different visual tasks, including semantic image 

segmentation, scene recognition, etc. Bai [2] applied the 

GAN model to the detection of small-size faces, and the 

experimental results verified the effectiveness of the 

image SR method in recovering blurred small faces. 

Considering the structural correlation between objects of 

different sizes in the feature space, Li [92] used 

perceptual GAN to reduce the difference between object 

sizes to improve small object detection. 

The SISR algorithms can break through the limitations 

of hardware devices and obtain high-resolution images, 

and is an inexpensive way to improve the resolution of 

image. These methods rely on paired LR-HR training 

data, that is, HR images with the LR counterparts 

obtained via degradation. However, in practical 

applications, such paired LR-HR training data are often 

not available. In addition, the distribution of the real-

world data don’t necessarily be the same as the LR 

images obtained using a specific degradation method [93]. 

Therefore, the SISR model trained under ideal conditions 

may not find satisfied results in practical scenarios. In 

2020, Guo [93] has proved that the dual regression 

network is valid for the SR tasks of mismatched LR-HR 

real-world data. Therefore, how to actively explore and 

improve the relevant network structures in the future to 

meet the unpaired data in real-world becomes an 

important challenge.  

VI. FUTURE RESEARCH TRENDS 

The SISR method only needs a single degraded image 

to restore the HR image, which is actually an ill-posed 

problem. Deep learning methods can adaptively learn 

deep features from numerous training sets. With the rapid 

development of machine learning and artificial 

intelligence, the deep neural network based image SR 

reconstruction methods have made great progress, but 

there still exists some problems to be addressed regarding 

the difficulties of SISR. This section points out some 

future research directions of SR techniques. 

Reasonable evaluation criteria of SISR: In some CNN-

based methods, we find that images with higher PSNR 

and SSIM values are too smooth and have lower 

perceived quality [94]. However, the PSNR and SSIM of 

SRGAN are slightly lower than other algorithms, but the 

visual perception of the reconstructed image is promising. 

In this case, there is no unified evaluation standard for 

actual image super-resolution research [65], we need to 

explore more accurate evaluation criteria.  

Combination of specific tasks and SR framework:  

High-resolution images provide more detailed 

information, and many researchers also used them to 

improve the performance other high-level visual tasks, 

such as face recognition [3], small target detection [2]. It 

is therefore a very promising direction to study how to 

better combine SR techniques with other tasks to deal 

with specific problems.  

Blind SR reconstruction: In a real-life scene, HR 

images are obtained from a series of LR images, but the 

LR images are degraded due to unknown blur, noise and 

down-sampling. Since most of the existing researches use 

fixed degradation model, the degradation method in 

actual application scenarios is unknown. Most existing 

super-resolution algorithms have different perceived 

quality when the degradation type is unknown. Thus, it is 

important to know how to apply SR algorithms to achieve 

better blind super-resolution reconstruction results. In 

2019, CVPR organized the challenge of real image super-

resolution, which promoted the development of this field 

[95]. 

SISR with lightweight architecture: Although the deep 

SISR models can achieve high reconstruction accuracy, 

huge amounts of parameters and heavy computational 
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burdens make it difficult to apply in actual scenarios [54]. 

To solve this problem, we need to simplify the existing 

SISR deep models to remain the performance along with 

less computational load. Therefore, it is necessary to 

further study how to simplify the deep model while speed 

up the SISR process. 

VII. CONCLUSION 

This paper provides an intensive review of the existing 

research outcome of deep learning based SISR techniques, 

and summarizes the state-of-the-art methods into two 

categories including convolutional neural networks and 

generative adversarial networks based on their internal 

structure. Based on the experimental data and the 

characteristics of each network, it can be concluded that 

the accuracy of deep learning based SISR techniques can 

be improved by optimizing the network structure and 

integrating plug-in modules. In addition, this paper 

further describes the applications of deep learning based 

SISR techniques in various practical fields. The 

information and insights provided in this paper will serve 

as useful reference for relevant researchers. 
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