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Abstract—Video quality has become more important due to 

the development of information and communication 

technology. In this study, we propose a spatio-temporal 

super-resolution method using a Generative Adversarial 

Network (GAN) in order to achieve a higher frame rate. In 

recent years, with the development of machine learning 

technology such as convolutional neural networks, clearer 

interpolation frame estimation has been realized. Most of the 

estimation methods use optimization techniques that 

minimize the mean squared reconstruction error, and the 

resulting estimates show a high Peak Signal-to-Noise Ratio 

(PSNR). However, these Mean Squared Error (MSE)-based 

methods often lack the high-frequency components of the 

generated frame, resulting in blurry frames. To address this 

issue, our study adopts GAN that uses spatiotemporal 

convolution instead of traditional spatial convolution. We 

propose a method for video frame rate up-conversion with 

perceptual loss function, which consists of adversarial loss 

and mean squared loss. This adversarial loss produces a more 

natural frame using a discriminator network trained to 

distinguish between the estimated frame and the original 

frame. We verified the effectiveness of the proposed method 

using video data containing complex and large motions such 

as rotational motion and scaling. 

 

Index Terms—video frame interpolation, machine learning, 

neural networks, deep learning, spatio-temporal data 

analysis 

 

I. INTRODUCTION 

In recent years, with the spread of smartphones, 

wearable devices, social networking services, the demand 

for high-quality video images has become extremely large 

[1]. In general, the quality of a video image is determined 

by two factors: frame rate and resolution [2]. For high 

quality video, it is essential to have both high resolution 

and high frame rate, but it is difficult to achieve both due 

to data storage, transmission and limitation in imaging 

device.  

Video frame interpolation has been actively studied in 

the fields of computer vision and video processing [1], [3]. 

Common conventional frame interpolation methods are 

based on motion estimation [4]-[6]. The methods based on 

motion estimation consists of two steps: a motion 

estimation step to obtain the optical flow between input 

frames [7], [8], and a generation step using the optical flow 

to   generate   intermediate   frames.   However,   in   these 

 

methods, the accuracy of the final intermediate frame 

estimation is highly dependent on the accuracy of the 

optical flow, and in general, it is difficult to generate an 

accurate optical flow for videos that contain occlusions, 

large movements, or sudden changes in brightness.  

Recently, with the success of machine learning 

technology, methods that apply deep learning to optical 

flow estimation [9], image style transformation [10], 

image correction [11], [12], and image recognition [13], 

[14] have been proposed. In line with this, Convolutional 

Neural Network (CNN) based methods for frame 

interpolation have been proposed [15], [16]. These 

methods generate an interpolated frame by extracting 

spatial features from the input frames using a two-

dimensional convolutional neural network. Long et al. [15] 

developed a convolutional neural network that interpolates 

a frame between two input frames by generating the 

interpolated frame as an intermediate step for estimating 

the optical flow. A method that considers frame 

interpolation as a local convolution on two input frames 

and uses CNN to learn a spatially adaptive convolutional 

kernel for each pixel has also been proposed, and this 

method can provide high quality results [16]. However, 

predicting a kernel for every pixel is computationally 

expensive and memory consuming, and it cannot deal with 

movements larger than the kernel [16]. On the other hand, 

when the number of input frames is set to two, as it is in 

these methods, the estimation accuracy may decrease for 

video images containing nonlinear motion. Tanaka and 

Omori [17] proposed a frame interpolation method for 

extracting nonlinear motion features using a three-

dimensional convolutional neural network based on 

multiple input frames.  

Recent studies have shown that Generative Adversarial 

Networks (GAN) play an important role in static image 

super-resolution. Ledig et al. [18] proposed a neural 

network model that realizes the 4×  static image super-

resolution while maintaining the sharpness of the image. 

The SRGAN method, a GAN for image Super-Resolution 

(SR), incorporates the structure of a GAN in addition to 

the per-pixel error used in conventional methods. The 

discriminator in the GAN discriminates between the true 

image and the image generated by the generator, and these 

adversarial learnings produce images that are visually 

pleasing to humans. Following the success of Ledig et al. 

[18], GAN-based image super-resolution methods for 

static images have been proposed in order to realize higher 

estimation accuracy [19], [20]. Manuscript received March 17, 2021; revised August 19, 2021.
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In frame interpolation for videos, conventional methods 

use Mean Squared Error (MSE) as the loss function for 

optimization. While MSE-based static image super 

resolution methods generally show high PSNRs, they 

produce excessively smooth frames with low perceptual 

quality for images with complex textures. This is because 

the MSE-based method uses pixel-by-pixel image 

differences in order to find an average solution or an 

average tendency.  

In this study, we propose a new frame-interpolation 

network with four frame inputs using the GAN framework. 

We use as the loss function of the network a loss function 

that is the sum of adversarial loss and Mean Squared Error 

loss (MSE loss). In particular, in order to realize higher 

estimation accuracy, the original framework of the GAN 

with perturbation noise is adapted; we train a frame rate 

up-conversion neural network with a loss function that is 

the sum of MSE-loss and adversarial loss for output frames 

obtained from the input frames rather than perturbation 

noise. 

In order to achieve accurate motion estimation from a 

large number of input frames, a 3D convolutional neural 

network with spatio-temporal filters is used in this study. 

In the proposed method, instead of the conventional 2D 

feature extraction in only the spatial direction, 3D feature 

extraction in the spatio-temporal dimension is used, which 

is considered to enable motion feature extraction with 

higher accuracy.  

The structure of this paper is as follows. In Section II, 
we briefly explain the conventional methods used for 

frame interpolation. In Section III, we describe in detail the 

proposed method, which is based on a spatio-temporal 

super-resolution network using GANs. In Section IV, the 

effectiveness of the proposed method is verified using the 

standard benchmark dataset. The concluding remarks are 

given in Section V. 

II. EXISTING METHOD 

A. Generative Adversarial Networks 

The framework of a GAN is shown in Fig. 1. In a GAN, 

two networks, a generator and a discriminator, are used 

for adversarial learning [21]. A GAN is a kind of 

generative models that can generate non-existent data with 

realistic characteristics or transform data along the features 

of existing data by learning features from the data.  

 

Figure 1. Schematic of a Generative Adversarial Network (GAN). The 

generator generates data from noise z, and the discriminator determines 
whether the data is real or fake. 

GANs are attracting attention as a method of 

unsupervised learning that learns features without being 

given correct data. Due to the flexibility of their 

architecture, they can be used in a wide range of domains 

depending on the idea. Application and theoretical studies 

are rapidly progressing, the effectiveness of GANs has 

been demonstrated in the field of spatial super-resolution, 

and their development is highly anticipated in many fields 

[18].  

The learning process of GANs is expressed by the 

following equation [21]: 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) 

= min
𝐺

max
𝐷

 𝔼𝑥[log 𝐷(𝑥)] + 𝔼𝑧[log(1 − 𝐷(𝐺(𝑧)))]  

(1) 

where 𝐷  denotes the discriminator and 𝐺  denotes the 

generator. Here, 𝑧 represents the input noise and 𝐺(𝑧) is 

the data generated by the generator and 𝑥 is true data. 

The discriminator 𝐷 tries to determine whether the data 

generated by the generator 𝐺 is real or fake, and tries to 

maximize the probability 𝐷(𝑥) of labeling it correctly. On 

the other hand, the generator 𝐺  tries to minimize the 

probability log(1 − 𝐷(𝐺(𝑧)))  that 𝐷  labels 𝐺  as fake in 

order to make 𝐷 recognize that the generated data is real.  

If 𝐷  is correctly labeled, the value of 𝐷(𝑥)  becomes 

large, and log 𝐷(𝑥) also becomes large. Furthermore, if 

the data generated by 𝐺  is found to be false, 𝐷(𝐺(𝑧)) 

becomes small. As a result, log(1 − 𝐷(𝐺(𝑧)))  becomes 

large and 𝐷 becomes dominant.  

On the other hand, if 𝐺 can produce data close to the real 

thing, i.e., if 𝐷 cannot be labeled correctly, then, the value 

of 𝐺(𝑧) becomes large and 𝐷(𝐺(𝑧)) also become large. 

Furthermore, when 𝐷  cannot be labeled correctly, the 

value of 𝐷(𝑥)  becomes smaller and log 𝐷(𝑥)  also 

becomes smaller. As a result, log(1 − 𝐷(𝐺(𝑧))) becomes 

smaller and 𝐺  becomes dominant. By repeating the 

procedure in this method, 𝐷 and 𝐺 are updated alternately 

to deepen the learning process. 

B. Spatio-Temporal Convolution 

In the proposed network, we apply not only 2D 

convolution in the spatial dimension, which is often used 

in conventional frame rate up-conversion methods, but 

also 3D convolution in the spatio-temporal dimension (i.e., 

both spatial and temporal dimensions). 

We define a new convolution to extract spatio-temporal 

features. When the feature map of the n-th layer is xn and 

the spatio-temporal convolution filter is wn, the output hn 

of the convolution is calculated as follows: 

ℎ𝑗,(𝑥,𝑦,𝑧)
𝑛 = ∑ ∑ 𝑤𝑘,𝑗,(𝑣,ℎ,𝑡)

𝑛 𝑥𝑘,(𝑥+𝑣,𝑦+ℎ,𝑧+𝑡)
𝑛

𝑣,ℎ,𝑡𝑘

+ 𝑏𝑗     (2) 

where 𝑥, 𝑦, 𝑧  represents the pixel position of the 

convolution output, and 𝑣, ℎ, 𝑡 represents the position of 

the convolution filter. Note that 𝑣, ℎ represent indices for 

convolution in the spatial dimension (vertical and 

horizontal directions), and 𝑡  represents an index for 

convolution in the temporal dimension. In addition, 𝑘, 𝑗 

represents the feature map number of the 𝑛-th and (𝑛 + 1)-

th layer, and 𝑏𝑗 represents the bias term. 

The main advantage of using 3D spatio-temporal 

convolution is that it can efficiently extract features from 

video data with a 3D extent. It is widely known that 

neighboring pixel values in a static image are likely to be 
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close to each other. In the same way, spatially adjacent 

pixel values in video data are often close to each other. In 

other words, the video data has 3D features in the spatio-

temporal dimension. In the conventional two-dimensional 

convolution method, a two-dimensional feature map is 

generated by convolution in the spatial dimension, and 

temporal features are lost. The proposed method, on the 

other hand, generates a 3D feature map by convolution in 

the spatio-temporal dimension, and thus can effectively 

utilize the spatio-temporal features. 

III. PROPOSED METHOD 

In this section, we propose a frame interpolation method 

using the GAN framework and spatio-temporal 

convolutional neural network. The most important feature 

of our method is that it uses the GAN framework for frame 

interpolation and convolution with spatio-temporal filters. 

The training method for the proposed neural network is 

also described. 

A. Network Architecture 

We show the overall view of the proposed network in 

Fig. 2. As shown in Fig. 2, the network receives observable 

frames {𝐼𝑡−3,  𝐼𝑡−1, 𝐼𝑡+1, 𝐼𝑡+3}  at times 𝑡 − 3, 𝑡 − 1, 𝑡 +
1, 𝑡 + 3 and outputs an interpolated frame at time t. The 

network of the proposed method consists of two networks, 

a generator and a discriminator.  

The generator adopts the ResNet [22] structure and 

consists of three 3D convolutions, nine 2D convolutions 

and an activation function parametric rectified linear unit 

(PReLU) [23] after each convolution layer. It takes as 

input the observable frames 𝐼𝑡
𝑖𝑛 = {𝐼𝑡−3,  𝐼𝑡−1, 𝐼𝑡+1, 𝐼𝑡+3} 

and generates the interpolated frame 𝐼𝑡
𝐺𝐸𝑁 at time t through 

the 3D convolution and activation functions.  

The discriminator uses seven 2D convolutions, a leaky 

rectified linear unit (Leaky ReLU) [24] as the activation 

function, and a sigmoid function applied to the output layer. 

The convolution is performed using the frame 𝐼𝑡
𝐺𝐸𝑁  

generated by the generator as input, and the output layer 

outputs a value indicating whether the input frame 𝐼𝑡
𝐺𝐸𝑁 is 

a correct frame or a fake frame using the sigmoid function. 

The difference between our method and conventional 

methods is that we use both the generator and the 

discriminator to perform adversarial learning. In the 

conventional methods, only the generator is used for 

learning, and the quality of the generated frame depends 

on the loss function of the generator. For the loss function 

of the generated frames, MSE-based methods are mainly 

used [15]-[17]. In the MSE-based method, training 

proceeds so as to minimize the average error in pixel 

values between the generated frame and the correct frame. 

This leads to the problem that the generated frames are 

excessively smooth [18]. To solve this problem, we 

propose a method to generate a frame that is closer to the 

correct image and is superior in terms of quality by adding 

a loss function that discriminates whether the generated 

image is the correct image or a fake image using a 

discriminator. 

 

Figure 2. Overall picture of the proposed network consisting of a generator and a discriminator. The generator consists of three 3D convolutions and 

four residual blocks, and has nine 2D convolutional layers, whereas the discriminator has seven 2D convolutional layers. The generator generates 

interpolated frames 𝐼𝑡
𝐺𝐸𝑁 using the observable input frames  𝐼𝑡

𝑖𝑛  =  {𝐼𝑡−3, 𝐼𝑡−1, 𝐼𝑡+1, 𝐼𝑡+3}. The generated frames 𝐼𝑡
𝐺𝐸𝑁 and true frames 𝐼𝑡

𝑡𝑟𝑢𝑒  are 

provided as inputs to the discriminator to discriminate between true and generated data. 

B. Training 

Here, cost functions for the generator and discriminator 

are formulated. We propose a perceptual loss function for 

video frame rate up-conversion consisting of adversarial 

loss and mean squared loss. This adversarial loss produces 

a more natural frame using a discriminator network trained 

to distinguish between the estimated frame and the original 

frame. 

For the generator, we used the sum of the mean squared 

error 𝑙𝑀𝑆𝐸  between the estimate and the ground-truth and 

the adversarial loss 𝑙𝐺𝐴𝑁 as follows:  

𝑙𝐺𝐸𝑁 = 𝑙𝑀𝑆𝐸 + 𝜆𝑙𝐺𝐴𝑁                       (3) 
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where 𝑙𝑀𝑆𝐸  and 𝑙𝐺𝐴𝑁 are expressed as follows: 

𝑙𝑀𝑆𝐸 = ∑‖𝐼𝑡
𝑡𝑟𝑢𝑒 − 𝐼𝑡

𝐺𝐸𝑁‖2
2

𝑡∈𝒯

                    (4) 

𝑙𝐺𝐴𝑁 = − ∑ log 𝐷 (𝐺(𝐼𝑡
𝑖𝑛))

𝑡∈𝒯

                  (5) 

here 𝒯 is a set of unobservable times and 𝐼𝑡
𝑡𝑟𝑢𝑒  is a true 

frame at time t. λ  is a hyperparameter in the proposed 

method. A larger value of λ results in a loss function that 

is more sensitive to adversarial losses. On the other hand, 

when the value of λ  becomes small, the loss function 

approaches the mean squared error. The generative loss 

𝑙𝐺𝐴𝑁  in (5) is based on the probability of the discriminator 

𝐷 (𝐺(𝐼𝑡
𝑖𝑛)) for all training samples, where 𝐷 (𝐺(𝐼𝑡

𝑖𝑛))is 

the probability that the generating frame 𝐺(𝐼𝑡
𝑖𝑛)  is a 

natural intermediate frame. To obtain a better gradient 

behavior, instead of log[1 − 𝐷 (𝐺(𝐼𝑡
𝑖𝑛))] , we minimize 

− log 𝐷 (𝐺(𝐼𝑡
𝑖𝑛)) [21].  

For the discriminator, we used the binary cross entropy 

loss shown in the following equation: 

𝑙𝐷𝐼𝑆 = − ∑(log 𝑃𝑡
𝑡𝑟𝑢𝑒 + log(1 − 𝑃𝑡

𝐺𝐸𝑁))

𝑡∈𝒯

         (6) 

where 𝑃𝑡
𝑡𝑟𝑢𝑒  is the output value when the true frame is 

taken as the input of the discriminator, and 𝑃𝑡
𝐺𝐸𝑁  is the 

output value when the frame generated by the generator is 

input to the discriminator.  

During training, both true frame 𝐼𝑡
𝑡𝑟𝑢𝑒  and the frame 

generated by the generator 𝐼𝑡
𝐺𝐸𝑁  are provided as an input 

to the discriminator separately. The label for the correct 

frame is set to be one, and the label for the frame generated 

from the generator is set to be zero. We provide respective 

labels for output values obtained from the discriminator 

through convolutions and the sigmoid function, and 

perform training of the network by minimizing the loss 

function 𝑙𝐷𝐼𝑆.  

By alternately training the two networks of the 

generator and discriminator, our generator generates 

solutions that exist in the natural image diversity by trying 

to fool the discriminator. 

IV. EXPERIMENT 

In this section, we evaluate the effectiveness of the 

proposed frame interpolation method by means of visual 

and quantitative comparison. 

A. Experimental Settings 

To demonstrate the effectiveness of the proposed 

method, we conducted an experiment using standard 

benchmark data. 

The initial values of the network were determined 

randomly, and ADAM [25] was used as the network 

optimizer. The parameters of ADAM were 𝛼 = 0.0001, 

𝛽1 = 0.9 , 𝛽2 = 0.999 , and 𝜖 = 10−8 . The size of the 

mini-batch was set to 10. In this experiment, the filter size 

in the spatial direction of each convolutional layer of the 

input and output layers of the generator was set to 9×9 

pixels, and the filter size of the other generators and 

discriminators was set to 3 × 3. For the test data, we 

estimated interpolated frames from low-frame-rate video 

on five different video datasets with a resolution of 

352 288 pixels for the standard benchmark data. The 

training data consisted of five consecutive frames with a 

resolution of 448×256 pixels in the dataset available on 

Vimeo90K [26]. To handle large movements, we used 

40000 sets with large movements out of the total 64612 

datasets.  

The hyperparameter 𝜆  of the loss function (3) was 

varied for {0.0001,0.001,0.01} in order to show the effect 

of the adversarial network. Note that a large value of λ 

corresponds to the case where the effect of adversarial loss 

on the frame interpolation is expected to be large.  

In the experiment, we compared the proposed method 

with the CNN methods based on the conventional MSE 

based loss that were proposed by Long et al. [15] and 

Tanaka and Omori [17]. These methods require about the 

same amount of computation. Generator only is a network 

trained using only the generator and the loss function (4) 

without any discriminator in the proposed method. The 

proposed method and existing methods were trained on the 

same dataset with the same amount of training. In addition 

to the Peak Signal-to-Noise Ratio (PSNR), which is the 

most common image quality metric, we used as an 

evaluation metric the structural similarity (SSIM), which 

matches human appearance more closely. As described by 

Ledig et al. [18] and Blau and Michaeli [27], however, the 

PSNR is a metric based on the MSE and does not 

necessarily represent human perceptual quality. In this 

paper, we have shown that our method can produce frames 

that are more natural to the human eye, even though the 

PSNR value is low. 

B. Visual Comparison 

We visually compare the estimation results of the 

interpolated frames. Fig. 3 shows the results of 

interpolating frames by changing the hyperparameter 𝜆 of 

the perceptual loss of the proposed method for 𝜆 = 0.0001, 

0.001 and 0.01. As we can see in Fig. 3, the stripes on the 

roof are clearly reproduced for large value of the 

hyperparameter 𝜆. Namely, we found in Fig. 3 that when 

the ratio of adversarial loss in the perceptual loss becomes 

larger, the interpolated frame becomes more natural than 

the averaged frame. This result indicates that the 

adversarial generation network can be used for frame 

interpolation that reproduces edges more clearly. 

Therefore, the hyperparameter λ of the perceptual loss of 

the proposed method is set to 0.01. 

Fig. 4 shows an example of the frame interpolation 

results for coastguard, which is a video of two boats 

crossing the coast. We focus on the waves behind the 

smaller boat and the hull structure of the larger boat. As 

shown in Fig. 5, the waves indicated by the blue arrows are 

well reproduced by the proposed method and the Tanaka 

and Omori's method [17]. The black part of the texture of 

the wave pointed by the orange arrow is well reproduced 

by the proposed method and the generator alone, but not 
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by Tanaka and Omori [17] and Long et al. [15], resulting 

in an overall white wave. In addition, as shown in Fig. 6, 

the white bar pointed by the blue arrow is reproduced well 

by the proposed method, while the shape of the bar is not 

reproduced straight by the other methods. As for the 

window of the ship pointed by the orange arrow, the 

proposed method reproduces it well, but the method using 

only the generator produces a round shape, while the other 

methods produce a blur. The reason for these blurred 

interpolated frames and unclear structures is that the MSE 

based optimization method estimates the frame using the 

average of pixel values, which produces an excessively 

smooth frame. On the other hand, the frame interpolation 

by the proposed method using adversarial learning shows 

high accuracy in frame interpolation of videos with 

complex structures and textures. 

 
(a) Ground-truth                            (b) 𝜆 = 0.01                                (c) 𝜆 = 0.001                             (d) 𝜆 = 0.0001 

Figure 3. Frame interpolation results when the hyperparameter 𝜆 of the perceptual loss of the proposed method is varied for 0.0001, 0.001, and 0.01. 

When the hyperparameter 𝜆 is increased, the stripes on the roof are clearly reproduced. 

 
(a) Ground truth                       (b) Proposed                          (c) Generator only                 (d) Tanaka and Omori                   (e) Long et al. 

Figure 4. Evaluation of visual quality by using various frame interpolation methods. Evaluation for a video coastguard with complex structures and 

textures. In the case of subfigure (c) [Generator only], only the generator is trained using only the MSE loss expressed in (4), without using the 
discriminator in the proposed method. 
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(a) Ground truth                        (b) Proposed                         (c) Generator only                 (d) Tanaka and Omori                      (e) Long et al. 

Figure 5. Enlarged view of the center row in Fig. 4. The waves indicated by the blue arrows are well reproduced only by the proposed method and the 

generator only, while the waves are not reproduced by the method of Tanaka and Omori [11]. The black part of the texture of the wave indicated by 

the orange arrow is well reproduced by the proposed method and the generator, but not by the methods of Tanaka and Omori and Long et al. resulting 
in a white wave overall. 

 
(a) Ground truth                        (b) Proposed                         (c) Generator only                 (d) Tanaka and Omori                       (e) Long et al. 

Figure 6. Enlarged view of the lowest row in Fig. 4. The white bar pointed by the blue arrow is well reproduced by the proposed method, while the 
shape of the bar is not reproduced straight by the other methods. As for the window of the ship pointed by the orange arrow, the proposed method 

reproduces it well, while the generator only method reproduces it in a round shape, and the other methods cause blurring. 

 
(a) Ground truth                           (b) Proposed                      (c) Generator only                  (d) Tanaka and Omori                        (e) Long et al. 

Figure 7. Evaluating the visual quality of various frame interpolation methods. Evaluation for a video mobile with a large rotational motion. 

Next, Fig. 7 shows an example of the frame 

interpolation results for mobile. The mobile contains 

various complex motions, such as a calendar moving up 

and down and a purple sphere rotating. We focus on the 

purple sphere in rotational motion. The movement of the 

purple sphere is large and includes nonlinear motion. With 

Long et al. [15] method and generator only method, there 

appear to be two purple spheres. This result suggests that 

the conventional motion estimation method cannot deal 

with nonlinear motion like rotational motion. In contrast, 

the proposed method estimates a clear pattern. This 

indicates that the proposed method is effective for 

nonlinear motion. 

C. Quantitative Evaluation 

We quantitively evaluated the estimation accuracy of 

the interpolated frames by using their PSNR and SSIM 

values. Those shown in Tables I and II are the averages of 

PSNR and SSIM values of all interpolated frames 

generated for the five types of videos in the standard 

dataset. As can be seen from Table I, the proposed method 

shows higher estimation accuracy compared to the 

conventional method for most of the videos used in the 

experiments. On the other hand, the PSNR value of the 

proposed method was lower than that of the case where the 

proposed method was trained using only a generator 

without a discriminator. This is because the PSNR is an 

evaluation metric calculated using the average of the pixel 
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errors, and in the generator only training, only the MSE of 

the pixel values is used as the loss function. In addition, it 

was shown that the proposed method is particularly 

effective for Mobile, which contain nonlinear and large 

motions and complex textures. It is difficult to interpolate 

complex structures by using conventional frame 

interpolation, but the proposed method with adversarial 

generation network can accurately estimate such complex 

structures.  

TABLE I.  COMPARISON OF PSNR [DB] FOR STANDARD BENCHMARK 

DATA 

video Proposed 

Proposed 

(Generator 
only) 

Tanaka and 

Omori 

Long 

et al.  

Coastguard 30.351 30.352 27.820 29.333 

Foreman 31.957 32.142 30.543 31.310 

Ice 31.762 31.765 29.671 32.236 

Mobile 28.912 28.745 26.607 26.682 

News 34.355 35.009 34.603 33.219 

Average 31.375 31.603 29.849 30.560 

TABLE II.  COMPARISON OF SSIM FOR STANDARD BENCHMARK DATA 

video Proposed 

Proposed 

(Generator 
only) 

Tanaka and 

Omori 

Long 

et al.  

Coastguard 0.938 0.936 0.892 0.930 

Foreman 0.941 0.942 0.926 0.948 

Ice 0.972 0.972 0.963 0.977 

Mobile 0.972 0.969 0.946 0.950 

News 0.985 0.986 0.985 0.983 

Average 0.962 0.961 0.942 0.958 

 

As shown in Table II, the obtained SSIM values indicate 

that the proposed method shows a better frame 

interpolation performance than the conventional methods 

in the case of complex nonlinear motions. In other words, 

the generative adversarial network in the proposed method 

can produce more natural frame interpolation as seen by 

humans. 

V. CONCLUDING REMARKS 

In this paper, we proposed a frame interpolation method 

using generative adversarial networks as a frame rate up-

conversion method for videos with nonlinear and large 

motion and complex textures. In the conventional method, 

the mean squared error is used for optimization, which 

results in excessively smooth frames. In addition, since the 

interpolated frame was estimated using a two-dimensional 

convolutional neural network from two input frames, it 

could not deal with non-linear motion. In the proposed 

method, a three-dimensional convolutional neural network 

with a spatio-temporal filter is used to estimate the 

interpolation frame.  

In order to verify the effectiveness of the proposed 

method, we conducted experiments using video images 

with complex textures, edges, and nonlinear motions such 

as rotational motion and human motion. As a result, we 

found that the proposed method produced interpolated 

frames with better visual quality than the conventional 

method or the generator only method in regions with 

complex textures and nonlinear motions. In addition, 

numerical evaluation by PSNR values was performed. 

Moreover, the proposed method outperformed the 

conventional method for many videos in the numerical 

evaluation by PSNR values. In the numerical evaluation by 

the SSIM value, the accuracy was higher than that of the 

method using only the generator without the discriminator 

and using only the mean squared error. This indicates that 

the proposed method with the generative adversarial 

network performs frame interpolation better than the 

method with only a generator. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 

Naomichi Takada and Toshiaki Omori performed 

research; Naomichi Takada and Toshiaki Omori analyzed 

the data; Naomichi Takada and Toshiaki Omori wrote the 

paper; all authors had approved the final version. 

ACKNOWLEDGMENT 

This work is partially supported by Grants-in-Aid for 

Scientific Research for Innovative Areas “Initiative for 

High-Dimensional Data driven Science through 

Deepening of Sparse Modeling” [JSPS KAKENHI Grant 

No. JP25120010] and for Scientific Research [JSPS 

KAKENHI Grant No. JP16K00330], and a Fund for the 

Promotion of Joint International Research (Fostering Joint 

International Research [JSPS KAKENHI Grant No. 

JP15KK0010] from the Ministry of Education, Culture, 

Sports, Science and Technology of Japan, and Core 

Research for Evolutional Science and Technology 

(CREST), Japan Science and Technology Agency, Japan. 

REFERENCES 

[1] R. Szeliski, Computer Vision: Algorithms and Applications, 

Springer, 2000. 
[2] G. J. Sullivan and T. Wiegand, “Rate-Distortion optimization for 

video compression,” IEEE Signal Processing Magazine, vol. 15, pp. 

74-90, 1998.  
[3] Z. Xiong, X. Sun, and F. Wu, “Robust web image/video super-

resolution,” IEEE Trans. Image Process., vol. 19, pp. 2017-2028, 

2010. 
[4] B. T. Choi, S. H. Lee, and S. J. Ko, “New frame rate up-conversion 

using bi-directional motion estimation,” IEEE Trans. Consumer 

Electronics, vol. 46, pp. 603-609, 2000.  

[5] M. T. Orchard and G. J. Sullivan, “Overlapped block motion 

compensation: An estimation-theoretic approach,” IEEE Trans. 

Image Process., vol. 3, pp. 693-899, 1994.  
[6] B. D. Choi, J. W. Han, C. S. Kim, and S. J. Ko, “Motion-

compensated frame interpolation using bilateral motion estimation 

and adaptive overlapped block motion compensation,” IEEE Trans. 
Circuits and Systems for Video Tech., vol. 17, pp. 407-416, 2007. 

[7] J. Jain and A. Jain, “Displacement measurement and its application 

in interframe image coding,” IEEE Trans. Communications, vol. 29, 
pp. 1799-1808, 1981. 

[8] G. D. Haan, P. W. Biezen, H. Huijgen, and O. A. Ojo, “True-Motion 

estimation with 3-d recursive search block matching,” IEEE Trans. 
Circuits and Systems for Video Tech., vol. 3, pp. 368-379, 1993. 

[9] A. Dosovitskiy, et al., “Flownet: Learning optical flow with 
convolutional networks,” in Proc. IEEE International Conference 

on Computer Vision, 2015, pp. 2758-2766. 

[10] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural algorithm of 
artistic style,” arXiv preprint arXiv:1508.06576, 2015. 

Journal of Image and Graphics, Vol. 9, No. 3, September 2021

©2021 Journal of Image and Graphics 93



[11] K. Yu, C. Dong, C. C. Loy, and X. Tang, “Deep convolution 

networks for compression artifacts reduction,” arXiv preprint 

arXiv:1608.02778, 2016. 
[12] M. Tassano, J. Delon, and T. Veit, “Dvdnet: A fast network for deep 

video denoising,” in Proc. IEEE International Conference on 

Image Processing, 2019, pp. 1805-1809. 
[13] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in 

deep convolutional networks for visual recognition,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 37, 
pp. 1904-1916, 2015. 

[14] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in 

Proc. IEEE International Conference on Computer Vision, 2017, 
pp. 2961-2969. 

[15] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu, 

“Learning image matching by simply watching video,” in Proc. 
European Conference on Computer Vision, 2016, pp. 434-450. 

[16] S. Niklaus, L. Mai, and F. Liu, “Video frame interpolation via 

adaptive separable convolution,” in Proc. IEEE International 
Conference on Computer Vision, 2017, pp. 261-270. 

[17] Y. Tanaka and T. Omori, “Spatio-temporal convolutional neural 

network for frame rate up-conversion,” in Proc. 3rd International 
Conference on Intelligent Systems, Metaheuristics & Swarm 

Intelligence, 2019, pp. 35-39. 

[18] C. Ledig, et al., “Photo-Realistic single image super-resolution 
using a generative adversarial network,” in Proc. of the IEEE 

Conference on Computer Vision and Pattern Recognition, 2017, pp. 

4681-4690. 
[19] A. Bulat, J. Yang, and G. Tzimiropoulos, “To learn image super-

resolution, use a GAN to learn how to do image degradation first,” 

in Proc. European Conference on Computer Vision, 2018, pp. 185-
200. 

[20] C. You, et al., “CT super-resolutiongan constrained by the identical, 

residual, and cycle learning ensemble (GAN-CIRCLE),” IEEE 
Trans. Medical Imaging, vol. 39, no. 1, pp. 188-203, 2020. 

[21] I. Goodfellow, et al., “Generative adversarial nets,” Advances in 

Neural Information Processing Systems, vol. 27, pp. 2672-2680, 
2014. 

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 

image recognition,” in Proc.  IEEE Conference on Computer Vision 

and Pattern Recognition, 2016, pp. 770-778. 

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: 
Surpassing human-level performance on ImageNet classification,” 

in Proc. IEEE International Conference on Computer Vision, 2016, 

pp. 1026-1034. 

[24] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities 

improve neural network acoustic model,” in Proc. International 

Conference on Machine Learning, 2013, pp. 1-6. 
[25] D. P. Kingma and J. Ba, “Adam: A method for stochastic 

optimization,” arXiv preprint arXiv:1412.6980, 2014. 

[26] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video 
enhancement with task-oriented flow,” International Journal of 

Computer Vision, vol. 127, pp. 1106-1125, 2019. 

[27] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in 
Proc. IEEE Conference on Computer Vision and Pattern 

Recognition, 2018, pp. 6228-6237. 

 
Copyright © 2021 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 
Naomichi Takada was born in 1996. He 

received his B.E. degree from Kobe University 

in 2019. Now he is pursuing his M.E. in 
Graduate School of Engineering, Kobe 

University. His research interests include 

machine learning theory and its applications. 
 

 

 
 

 

Toshiaki Omori received his B.S. degree in 
physics from University of Tsukuba in 1999, 

and his Ph.D. degree in information science 

from Tohoku University in 2004. He was a 
predoctoral research fellow of Japan Society 

for the Promotion of Science (JSPS) from 2003 

to 2004, a postdoctoral researcher at Japan 
Science and Technology Agency (JST) from 

2004 to 2006, and a postdoctoral research 

fellow of JSPS from 2006 to 2008. He was a 

visiting researcher at University of Arizona in 2007. He became a 

research assistant professor and an assistant professor at the University of 
Tokyo in 2008. He is currently an associate professor at the Graduate 

School of Engineering, Kobe University. His research interests include 

machine learning theory and its applications, data-driven science, 
probabilistic information processing, and computational neuroscience. 

 

Journal of Image and Graphics, Vol. 9, No. 3, September 2021

©2021 Journal of Image and Graphics 94

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

