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Abstract—This paper presents a novel people detection 

approach for mobile robot applications based on a 

combination of classical computer vision techniques and a 

state-of-the-art neural network. Our approach involves an 

RGB-D camera as an environmental sensor. The depth data 

is used to extract silhouettes around people. The RGB 

images are subsequently augmented with this border 

information before passing it to the neural network. Under 

challenging lighting conditions, our system was able to 

outperform the neural network trained on regular RGB 

data alone by a factor of two. 

 

Index Terms—neural network, mobile robot 
 
 

I. INTRODUCTION 

There is a growing trend to switch from rigid 

manufacturing and assembly processes to more flexible 

approaches characterized by seamless, automated 

manufacturing lines (“smart factories”). Automatically 

Guided Vehicles (AGVs) are an important component for 

logistical operations in smart factories, where they are 

still likely to encounter human workers. In these cases, 

reliable, real-time person recognition is required such that 

collisions can be avoided. Another advantage offered by 

automatic people detection is that AGVs could be 

enabled to interact with people via a Human Machine 

Interface (HMI). For safety reasons, people detection 

needs to be accurate, robust, and has to be performed in 

real-time using the AGV’s limited onboard computing 

power. 

 
Manuscript received March 2, 2021; revised July 5, 2021. 

Traditional image processing techniques for people 

detection often involve hand-crafted features, e.g., based 

on Haar wavelets [1]. However in the last decade, 

detection approaches based on Neural Networks (NNs) 

have shown superior results in almost all aspects 

including speed and precision. 

For example, a neural network for fusion of RGB with 

Infrared (IR) data was analyzed in [2]. Starting with 

individual Convolutional Neural Networks (CNNs) for 

RGB and IR images, they fuse these CNNs halfway in 

order to generate multispectral deep features for the 

Region Proposal Network (RPN). Vandersteegen et al. 

[3], on the other hand, augmented RGB images with 

thermal images in a pre-processing step. For the 

augmentation step, two methods were tested. In the first 

method, one color channel of the RGB image was 

replaced with the thermal data; in the other approach, the 

color image was weighted based on the thermal image. A 

CNN for the fusion of depth images and RGB pictures 

was designed in [4]. The information was combined in 

the last layer of the network. The idea of [4] was further 

expanded in [5]. In this work, several neural networks 

were created fusing the depth images with the RGB 

information at different stages. Best results were obtained 

for mid-level fusion. In [6] the fusion of RGB images and 

depth images was investigated further using a YOLOv2 

network. Better people detection performance was 

observed when depth images were included for training. 

According to the authors, depth images enabled the 

network to learn that people at different distances from 

the camera have different scales yielding improved 

detection performance in occluded scenarios as well as in 

pictures showing groups of people [6]. In [7] a neural 
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network was trained on silhouettes extracted from RGB 

images. However, the goal of this work was human body 

pose detection, and no further fusion of the silhouette 

information with other images was performed. 

The focus of this work is on the application of RGB-D 

cameras for people detection. RGB-D cameras provide 

color as well as depth information for each pixel in the 

image. 

Our approach is based on a combination of traditional 

computer vision algorithms and deep-learning methods. 

The former are used to extract boundary information 

(silhouettes) around people in the depth frames. They are 

then used to augment the RGB color images. 

The contributions of this paper are: 

1) We created a dataset for people detection 

assuming the perspective of a modern mobile 

robot platform (EvoRobot, Evocortex GmbH, 

Nuremberg, Germany). This dataset was labeled 

and used to train our networks. 

2) We demonstrated that a neural network trained 

using RGB image data, augmented with depth 

information, performs better compared to working 

on standard RGB image data, especially in 

scenarios characterized by poor lighting 

conditions. 

3) We showed that our approach supports a frame 

rate of 5.56 fps on the Jetson TX2 board which 

comes with the EvoRobot mobile platform. This 

suggests that the technique can be applied in 

practice. 

The remainder of the paper is organized as follows: 

Subsection II-A describes our method in detail. In 

Subsection II-B, information regarding our dataset is 

provided. The training of the neural network is described 

in Subsection II-C. Experimental results can be found in 

Section III. In the final section, results are discussed and 

conclusions are drawn. 

II. PEOPLE DETECTION USING DEPTH SILHOUETTES 

The underlying rationale of our approach is that 

silhouettes, outlining human bodies, provide more 

distinct representations of people by emphasizing their 

shape. By offering additional features to Convolutional 

Neural Networks, they should be able to better learn the 

appearance of people, and, as a result, obtain a better 

people detection performance. 

Extracting the silhouettes from depth images offers the 

advantage that this border information can also be made 

available under poor lighting conditions. This enables a 

better detection compared to pure RGB images in these 

situations. By design, the silhouettes in our approach are 

independent of the RGB image and therefore of a 

person’s clothing, the persons themselves, and the 

environment. Also, silhouettes of people are quite similar 

to each other, yet they differ significantly from other 

objects. This also contributes to a better people detection 

performance within their surrounding. The contour 

around a person is found during a pre-processing stage. 

This outline was then integrated into the associated RGB 

frame and the depth image itself. In the next step, we 

trained four CNNs one with RGB images only, one with 

augmented RGB images, one with depth images only, 

and one with augmented depth images, respectively. 

However, during our initial experiments, we found that 

depth-based silhouette augmentation of depth data 

improved precision only very marginally. As a 

consequence, we decided to put more emphasis on the 

augmentation of RGB images. 

The output of our image augmentation step is used as 

input for the YOLOv3 neural network [8]. YOLOv3 is an 

improved version of the neural network called ”You Only 

Look Once” (YOLO) [9]. The architecture of this 

network is designed such that bounding boxes and class 

probabilities are predicted in one evaluation step, which 

is considered state-of-the-art for fast detection.  

A. System Architecture 

This section explains our approach in detail. As 

illustrated in Fig. 1, five pre-processing steps are carried 

out to obtain an augmented RGB image to be fed into the 

CNN. 

1) In the first step, missing depth pixels (shadow 

regions) are interpolated. These shadow regions can be 

seen in the left-most picture of Fig. 1. Missing depth 

information in depth images results from the sensor not 

being able to acquire information about the region either 

due to occlusion or light defusing obstacles. Our strategy 

to correct for them is as follows [10]. For each pixel in 

the depth image with an undefined depth value (e.g., a 

depth value of 0), also referred to as depth shadow, we 

search through the neighboring data in the corresponding 

of the missing depth pixel and look on the left and on the 

right. If for both sides a valid value is found, we 

substitute the undefined value with the larger of the two. 

If just a single valid value is available, this one is used. 

The second picture of Fig. 1 shows the corrected depth 

image. 

 
Figure 1. Overview of the proposed method (inference stage): five pre-processing steps are applied to the images before feeding them into a YOLO 

CNN for people detection. The first four images represent gray-scale representations of depth data with black being close and white being far from the 

camera, respectively. 
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2) The depth image is linearly scaled to a range of 0 to 

255 according to [11]. 

min
target min

max min

p p
p p

p p


−
 = +

−
               (1) 

In this equation, p and 𝑝′ are the depth values before 

and after scaling, pmin and pmax are the minimum and the 

maximum depth values of the image before scaling, p'
min

 

is the lower bound of the new range and ωtarget is the 

difference between the upper and the lower bound of the 

new, respectively. In our case ωtarget=255 and p'
min
=0. 

3) Median filter is run on the rescaled depth image to 

remove remaining noise, in particular along the edges. 

The output is shown in the fourth picture of Fig. 1. 

4) The Canny edge filter is applied [12]. 

5) The resulting contour is merged with either the 

RGB or the depth image. To this end, we set pixel values 

along the silhouette in the RGB image to the RGB-value 

of purple. In the depth images, the silhouette pixels were 

set to a depth value of 20m. In both cases, our goal was 

to highlight the silhouette such that it is clearly 

distinguishable from the background. Parts of the 

resulting two augmented output images can be seen in the 

second picture from the right in Fig. 1. On the top, we see 

the augmented RGB picture, and on the bottom the 

augmented depth image. After preprocessing, the data is 

fed into the trained YOLOv3 network for inference. It 

generates the output shown in the right-most picture of 

Fig. 1. When processing the depth images with the 

YOLOv3 network the same depth data was stored in all 3 

channels of a RGB image as uint8 values. This facilitated 

the use of the same network architecture as for the RGB 

images. 

B. Dataset 

The dataset for the training process was taken from the 

point of view of a mobile robot, i.e. from a camera 

mounted between 0.10-0.70 m above ground looking 

upwards. Images were captured using a Xbox Kinect V1 

set at a matrix size of 640×480 pixel with depth and color 

images synchronized in time. The images were then 

cropped to 570×430 pixels to ensure that they contain 

only areas were depth and color images overlap. 

Our dataset was recorded inside our university 

buildings. In total we had 16 different settings 

comprising a total of about 4300 pictures. The data was 

split such that 70% used for training, 10% were available 

for validation, and 20% remained for testing. Some 

example pictures are shown in Fig. 2. All pictures were 

taken under normal lighting conditions, i.e. a 

combination of daylight and artificial light. To simulate 

lighting conditions at evening and night, the contrast and 

brightness of the images was lowered by 40% and 60%, 

respectively. These images simulate badly lit areas such 

as storage rooms or a power outage. An example can be 

seen in Fig. 3. 

 

Figure 2. Example pictures from our dataset. 

 
(a) Day                     (b) Evening                    (c) Night 

 

(d) Day                  (e) Evening                   (f) Night 

Figure 3. Example pictures with and without augmented silhouettes for 

different lighting conditions. 

C. Training of the Neural Network 

We trained and validated the network using daylight 

images only. By training only on daylight images, we 

could show that a training of the CNN with RGB images 

acquired at different lighting conditions is not necessary 

thanks to the silhouette augmentation of the RGB images. 

In the dataset we manually labeled only persons 

according to the format required by the neural network. 

We did not create bounding boxes for any other object 

class. This ensured that the network could only learn the 

shapes of persons. An expansion to other object classes is 

conceivable, as the silhouettes found during 

preprocessing were not limited to people. During training, 

the network may detect non-people objects as well, and 

predict bounding boxes around them, but it is only 

rewarded if the bounding box matches with the ground 

truth box of the correct class. In our case the only correct 

class comprises persons. We trained the CNNs with an 

input layer size of 416×416 over 5000 iterations. The 

batch size was 64, and the learning rate was set to 0.01. 

The YOLOv3 implementation from Bochkovskiy was 

used (https://github.com/AlexeyAB/darknet). We started 

training with a pre-trained weights file which was created 

by the author of YOLOv3 

(https://pjreddie.com/media/files/darknet53.conv.74). 
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After 1000 iterations, an accuracy check based on the 

mean Average Precision (mAP) metric from was 

performed [13]. This check was repeated every 200 

iterations. If the new network weights showed higher 

accuracy, they were selected as new weights. Otherwise 

the best weights remained unchanged.  

For learning and evaluation, a PC with the following 

hardware specs was used: AMD Ryzen 9 3950X CPU, 64 

GB RAM, 500 GB SSD, and two ASUS 8 GB RTX 2080 

SUPER GPUs. We also implemented the algorithm on 

the Nvidia Jetson TX2 single-board computer which is 

part of the EvoRobot. We used the Robot Operation 

System (ROS) framework to implement the system 

architecture and wrote a ROS Interface based on Jung’s 

work (https://github.com/jkjung-avt/tensorrt demos). We 

converted the neural network’s weights to TensorRT [14] 

using a script written by Jung to use the full processing 

power of the Jetson TX2 board. This decreases the 

overhead of the YOLO-framework [15].  
 

III. RESULTS AND ANALYSIS 

A. Accuracy 

For the accuracy metric of the neural network, the 

Average Precision AP value for a single Intersection over 

Union (IoU) was applied. The IoU is defined as: 

𝐼𝑜𝑈 =
|𝐴 ∩ 𝐵|

|𝐴 ⋃ 𝐵|
                            (2) 

with A being the size of the area of the predicted 

bounding box and B the size of the area of the ground 

truth bounding box. It describes how much a predicted 

bounding box overlaps with the bounding box of the 

ground truth [16]. If the overlapping area is bigger than a 

specific threshold, here set to 50%, the object is counted 

as correctly identified. This enables calculations of the 

precision as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                     (3) 

with TP being the number of true positives and FP the 

number of false positives [16]. The Recall is defined as:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                        (4) 

with FN being the number of false negatives [16]. When 

this metric is applied to all images, a Recall-Precision 

diagram is created. The area under the graph is the AP 

value. It is commonly approximated by summing up 

areas of rectangles calculated at 101 equidistant data 

points over the interval ranging from 0 to 1 [13]. 

TABLE I. AP (IOU = 0.50 %) VALUES OF RGB, RGB+AUGMENTATION 

(RGB+AUG), DEPTH AND DEPTH+AUGMENTATION (DEPTH+AUG) 

UNDER DIFF. LIGHTING COND 

 

In Table I, we show AP values (IoU = 50%) for the 

different approaches. With RGB we refer to a network 

trained on the RGB data only. The label RGB+Aug 

indicates that the network was trained with RGB images 

augmented with the depth-based silhouette information. 

The label Depth implies that the net- work was only 

trained on depth data, while Depth+Aug means that the 

network was trained with depth images augmented with 

silhouette. As lighting conditions did not have any effect 

on the depth images, their AP values are the same for all 

lighting conditions. This is generally the case, if a 

structured light or a time-of-flight camera is used to 

record the depth data. Our experimental results can be 

summarized as follows: 

1) YOLOv3 generally performed well for all four 

networks and lighting condition. We only encountered 

one false positive detection for RGB as well as for the 

RGB+Aug dataset. This means that the dataset was no 

particular challenge for the neural network. Furthermore, 

the high mAP values confirm this assumption. 

2) Under challenging lighting conditions augmentation 

improved the AP (IoU = 50 %) from 50.09 % to 92.22 %. 

3) Under normal lighting conditions, there is little 

performance difference between the RGB and depth-

based CNNs. 

B. Localization 

TABLE II. MAP COCO VALUES FOR RGB, RGB+AUGMENTATION 

(RGB+AUG), DEPTH AND DEPTH+AUGMENTATION (DEPTH+AUG) 

UNDER DIFF. LIGHTING COND 

 

Unlike accuracy, where a detection is just counted 

based on a certain degree of overlap of two bounding 

boxes, localization tells us how well the detected 

bounding boxes align with the corresponding ground 

truth. For evaluation of the localization, the COCO 

metric was applied [13]. This metric calculates the mean 

Average Precision (mAP) of a network by averaging the 

AP for several IoU scores. COCO uses score values 

ranging from 50% to 95% with a step size of 5% applies 

it to all images and generates several Recall-Precision 

diagrams. The mAP is the average over AP for the 

different IoU scores.  

In Table II, the mAP values for the different lighting 

conditions are shown. Since varying lighting conditions 

did not have any effect on the acquired depth images, the 

mAP values are again the same under all three lighting 

conditions. From these results, we can see that a neural 

network trained on depth image data can detect people 

with higher precision under challenging lighting 

conditions than a network trained on RGB data. However, 

under good lighting conditions, neural networks trained 

with RGB frames or RGB+Aug images outperform those 

trained on depth data alone by about 0.8 to 1.1%. In both 

cases of augmented image data (RGB, Depth), we see an 

increase in performance. Under challenging lighting 
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conditions the performance of the CNN trained with 

augmented RGB images was found to be more than twice 

as good as a network solely trained on standard RGB 

images. 

C. Speed 

On the PC hardware, our algorithm ran with 32.01 ± 

3.84fps, while only 5.56 ± 0.10fps were achieved on the 

Jetson TX2 board. There, the preprocessing overhead 

reduced the frame rate by 0.39 fps. Note that the rate of 

5.56 fps is still fast enough for people detection in our 

use case due to the rather low speed of AGVs when 

operating in areas also occupied by humans. For example, 

an emergency stop of the robot could be issued if a 

person is detected in close range of the robots path, with 

the robot driving 1.5 
𝑚

𝑠
. Additionally, the performance on 

the PC shows that with increased processing power, the 

detection time could be drastically reduced. 

IV. CONCLUSIONS AND FUTURE WORK 

Our experiments suggest that the proposed people 

detection system can be combined with a mobile robotic 

platform and used in practice. Since our algorithm scales 

well with available hardware resources, it can also take 

advantage of improving hardware resources. 

Our results also show that data fusion implemented as 

a pre-processing step outside of a neural network can 

increase performance for challenging use cases. In our 

case, the accuracy in case of poor lighting conditions was 

improved from 50.09% to 92.22%, while localization 

performance was boosted from 36.46% to 72.68%. 

We also found that our depth-based silhouette 

augmentation approach always resulted in performance 

gains suggesting that it may be a promising approach for 

future work. 

With our approach we could, for example, create a 

dataset to train a segmentation neural network and 

investigate if the performance could also be boosted. 

Additionally, an in-depth study on the performance 

gain by augmentation of depth images with silhouettes is 

planned. 

A more challenging dataset including occlusion of 

people to test the accuracy of the neural network is also 

part of the planned future work. 
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