
Optimization of Gabor Filters by Employing

NVIDIA GPUs in Python

Conner McInnes and Shadi Alawneh
Oakland University, Rochester Hills, United States

Email: {cmcinnes, shadialawneh}@oakland.edu

Abstract—In this paper, a through rigorous testing and

benchmarks the efficacy of the utilization of CUDA’s GPU

accelerated libraries for a Gabor filter was examined.

Following a series of benchmarks, the change in

computational time between a program that applied a set of

Gabor kernels to images using CuPy and SciPy was

recorded. The benchmark’s results provided statistical

evidence in favor of future utilization of CuPy’s GPU

accelerated libraries in such a program. With this data in

hand, further work can be carried out that leverages a GPU

to be incorporated in a compression algorithm using the

Gabor transform. This will offer a fast compression

technique that allows the fine tuning of the compression

ratio of a target image.

Index Terms—GPU, CUDA, Gabor filter, image filtering,

Python

I. INTRODUCTION

The Gabor filter is often used in image processing as a

means to perform edge detection, however it’s uses can

stretch much further beyond. The Gabor filter is derived

from the convolution of a fast Fourier transformed

Gaussian function and a fast Fourier transformed

sinusoidal wave. These functions allow the Gabor filter to

be able to be fine-tuned to a precise degree allowing for

the manipulation of: wavelength, orientation, phase offset,

standard deviation, and ellipticity.

While Gabor filters and the Gabor transform are

somewhat related, the terms are not interchangeable. To

perform a Gabor transform a Gabor filter is utilized,

however, the Gabor transform is used specifically to

analyze the relationship between an image’s spatial and

frequency domain [1].

The Gabor transform in turn can be utilized in an

image compression algorithm as way to isolate high

frequency noise [2]. This allows for the fine tuning of the

compression ratio providing an immense amount of

control over the degree to which the image’s quality and

file size is reduced.

II. RELATED WORKS

Numerous other authors have undertaken a multitude

of projects that have made use of the Gabor transform

predominantly in the fields of Artificial Intelligence (AI),

Manuscript received May 31, 2021; revised September 2, 2021.

signal analysis, and image processing. Wiesmeyr,

Holighaus, and Søndergaard sought to identify any

possible alternative method for performing the Gabor

transform [3]. The work performed for this thesis seeks to

accomplish a similar goal. This goal is to deduce if an

alternative method using a Graphics Processing Unit

(GPU) as opposed to the standard Central Processing

Unit (CPU) based approach for computing the Gabor

transform would be more efficient. This is an approach

that the referenced paper had not considered.

The topic of the Gabor transform has been explored in

depth by Baxter [4]. While Baxter’s research is not

extremely current it has served as an excellent foundation

laying out the numerous steps for the implementation of a

compression system using a discrete wavelet transform,

in this case the Gabor transform [4]. The use of discrete

wavelet transforms is still a great modern solution to the

compression of images. Baxter’s work was able to break

down the various techniques and steps for performing the

Gabor transformation to filter an image [4]. By

employing similar tactics into a program, the work done

for this project would attempt to optimize this operation

further by expediting the computational time of such an

operation.

In addition, Wang and Shi, seem to have already

expanded into this topic area. However, their research is

antiquated using old GPUs and a method of filtering that

differs from this project [5]. By researching into the

practicality of such an approach with modern GPUs and a

simpler algorithm, the work done during this project

could identify a massive computational leap in the

process of compressing and filtering images. Images

greatly benefit from advances in discrete wavelet

transform compression algorithms because they allow for

the fine tuning of a compression ratio. This is ideal since

typical lossy compression methods used for JPEGs can

result in too much detail being lost from said images

rendering them much blurrier than desired.

While these sources are a few years old this research is

by no means invalid or still not an issue in modern times

as shown by the research teams of Zhao, Tao, Li, and

Wang as well as He et al. [6], [7]. By devising a more

efficient algorithm for compressing and filtering images,

the cost associated in the storage of a large volume of

images can be alleviated. This is on top of a much faster

processing time for said images. In addition, the steps laid

out for this program would be provided in verbose detail

along with providing the open-source code. This in itself

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 146
doi: 10.18178/joig.9.4.146-151

is distinctive as little open-source code exists in this topic

area.

III. OBJECTIVE OF RESEARCH

The objective of this project is to ascertain the benefits,

if they do indeed exist, of a Compute Unified Device

Architecture (CUDA) accelerated program using the

Gabor transform created for the purpose of compressing

and filtering images. This was accomplished by

specifically targeting a computational speed up during the

creation of the Gabor filters used in the Gabor transform.

A program that is able to apply a Gabor filter to an image

would then be required. In addition, a separate algorithm

that incorporates a method to calculate the filtered image

faster would also be required. This would allow for a

direct comparison to be performed between the two

implementation that would provide statistical evidence in

the form of a benchmark pertaining to the relative speed

of each algorithm.

The programming language picked for this research

was Python. Python is a scripting language that is often

used alongside MATLAB for image processing due to the

numerous libraries that are available for use and the

relative ease of implementation of said libraries. Work

was performed on creating an implementation using C++

and CUDA, however numerous difficulties with the

application of the filter so development was shifted to

Python.

The libraries chosen for the implementation of this

program were SciPy and CuPy. SciPy is an open-source

Python library with a multitude of functions [8].

Specifically for the purpose of this research the

convolution function was of importance as this would

apply the filter to the target image. This library also

employs very similar methods to CuPy making them

direct comparisons when comparing the computational

speed.

Likewise, CuPy is an open-source Python library.

Unlike SciPy, CuPy is able to incorporate CUDA’s GPU

accelerated libraries such as cuBLAS, cuDNN, cuFFT,

and more to provide Python with an expansive suite of

GPU integrated functions [9]. CuPy is actively under

development and supports NVIDIA’s most recent

versions of the CUDA toolkit, but has not completely

integrated all of CUDA’s functions from its numerous

libraries. This is one of the few CUDA libraries that is

actively being supported and is recommended by now

defunct and out of date CUDA libraries due to the wide

range of functions that have been incorporated. The

library is also being supported by Nvidia, the creators of

CUDA.

IV. PROGRAMS

Two programs were created in Python with a discrete

purpose. One program was solely responsible for creating

the Gabor filter banks that would be utilized by the other

program which would apply the filter bank to an input

image and benchmark the results.

A. Creation of Gabor Kernels

This program allows the user to adjust the many

aspects that make up a Gabor filter. This includes the

resolution of the filter, the standard deviation of the root

gaussian function, the angle of the sinusoid, the

wavelength of sinusoid, the ellipticity of the sinusoid, and

the phase offset of the sinusoid. The Python library

OpenCV is used to create the Gabor filter according to

the input parameters. The program creates a filter folder

in the directory of the program if it does not already exist,

and gives it a unique name in the form of “gaborFilter#”

where the number sign starts at zero and is incremented

by one until a unique value is found. The file saved is in

the format of npy using a function that saves NumPy

arrays in CuPy. In addition, a csv file is created if it does

not already exist or is appended to if it does exist. The

data wrote to this file records what filter has what

parameters so the filter bank can more easily be examined.

Fig. 1 and Fig. 2 show two example filters created using

this program and shown using the library Matplotlib.

Figure 1. Gabor filter with parameters: Resolution = 30, Standard

Deviation = 3, Angle = π/4, Wavelength = π/4, Ellipticity = 1.0, Phase
Offset = 0.

Figure 2. Gabor filter with parameters: Resolution = 45, Standard

Deviation = 4, Angle = 0, Wavelength = π/2, Ellipticity = 0.5, Phase
Offset = 15.

B. Method for Applying Gabor Kernels

This program applies the filter banks already created

by searching for the “Filters” folder in the same directory

of the Python file. This is the program that is

benchmarked and the one that this research is primarily

concerned with, although the other program allows for

the creation of filter banks to be much easier.

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 147

The program requires the user to provide an input

image and to enter its name as a string. The program will

then search the “Images” folder in the same directory and

quit out if the image is not found. If it is the program will

continue operating. The image is read using OpenCV and

converted to grayscale if it is not already. The image is

then converted into a CuPy array. This differs from the

standard NumPy array because the GPU requires the

allocation of variable and constants separately from the

CPU. A function is then called that counts the total

number of filters in the “Filters” folder, this is the filter

bank. Following this the benchmark for the GPU begins.

The program goes through each filter one-by-one

loading it in as a CuPy array. The array is then convolved

with the CuPy array of the image and the resulting array

is converted into a NumPy array. These steps are also

individually benchmarked to see how long each filter

individually takes to apply and to convert the result back

to the NumPy format. This is repeated for each filter until

each of them has created a convolved result with the

image. Once this is done the benchmark is ended and the

total runtime is calculated by taking the difference of the

end and start times.

Next, the CPU benchmark would begin and follow a

very similar set of steps as the GPU benchmark. The

arrays would be loaded in as NumPy arrays. Following

this they would be convolved with the image; however,

there is no need to convert the result into the NumPy

format. This provides a slight edge to the CPU as the

GPU will need to convert the resulting image into a

NumPy array for further operation to be performed on it.

Nevertheless, these convolutions are also individually

benchmarked and recorded so an analysis on how long

each filter took to apply can be performed. Once all filters

have been applied, the benchmark will be ended and the

total runtime will be calculated.

The results for both the GPU and CPU are saved to a

csv file for later analysis. This includes the total runtime

for the entire filter bank and runtime for each filter

application for both the GPU and CPU. For more details

about the flowcharts of the programs please check

Appendix A.

V. BENCHMARK RESULTS

Fig. 3, Fig. 4, Fig. 5, and Fig. 6 depict the images used

for testing sourced from pixabay. A variety of resolutions

were used for the benchmarking to ensure accurate data

could be gathered across a variety of input images. These

images have a variety of angles and patterns making them

well suited for testing Gabor filters in realistic scenarios.

Fig. 7 and Fig. 8 illustrate the results gathered from

benchmarking. A filter bank of 36 filters with a constant

resolution of 30 was used for benchmarking. From testing

the only parameter that caused a major difference in the

runtime of the functions was when an assortment of

different resolutions was used. A constant resolution was

used as this can be achieved by scaling all filters up to the

resolution of the largest filter’s size.

Fig. 7 highlights the total runtimes for each image at a

specific resolution to have all 36 filters applied to the

image. As stated earlier, the GPU runtime includes the

time it takes to convert the resulting filtered image into a

NumPy array so that it may be processed further by the

CPU as a necessary step.

Fig. 8 focuses on what percent faster the GPU ran in

comparison to the CPU. That is to say an entry of 0%

would mean that the programs ran at the exact same

speed, whereas 100% faster would mean the GPU was

twice as fast or ran in half of the time. Equation 1 shows

how these values were calculated.

Figure 3. Test image referred to as Pantheon.

Figure 4. Test image referred to as Tent.

Figure 5. Test image referred to as Castle.

Figure 6. Test image referred to as Lab.

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 148

Figure 7. Chart comparing the total runtime in seconds for the GPU
and CPU to apply all filters to the test image.

Figure 8. Chart showing the percent increase in computational speed
ordered by resolution size.

TABLE I. GPU VS CPU COMPUTATIONAL PERFORMANCE

Image

Performance

%

Increase

GPU Runtime

(sec)

CPU Runtime

(sec)

Castle 640×439 68.23% 0.34568 0.581535

Castle 1280×879 268.17% 0.682639 2.513258

Castle 1920×1318 379.39% 1.251794 6.000939

Castle 5705×3917 475.71% 9.604088 55.29144

Lab 1920×1280 370.10% 1.214026 5.707164

Pantheon 640×426 88.36% 0.292269 0.550507

Pantheon 1280×853 254.62% 0.649599 2.303611

Pantheon 1920×1280 322.80% 1.335696 5.647336

Tent 640×427 74.69% 0.301277 0.526294

Tent 1280×853 235.88% 0.694818 2.333745

Tent 1920×1280 377.60% 1.169873 5.587256

Tent 3000×2000 416.27% 2.503815 12.92643

Table I provides all of the data shown in Fig. 7 and Fig.

8 in a tabular format for the exact data points for both the

total run time, as well as, the percent faster.

% Increase = (CPUtime – GPUtime)/ GPUtime

 (1)

VI. CONCLUSION

It can be seen from the graphs provided that the GPU

is able to much more effectively perform the calculations

necessary for filtering the image through convolution in

comparison to the CPU. CuPy is able to leverage the

GPU’s ability to parallel process to a degree in which not

even the lowest resolution images are able to be

computed on the CPU faster. This shows the

computational speed is able to overcome the offset of

having to convert the image back to a NumPy formatted

array for the CPU to be able to read. Notably, as the

image’s resolution increases, so too does the speed up

provided from using CuPy.

CuPy and SciPy interestingly seemed to speed up as it

applied more and more filters. While the first initial filter

would take about as long as the SciPy took to filter, CuPy

would accelerate much faster as it applied more and more

from the filter bank. Within two to three filters being

applied in succession CuPy would hit its fastest speeds.

The use of CUDA’s libraries to assist in the filtering of

images with Gabor filters certainly seems to be a realistic

choice that is able to provide consistently faster results

when compared to its CPU based approach in SciPy. The

use of a filter bank exasperates this and ensures that the

GPU will have enough time to ramp up its computational

speed. One thing that does cause issues to arise is when

the filters have different resolutions to the previous one

used. This causes problems in both the GPU and CPU

approach and seems to reset the speed up in

computational speed that occurs when applying filter in

succession. This can be remedied by choosing to utilize a

filter bank with a constant resolution.

VII. FUTURE WORK

CuPy is a library that is still under active development

and is in fact missing a feature that would assist this

program in having the GPU based approach become even

faster. One of the features SciPy has is that for N-

dimensional arrays it can choose the best method to apply

the filter to the image through convolution. From the

testing with the images used it consistently appeared that

using the fast Fourier transform was the most effective

way to apply the filter to the image. CuPy does not yet

support this feature for N-dimensional arrays. What

currently is implemented is only able to perform a direct

convolution for any array that is greater than 1-

dimensional. Should this feature be implemented, it is

very possible that CuPy could see even greater speed in

the process of applying filters to images.

Furthermore, this work serves as the basis to which a

Gabor transform can be implemented with the intent to

compress images. With this algorithm that is able to

compute the convolution of an image and a Gabor filter

faster than the CPU based approach, the Gabor transform

for compressing images can be made quicker. This will

also require the creation of a bit allocation and

quantization system that Baxter outlined [4].

APPENDIX FLOWCHARTS

Fig. 9 and Fig. 10 describe the flowcharts of the

programs used in this paper.

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 149

Figure 9. Flowchart for Gabor filter creation program.

Figure 10. Flowchart for Gabor application program.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conner McInnes conducted the research, analyzed the

data, wrote the paper; Shadi Alawneh supervised all steps;

all authors had approved the final version.

ACKNOWLEDGMENT

The authors wish to thank Michigan Space Grant

Consortium. This work was supported by the Michigan

Space Grant Consortium (Grant Number: NNX15AJ20H).

REFERENCES

[1] H. Badgujar. (2013). Re: What’s the difference between Gabor

filter and Gabor transform? [Online]. Available:

https://www.researchgate.net/post/Whats_the_difference_between
_Gabor_filter_and_Gabor_transform/51348cf4e24a465752000003

/citation/download
[2] B. Deokate, P. Patil, and S. Majgaonkar, “Image compression

using Gabor filter,” International Journal of Emerging Trends in

Electrical and Electronics, vol. 2, no. 3, pp. 28-32, 2013.
[3] C. Wiesmeyr, N. Holighaus, and P. L. Søndergaard, “Efficient

algorithms for discrete gabor transforms on a nonseparable
lattice,” IEEE Transactions on Signal Processing, vol. 61, no. 20,

pp. 5131-5142, Oct. 2013.

[4] R. A. Baxter, “SAR image compression with the Gabor
transform,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 37, no. 1, pp. 574-588, Jan. 1999.
[5] X. Wang and B. E. Shi, “GPU implemention of fast Gabor filters,”

in Proc. IEEE International Symposium on Circuits and Systems,

Paris, 2010, pp. 373-376.
[6] Z. Zhao, R. Tao, G. Li, and Y. Wang, “Clustered fractional Gabor

transform,” Signal Processing, vol. 166, p. 107240, Jan. 2020.
[7] L. He, C. Liu, J. Li, Y. Li, S. Li, and Z. Yu, “Hyperspectral image

spectral-spatial-range Gabor filtering,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 58, no. 7, pp. 4818-4836,
July 2020.

[8] “SciPy.org,” SciPy.org - SciPy.org. [Online]. Available:
https://www.scipy.org/

[9] A NumPy-compatible array library accelerated by CUDA. CuPy.

[Online]. Available: https://docs.cupy.dev/en/stable/

Copyright © 2021 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

Conner McInnes was born in the United
States in 1999. He received a B.S.E. in

computer engineering from Oakland

University, Rochester Hills, United States in
2021. His research interests include computer

vision, robotics, signal processing, and
machine learning.

He has worked for R.L Deppmann as a

Research Intern during 2018 evaluating

possible areas of expansion for products. In

2019 to 2020 he worked for Oakland University’s outreach program as
an Outreach Support Member encouraging and teaching STEM topics to

K-12 students. From 2020 to 2021 he worked at Oakland University for

the GPU Computing Research Laboratory as a Research Student
studying GPU acceleration of Gabor compression algorithms.

Mr. McInnes has received an award for best presentation at international
conference VSIP 2020 for his research performed on Gabor Transforms.

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 150

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Shadi Alawneh received the BEng degree in

computer engineering from the Jordan

University of Science and Technology, Irbid,
Jordan in 2008, the MEng and PhD degrees in

computer engineering from the Memorial
University of Newfoundland, St. John’s, NL,

Canada, in 2010 and 2014, respectively. His

research interests include parallel and
distributed computing, general purpose GPU

computing, parallel processing architecture
and applications, autonomous driving, numerical simulation and

modeling, software design and optimization.

Then, he joined the Hardware Acceleration Lab at IBM Canada as a
staff software developer from May 2014 through August 2014. After

that, he joined C-CORE as a research engineer from 2014 until 2016
and became adjunct professor in the Department of Electrical and

Computer Engineering at Memorial University of Newfoundland in

2016. Dr. Alawneh is currently an assistant professor in the department
of Electrical and Computer Engineering at Oakland University.

Dr. Alawneh has authored or co-authored scientific publications
(including international peer-reviewed journals and conferences). He is

a senior member of the IEEE Computer Society.

Journal of Image and Graphics, Vol. 9, No. 4, December 2021

©2021 Journal of Image and Graphics 151

