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Abstract—In this paper, a through rigorous testing and 

benchmarks the efficacy of the utilization of CUDA’s GPU 

accelerated libraries for a Gabor filter was examined. 

Following a series of benchmarks, the change in 

computational time between a program that applied a set of 

Gabor kernels to images using CuPy and SciPy was 

recorded. The benchmark’s results provided statistical 

evidence in favor of future utilization of CuPy’s GPU 

accelerated libraries in such a program. With this data in 

hand, further work can be carried out that leverages a GPU 

to be incorporated in a compression algorithm using the 

Gabor transform. This will offer a fast compression 

technique that allows the fine tuning of the compression 

ratio of a target image.  

 

Index Terms—GPU, CUDA, Gabor filter, image filtering, 

Python 

 

I. INTRODUCTION 

The Gabor filter is often used in image processing as a 

means to perform edge detection, however it’s uses can 

stretch much further beyond. The Gabor filter is derived 

from the convolution of a fast Fourier transformed 

Gaussian function and a fast Fourier transformed 

sinusoidal wave. These functions allow the Gabor filter to 

be able to be fine-tuned to a precise degree allowing for 

the manipulation of: wavelength, orientation, phase offset, 

standard deviation, and ellipticity.  

While Gabor filters and the Gabor transform are 

somewhat related, the terms are not interchangeable. To 

perform a Gabor transform a Gabor filter is utilized, 

however, the Gabor transform is used specifically to 

analyze the relationship between an image’s spatial and 

frequency domain [1]. 

The Gabor transform in turn can be utilized in an 

image compression algorithm as way to isolate high 

frequency noise [2]. This allows for the fine tuning of the 

compression ratio providing an immense amount of 

control over the degree to which the image’s quality and 

file size is reduced. 

II. RELATED WORKS 

Numerous other authors have undertaken a multitude 

of projects that have made use of the Gabor transform 

predominantly in the fields of Artificial Intelligence (AI), 
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signal analysis, and image processing. Wiesmeyr, 

Holighaus, and Søndergaard sought to identify any 

possible alternative method for performing the Gabor 

transform [3]. The work performed for this thesis seeks to 

accomplish a similar goal. This goal is to deduce if an 

alternative method using a Graphics Processing Unit 

(GPU) as opposed to the standard Central Processing 

Unit (CPU) based approach for computing the Gabor 

transform would be more efficient. This is an approach 

that the referenced paper had not considered. 

The topic of the Gabor transform has been explored in 

depth by Baxter [4]. While Baxter’s research is not 

extremely current it has served as an excellent foundation 

laying out the numerous steps for the implementation of a 

compression system using a discrete wavelet transform, 

in this case the Gabor transform [4]. The use of discrete 

wavelet transforms is still a great modern solution to the 

compression of images. Baxter’s work was able to break 

down the various techniques and steps for performing the 

Gabor transformation to filter an image [4]. By 

employing similar tactics into a program, the work done 

for this project would attempt to optimize this operation 

further by expediting the computational time of such an 

operation.  

In addition, Wang and Shi, seem to have already 

expanded into this topic area. However, their research is 

antiquated using old GPUs and a method of filtering that 

differs from this project [5]. By researching into the 

practicality of such an approach with modern GPUs and a 

simpler algorithm, the work done during this project 

could identify a massive computational leap in the 

process of compressing and filtering images. Images 

greatly benefit from advances in discrete wavelet 

transform compression algorithms because they allow for 

the fine tuning of a compression ratio. This is ideal since 

typical lossy compression methods used for JPEGs can 

result in too much detail being lost from said images 

rendering them much blurrier than desired.  

While these sources are a few years old this research is 

by no means invalid or still not an issue in modern times 

as shown by the research teams of Zhao, Tao, Li, and 

Wang as well as He et al. [6], [7]. By devising a more 

efficient algorithm for compressing and filtering images, 

the cost associated in the storage of a large volume of 

images can be alleviated. This is on top of a much faster 

processing time for said images. In addition, the steps laid 

out for this program would be provided in verbose detail 

along with providing the open-source code. This in itself 

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 146
doi: 10.18178/joig.9.4.146-151



is distinctive as little open-source code exists in this topic 

area. 

III. OBJECTIVE OF RESEARCH 

The objective of this project is to ascertain the benefits, 

if they do indeed exist, of a Compute Unified Device 

Architecture (CUDA) accelerated program using the 

Gabor transform created for the purpose of compressing 

and filtering images. This was accomplished by 

specifically targeting a computational speed up during the 

creation of the Gabor filters used in the Gabor transform. 

A program that is able to apply a Gabor filter to an image 

would then be required. In addition, a separate algorithm 

that incorporates a method to calculate the filtered image 

faster would also be required. This would allow for a 

direct comparison to be performed between the two 

implementation that would provide statistical evidence in 

the form of a benchmark pertaining to the relative speed 

of each algorithm. 

The programming language picked for this research 

was Python. Python is a scripting language that is often 

used alongside MATLAB for image processing due to the 

numerous libraries that are available for use and the 

relative ease of implementation of said libraries. Work 

was performed on creating an implementation using C++ 

and CUDA, however numerous difficulties with the 

application of the filter so development was shifted to 

Python. 

The libraries chosen for the implementation of this 

program were SciPy and CuPy. SciPy is an open-source 

Python library with a multitude of functions [8]. 

Specifically for the purpose of this research the 

convolution function was of importance as this would 

apply the filter to the target image. This library also 

employs very similar methods to CuPy making them 

direct comparisons when comparing the computational 

speed. 

Likewise, CuPy is an open-source Python library. 

Unlike SciPy, CuPy is able to incorporate CUDA’s GPU 

accelerated libraries such as cuBLAS, cuDNN, cuFFT, 

and more to provide Python with an expansive suite of 

GPU integrated functions [9]. CuPy is actively under 

development and supports NVIDIA’s most recent 

versions of the CUDA toolkit, but has not completely 

integrated all of CUDA’s functions from its numerous 

libraries. This is one of the few CUDA libraries that is 

actively being supported and is recommended by now 

defunct and out of date CUDA libraries due to the wide 

range of functions that have been incorporated. The 

library is also being supported by Nvidia, the creators of 

CUDA. 

IV. PROGRAMS 

Two programs were created in Python with a discrete 

purpose. One program was solely responsible for creating 

the Gabor filter banks that would be utilized by the other 

program which would apply the filter bank to an input 

image and benchmark the results. 

A. Creation of Gabor Kernels 

This program allows the user to adjust the many 

aspects that make up a Gabor filter. This includes the 

resolution of the filter, the standard deviation of the root 

gaussian function, the angle of the sinusoid, the 

wavelength of sinusoid, the ellipticity of the sinusoid, and 

the phase offset of the sinusoid. The Python library 

OpenCV is used to create the Gabor filter according to 

the input parameters. The program creates a filter folder 

in the directory of the program if it does not already exist, 

and gives it a unique name in the form of “gaborFilter#” 

where the number sign starts at zero and is incremented 

by one until a unique value is found. The file saved is in 

the format of npy using a function that saves NumPy 

arrays in CuPy. In addition, a csv file is created if it does 

not already exist or is appended to if it does exist. The 

data wrote to this file records what filter has what 

parameters so the filter bank can more easily be examined. 

Fig. 1 and Fig. 2 show two example filters created using 

this program and shown using the library Matplotlib. 

 

Figure 1.  Gabor filter with parameters: Resolution = 30, Standard 

Deviation = 3, Angle = π/4, Wavelength = π/4, Ellipticity = 1.0, Phase 
Offset = 0. 

 

Figure 2.  Gabor filter with parameters: Resolution = 45, Standard 

Deviation = 4, Angle = 0, Wavelength = π/2, Ellipticity = 0.5, Phase 
Offset = 15. 

B. Method for Applying Gabor Kernels 

This program applies the filter banks already created 

by searching for the “Filters” folder in the same directory 

of the Python file. This is the program that is 

benchmarked and the one that this research is primarily 

concerned with, although the other program allows for 

the creation of filter banks to be much easier. 
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The program requires the user to provide an input 

image and to enter its name as a string. The program will 

then search the “Images” folder in the same directory and 

quit out if the image is not found. If it is the program will 

continue operating. The image is read using OpenCV and 

converted to grayscale if it is not already. The image is 

then converted into a CuPy array. This differs from the 

standard NumPy array because the GPU requires the 

allocation of variable and constants separately from the 

CPU. A function is then called that counts the total 

number of filters in the “Filters” folder, this is the filter 

bank. Following this the benchmark for the GPU begins. 

The program goes through each filter one-by-one 

loading it in as a CuPy array. The array is then convolved 

with the CuPy array of the image and the resulting array 

is converted into a NumPy array. These steps are also 

individually benchmarked to see how long each filter 

individually takes to apply and to convert the result back 

to the NumPy format. This is repeated for each filter until 

each of them has created a convolved result with the 

image. Once this is done the benchmark is ended and the 

total runtime is calculated by taking the difference of the 

end and start times. 

Next, the CPU benchmark would begin and follow a 

very similar set of steps as the GPU benchmark. The 

arrays would be loaded in as NumPy arrays. Following 

this they would be convolved with the image; however, 

there is no need to convert the result into the NumPy 

format. This provides a slight edge to the CPU as the 

GPU will need to convert the resulting image into a 

NumPy array for further operation to be performed on it. 

Nevertheless, these convolutions are also individually 

benchmarked and recorded so an analysis on how long 

each filter took to apply can be performed. Once all filters 

have been applied, the benchmark will be ended and the 

total runtime will be calculated. 

The results for both the GPU and CPU are saved to a 

csv file for later analysis. This includes the total runtime 

for the entire filter bank and runtime for each filter 

application for both the GPU and CPU. For more details 

about the flowcharts of the programs please check 

Appendix A.  

V. BENCHMARK RESULTS 

Fig. 3, Fig. 4, Fig. 5, and Fig. 6 depict the images used 

for testing sourced from pixabay. A variety of resolutions 

were used for the benchmarking to ensure accurate data 

could be gathered across a variety of input images.  These 

images have a variety of angles and patterns making them 

well suited for testing Gabor filters in realistic scenarios. 

Fig. 7 and Fig. 8 illustrate the results gathered from 

benchmarking. A filter bank of 36 filters with a constant 

resolution of 30 was used for benchmarking. From testing 

the only parameter that caused a major difference in the 

runtime of the functions was when an assortment of 

different resolutions was used. A constant resolution was 

used as this can be achieved by scaling all filters up to the 

resolution of the largest filter’s size. 

Fig. 7 highlights the total runtimes for each image at a 

specific resolution to have all 36 filters applied to the 

image. As stated earlier, the GPU runtime includes the 

time it takes to convert the resulting filtered image into a 

NumPy array so that it may be processed further by the 

CPU as a necessary step. 

Fig. 8 focuses on what percent faster the GPU ran in 

comparison to the CPU. That is to say an entry of 0% 

would mean that the programs ran at the exact same 

speed, whereas 100% faster would mean the GPU was 

twice as fast or ran in half of the time. Equation 1 shows 

how these values were calculated. 

 

Figure 3.  Test image referred to as Pantheon. 

 

Figure 4.  Test image referred to as Tent. 

 

Figure 5.  Test image referred to as Castle. 

 

Figure 6.  Test image referred to as Lab. 
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Figure 7.  Chart comparing the total runtime in seconds for the GPU 
and CPU to apply all filters to the test image. 

 

Figure 8.  Chart showing the percent increase in computational speed 
ordered by resolution size. 

TABLE I.  GPU VS CPU COMPUTATIONAL PERFORMANCE 

Image 

Performance 

% 

Increase 

GPU Runtime 

(sec) 

CPU Runtime 

(sec) 

Castle 640×439 68.23% 0.34568 0.581535 

Castle 1280×879 268.17% 0.682639 2.513258 

Castle 1920×1318 379.39% 1.251794 6.000939 

Castle 5705×3917 475.71% 9.604088 55.29144 

Lab 1920×1280 370.10% 1.214026 5.707164 

Pantheon 640×426 88.36% 0.292269 0.550507 

Pantheon 1280×853 254.62% 0.649599 2.303611 

Pantheon 1920×1280 322.80% 1.335696 5.647336 

Tent 640×427 74.69% 0.301277 0.526294 

Tent 1280×853 235.88% 0.694818 2.333745 

Tent 1920×1280 377.60% 1.169873 5.587256 

Tent 3000×2000 416.27% 2.503815 12.92643 

Table I provides all of the data shown in Fig. 7 and Fig. 

8 in a tabular format for the exact data points for both the 

total run time, as well as, the percent faster. 

 
 
% Increase = (CPUtime – GPUtime )/ GPUtime

    (1) 

VI. CONCLUSION 

It can be seen from the graphs provided that the GPU 

is able to much more effectively perform the calculations 

necessary for filtering the image through convolution in 

comparison to the CPU. CuPy is able to leverage the 

GPU’s ability to parallel process to a degree in which not 

even the lowest resolution images are able to be 

computed on the CPU faster. This shows the 

computational speed is able to overcome the offset of 

having to convert the image back to a NumPy formatted 

array for the CPU to be able to read. Notably, as the 

image’s resolution increases, so too does the speed up 

provided from using CuPy. 

CuPy and SciPy interestingly seemed to speed up as it 

applied more and more filters. While the first initial filter 

would take about as long as the SciPy took to filter, CuPy 

would accelerate much faster as it applied more and more 

from the filter bank. Within two to three filters being 

applied in succession CuPy would hit its fastest speeds. 

The use of CUDA’s libraries to assist in the filtering of 

images with Gabor filters certainly seems to be a realistic 

choice that is able to provide consistently faster results 

when compared to its CPU based approach in SciPy. The 

use of a filter bank exasperates this and ensures that the 

GPU will have enough time to ramp up its computational 

speed. One thing that does cause issues to arise is when 

the filters have different resolutions to the previous one 

used. This causes problems in both the GPU and CPU 

approach and seems to reset the speed up in 

computational speed that occurs when applying filter in 

succession. This can be remedied by choosing to utilize a 

filter bank with a constant resolution. 

VII. FUTURE WORK 

CuPy is a library that is still under active development 

and is in fact missing a feature that would assist this 

program in having the GPU based approach become even 

faster. One of the features SciPy has is that for N-

dimensional arrays it can choose the best method to apply 

the filter to the image through convolution. From the 

testing with the images used it consistently appeared that 

using the fast Fourier transform was the most effective 

way to apply the filter to the image. CuPy does not yet 

support this feature for N-dimensional arrays. What 

currently is implemented is only able to perform a direct 

convolution for any array that is greater than 1-

dimensional. Should this feature be implemented, it is 

very possible that CuPy could see even greater speed in 

the process of applying filters to images. 

Furthermore, this work serves as the basis to which a 

Gabor transform can be implemented with the intent to 

compress images. With this algorithm that is able to 

compute the convolution of an image and a Gabor filter 

faster than the CPU based approach, the Gabor transform 

for compressing images can be made quicker. This will 

also require the creation of a bit allocation and 

quantization system that Baxter outlined [4]. 

APPENDIX  FLOWCHARTS 

Fig. 9 and Fig. 10 describe the flowcharts of the 

programs used in this paper.  
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Figure 9.  Flowchart for Gabor filter creation program. 

 

Figure 10.  Flowchart for Gabor application program. 
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