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Abstract—This paper presents a novel pairwise registration 

approach, which aligns images of the same object that have 

different ranges. By using a point search medium instead of 

a conventional six-dimensional parameter to reduce the 

number of search dimensions, the new method resulted in a 

higher convergence rate and robustness in the same search 

conditions. The approach integrated a hybrid registration 

strategy, a combination of Iterative Closest Point (ICP) as a 

local aligning tool and a global search algorithm such as 

simulated annealing, particle swarm optimization, 

differential evolution, etc. An adaptive differential evolution 

algorithm called ISADE was chosen as the best-so-far global 

search algorithm. Different experiments on different datasets 

were carried out. In the new method, as compared with the 

conventional approach, better aligning results in convergence 

rate and robustness were observed.  

Index Terms—hybrid registration, 3D registration, ICP, 

global optimization algorithm, point-based registration 

I. INTRODUCTION

Commercial depth camera productions have moved 

computer vision research from using 2D images to 3D 

images or depth data since sufficient information from the 

surrounding environment enables us to handle complicated 

tasks more easily. 3D data have become popular in 

controlling mobile robots and object reconstruction. In 

mobile robot mapping, 3D data captured from different 

positions are aligned and used to create a large map. This 

map could be used for controlling and positioning mobile 

robots to perform their tasks. For a 3D object 

reconstruction problem, 3D images of an object are taken 

from different angles. Those images go through aligning 

steps if camera positions and transformation are not 

available, and they result in a completed single 3D object. 

The process of aligning similar parts of images is known 

as image registration. Rotation and translation movements 

of sensors are calculated through movements that align 

overlapped regions of images. This paper presents work on 

3D pairwise registration. From two point clouds, the 

reference and the current, a pairwise registration algorithm 

estimates  a   transformation,   which   moves  the  current 

toward the reference and causes the two datasets to overlap 

at similar regions.  

Iterative Closest Point (ICP) [1], EMICP [2], and 

generalized-ICP [3] as its variants are key methods in 2D 

and 3D registration. ICP methods (ICPs) often use 𝐿2

(RMSE) error as in Equation (1) to derive a transformation, 

which reduces the error between two point clouds. To 

achieve a final small error, numbers of iterations are 

applied. The most challenging task is how to calculate 

numerous 𝐿2 errors in a reasonable amount of time. ICPs

are local registration methods with the drawback of 

requiring a further assumption in which the initial 

positions of two datasets are close enough to guarantee a 

correct alignment. The closer the gap between the two 

datasets, the higher the rate at which ICPs result in correct 

aligning transformations. Otherwise, the ICPs are often 

trapped in local convergences. Generally, the registration 

process is divided into coarse and fine steps. The coarse 

finds the rough alignment, which brings two point clouds 

close enough together. Then the fine step completes the 

fine alignment. The former remains a challenge with two 

approaches: local and global.  

Local methods use local features [4] such as PFH [5] 

and SIFT [6] descriptions. The coarse movement can be 

estimated when enough corresponding key points appear 

in both the reference and current point cloud. Sample 

consensus algorithms such as RANSAC [7] are widely 

used in this case to find those corresponding point pairs. 

Global methods such as Go-ICP [8] or SAICP [9] use 

global search algorithms and all points of data instead of 

feature points only. Global methods are difficult to apply 

to real-time application because of the high complexity in 

computing a large number of points in one step. By using 

other methods such as multilayer and approximation 

corresponding search, researchers have achieved some 

improvement. Moreover, integrating global search 

algorithms and using powerful Graphics Processing Units 

(GPUs) [10] helps to solve a global registration problem in 

a reasonable amount of time. Different research with a 

global approach using a hybrid mechanism between global 

optimization algorithms and ICP achieved promising 

results. SAICP uses Simulated Annealing (SA) [11] and 

Go-ICP [12] uses Branch-and-Bound (BnB) to search for 

global convergence. Manuscript received September 7, 2021; revised December 21, 2021.
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This paper proposes a novel hybrid point-based global 

registration mechanism using points as search variables. It 

divides alignment movements into two parts 

corresponding to two search variables. In this way, the 

number of search dimensions is reduced from six 

conventional parameter-based methods to two. This 

significantly improved the global convergence rate and 

robustness. As in other hybrid methods, ICP worked as a 

local convergence estimator, cost function calculator. It 

also completed the final fine registration steps. 

Various experiments were carried out to prove the 

advantages in terms of accuracy and robustness by using 

the hybrid-point based integrated with the improved self-

adaptive differential evolution (ISADE) algorithm. 

II. AN OVERVIEW OF 3D GLOBAL POINT CLOUD 

REGISTRATION 

A. Iterative Closest Point (ICP)

From the L2 error of two datapoints, a displacement that

might reduce the error is derived. It moves the current 𝑋 =
{𝑥𝑖} to the reference 𝑌 = {𝑦𝑗}, where 𝑥𝑖, 𝑦𝑗 are points in

the current and the reference respectively. A rotation 

matrix 𝑅 ∈  𝑆𝑂3  and a translation matrix 𝑡 ∈  𝑅3

minimize the 𝐿2 error in Equation (1):

𝐸(𝑅, 𝑡) =  ∑ |𝑅𝑥𝑖 + 𝑡 − 𝑦𝑗∗|
2𝑛

1 (1) 

where 𝑦𝑗∗ is the corresponding closest point of 𝑥𝑖  in the

current Y , with j∗ is as shown in Equation (2). 

𝑗 ∗= min
𝑗∈{1,…,𝑛}

|𝑅𝑥𝑖 + 𝑡 − 𝑦𝑗| (2) 

The flowchart is shown in Fig. 1 in iterations to achieve 

the final transformation. There are different ICP based 

methods using different approaches in determining 

corresponding point pairs to calculate 𝐸(𝑅, 𝑡)  such as 

LMICP [13] and SICP [14]. LMICP uses distance from the 

point in the current scan to a tangent plane of points in the 

reference scan allowing scans to “slide” against each other. 

However, in some cases, where there are few geometric 

constraints such as tunnels or corridors, point-to-plane ICP 

can wrongly converge with too much sliding. It is a benefit 

to weight the point pairs by assigning more weight for 

pairs that are more likely to correspond to each other. 

However, like point-to-plane ICP, in tunnel or corridor 

cases, wall or ceiling points are weight higher while corner, 

far distance, or other feature point influences are 

overwhelmed. In trying to generalize ICP with a possible 

error model, the generalized error in Equation (1) becomes 

a generalized ICP error.  

ICP spends most of its calculation time for nearest 

neighbor searching. A brute-force neighbor search method 

runtime is of 𝑂(𝑚𝑛) complexity with number of points in 

the reference 𝑚 and number of points in the current 𝑛.  

Normally, the points in the reference are stored and 

constructed in a KD-tree [15] with expected runtime for 

one neighbor search reduced to 𝑂(𝑛 𝑙𝑜𝑔 𝑚)  plus 

𝑂(𝑚 𝑙𝑜𝑔 𝑚) for building a KD-tree. Using a KD-tree 

structure, a greater improvement could be achieved 

especially for a greater number m. However, ICP’s total 

runtime remains large. A recent approximate nearest 

neighbors’ search replacing the original KD-tree reduces 

this burden to some degree. ICP is used in the well-known 

accumulation registration method KinectFusion, in which 

every two consecutive frames’ transformation is calculated 

continuously. The current transformation matrix is a 

multiplication of matrices from the previous registration 

steps. 

Figure 1. ICP algorithm implementation steps. 

B. Global Hybrid Approach

A global search algorithm itself has the ability to search

for the global optimal solution. However, to lighten the 

workload for a global search, in the hybrid approach, ICP 

works as a fitness function simplifier. Fig. 2 and Fig. 3 

show ICP effects by turning a black complex fitness 

function into a simple red one. With a simpler fitness 

function, a search algorithm has a higher success rate in 

finding the global convergence point. The transformation 

for the current is calculated as in Equation (3). 

𝑇 = 𝑇𝑖𝑛𝑖 ∗ 𝑇𝑖𝑐𝑝 (3) 

Figure 2. Global hybrid search strategy. 
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Figure 3. ICP simplification for objective function. 

C. Current Hybrid Methods Using Global Heuristic

Search Algorithms on Six Dimension

In Equation (3), 𝑇𝑖𝑐𝑝  is calculated in ICP loops. The

initial transformation matrix 𝑇𝑖𝑛𝑖 , including one rotation

and one translation, is derived as in Roll–Pitch–Yaw 

movements as in Equation (4): 

𝑇𝑖𝑛𝑖 = [
𝑅αβγ 𝑡𝑥𝑦𝑧

0 0 0 1
] (4) 

where 𝛼;  𝛽;  𝛾  are rotation angles and 𝑥;  𝑦;  𝑧  are 

translation variables. 

Simulated annealing simulates a cooling process in 

which a new trial is created based on a temperature 

variable. At the beginning, the temperature value is set at 

a high level, which enables the algorithm to create trials 

far away from the current point. Temperature reduces in a 

cooling procedure and the algorithm stops at maximum 

generation. The trend is mostly downhill with reducing in 

the cost function value, but in some cases uphill steps are 

acceptable. When temperature reaches a minimum value, 

the algorithm results in its best-so-far convergence. SA is 

employed in SAICP, a hybrid registration method. SA uses 

a single candidate in one generation and creates the next 

generation candidate from the current one. Metaheuristic 

algorithms use multiple candidates at one generation (it) 

and create new ones for the next generations from 

combining current generation candidates.  

Differential Evolution (DE) is simple, reliable, and 

robust. It is one of the most effective global search 

algorithms. Using the same process as other EAs, unlike 

other EAs, the DE [16] type algorithms scale current 

generation populations for creating candidates for the next 

generation. Those populations can be selected in all 

members or in mixing elite population members, which 

derived good results in the current generation. New 

populations in DE could be created in different mutation 

schemes. Many DE variants perform better than the 

original [17], the ISADE [18], [19] method is an example. 

In [20], ISADE achieved significantly better results than 

DE in registering 3D range images. By using an adaptive 

mechanism in different search parameters including the 

number of populations, crossover, and scaling factor 

parameters, ISADE converges on good results without 

tuning search parameters. 

By applying wild animal behavior in groups, Particle 

Swarm Optimization (PSO) [21], [22] creates a 

mechanism to make both individual and group perform 

better after generations. The PSO principles are observed 

in living species and in human societies. People want to 

improve themselves; we change our ways toward ones that 

work better. The changing of individuals is influenced by 

their inertia, a small neighborhood group affects the whole 

group. This affect drives individuals to test a different 

possibility for a better result. In [23], Wang et al. used PSO 

in their method to solve the Simultaneous Localization and 

Mapping (SLAM) task in the mobile robot area. 

III. POINT BASED METHOD OVERVIEW

A. Point-Based Approach Methodology

In the Interactive Point Cloud Registration (IPCR) [24]

method, users choose two corresponding points which 

appear in both point clouds, the rest of the registration 

work relies on the ICP algorithm. The idea is to break 

down 𝑇𝑖𝑛𝑖  in Equation (3) into smaller simple parts. The

initial movement can be broken down into two steps: the 

first step makes two corresponding points coincide and the 

second step makes a final move for the current using ICP. 

Adding one rotation movement into the first step of IPCR, 

our registration movement is shown in Fig. 4 with the red 

reference and the blue current point clouds. Instead of only 

one degree of freedom as in IPCR, our method has two 

degrees of freedom, which is enough for aligning point 

clouds at any initial position. 

- Step 1: Normal vector alignment. The movement for

the current point cloud is a translation and a rotation 

combination. The translation matrix is as in Equation (5): 

𝑡0 = [𝑥𝑖 − 𝑥𝑗 𝑦𝑖 − 𝑦𝑗 𝑧𝑖 − 𝑧𝑗]𝑇 (5) 

The rotation moves normal vector 𝑛𝑑  to align with

vector 𝑛𝑚. The rotation and translation matrices are:

𝑅1(𝑗)=

[

𝑢2 + (𝑣2 + 𝑤2)𝑐𝑜𝑠𝜙 𝑢𝑣(1 − 𝑐𝑜𝑠𝜙) − 𝑤𝑠𝑖𝑛𝜙 𝑢𝑤(1 − 𝑐𝑜𝑠𝜙) − 𝑣𝑠𝑖𝑛𝜙

𝑢𝑣(1 − 𝑐𝑜𝑠𝜙) + 𝑤𝑠𝑖𝑛𝜙 𝑣2 + (𝑢2 + 𝑤2)𝑐𝑜𝑠𝜙 𝑣𝑤(1 − 𝑐𝑜𝑠𝜙) − 𝑢𝑠𝑖𝑛𝜙

𝑢𝑤(1 − 𝑐𝑜𝑠𝜙) − 𝑣𝑠𝑖𝑛𝜙 𝑣𝑤(1 − 𝑐𝑜𝑠𝜙) + 𝑢𝑠𝑖𝑛𝜙 𝑤2 + (𝑢2 + 𝑣2)𝑐𝑜𝑠𝜙

] (6) 

𝑡1(𝑗)=

[

(𝑎(𝑣2 + 𝑤2) − 𝑢(𝑏𝑣 + 𝑐𝑤))(1 − 𝑐𝑜𝑠𝜙) + (𝑏𝑤 − 𝑐𝑤)𝑠𝑖𝑛𝜙

(𝑏(𝑢2 + 𝑤2) − 𝑣(𝑏𝑣 + 𝑐𝑤))(1 − 𝑐𝑜𝑠𝜙) + (𝑐𝑢 − 𝑎𝑤)𝑠𝑖𝑛

(𝑐(𝑣2 + 𝑢2) − 𝑤(𝑏𝑣 + 𝑐𝑤))(1 − 𝑐𝑜𝑠𝜙) + (𝑎𝑣 − 𝑏𝑢)𝑠𝑖𝑛𝜙

] (7) 

𝑇1(𝑗)=[
𝑅1(𝑗) 𝑡1(𝑗)

0 0 0 1
]      (8) 

where [𝑎, 𝑏, 𝑐] = [𝑥𝑥𝑖
, 𝑦𝑥𝑖

, 𝑦𝑥𝑖
] , [𝑢 𝑣 𝑤]𝑇  is the

normalized vector (𝑛𝑑⃗⃗ ⃗⃗   × 𝑛𝑚⃗⃗ ⃗⃗  ⃗), and 𝜙 is the angle between

vector 𝑛𝑚⃗⃗ ⃗⃗  ⃗ and 𝑛𝑑⃗⃗ ⃗⃗  .
- Step 2: Directional alignment. The current is rotated

about the normal vector 𝑛𝑚⃗⃗ ⃗⃗  ⃗) 𝜃 angle. The transformation

matrix is 𝑅2(𝜃) and 𝑡2(𝜃) calculated in the same way as

above 𝑅1(𝑗) and 𝑡1(𝑗) with [𝑢 𝑣 𝑤]𝑇  = 𝑛𝑚⃗⃗ ⃗⃗  ⃗ and 𝜙 = 𝜃.

𝑇2(𝜃) =  [
𝑅2(𝜃) 𝑡2(𝜃)

0 0 0 1
] (9) 

Now, the initial transformation matrix as in Equation (3) 

includes two variables as in Equation (10). 

𝑇 = 𝑇1(𝑗) ∗ 𝑇2(𝜃) (10) 

Journal of Image and Graphics, Vol. 10, No. 1, March 2022

©2022 Journal of Image and Graphics 3



Figure 4. Aligning point clouds in two steps. 

The implementation is shown in algorithm 1 which is a 

common implementation for hybrid registration such as 

PSO-ICP, SA-ICP, and SaEvo [25]. 

Algorithm 1:  

1: Procedure Search algorithm. 

2:  Initialize Xi = with the center point of the reference. 
3:  Initialize for populations with random values 

of (𝜃;  𝑗) 

4:  while (Not reached stop criterion) do 

5:  for the whole populations do 

6:  Move the data surface to model 

surfaces using point-based steps. 

After applying ICPs, remaining 
error is calculated. 

7:  end for 

8:  Sort all populations in decreasing error order. 
9:  Update the best-so-far solution 

until the current step. 

10:  Update for the next generation population from 
the current generation using suitable search 

strategies (SA, PSO, DE, ISADE, etc.). 

11:  end while 
12: end procedure 

13: 

14: procedure Fine registration. 
15: Use ICP for best-so-far-solution from the above search 

procedure. 

16: end procedure 

B. Robust Objective Function For Global Registration

The objective function has the global smallest value at

the correct alignment of two point clouds. We used a 

modified fitness function 𝐹 (𝑅;  𝑡) derived from 𝐸(𝑅;  𝑡), 

similar to [20]. 

𝐹(𝑅, 𝑡) = 𝑓(𝑘)𝐸(𝑅, 𝑡)          (11) 

The function 𝑓(𝑘) reduces the cost function at a larger 

number of inlier cases as in Equation (12). It also 

eliminates an incorrect convergence possibility where 𝐿2

is small but the number of inliers is small too. 

𝑓(𝑘) = {
∞  𝑖𝑓 𝑘 < 𝑛/10

1 −
𝑘

𝑛
 𝑖𝑓 𝑘 > 𝑛/10

        (12) 

here, 𝑛 is the number of points in the current and 𝑘 is the 

number of inliers. 

IV. EXPERIMENT AND RESULTS

A. Experimental Setup

In this section, 3D data were scanned; surface data were

available on the internet. The first group of 3D scanned 

data was from the Stanford 3D Scanning Repository 

website http://graphics.stanford.edu/data/3Dscanrep. 

Armadillo, Dragon, Stanford Bunny, and Happy Buddha 

scans were used. The second group was in the Queen’s 

Range Image and 3-D Model Database which is available 

at: 

https://code.engineering.queensu.ca/rcvlabdatabases/qr3d. 

Old Gnome and Angel scans were used. The scanned data 

used in experiments are shown in Fig. 5. The experiments 

aimed to show the advantage of the new approach in coarse 

registration in comparison with the conventional six-

dimensional method on different scanned data. To enable 

algorithms to finish in a reasonable amount of time on a 

normally-equipped computer, all input data were 

subsampled, and the size reduced to 2000 points. In ICP 

loops, only 100 points in the current point cloud were used 

to significantly reduce runtime. Fig. 6 shows the 

subsampled input cloud data. 

Figure 5. Stanford and Queens objects. 
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Figure 6. Stanford and Queens subsampled scans. 

In the point-based approach, all points in the current 

were set in the search pool, the angle 𝜃 search range was 

[−𝜋/2; 𝜋/2] . Meanwhile, the search ranges in 

conventional methods were set at [−𝜋/2; 𝜋/2] and [−0.15; 

0.15] for (𝛼;  𝛽;  𝛾) and (𝑥;  𝑦;  𝑧) , respectively. All 

algorithm codes were written in C++ language with 

reference from [26]. We used a laptop installed with an 

Intel core i3, 1.3 GHz processor. The results were from 

each combination of data scanned 500 times. The number 

of populations was N=50 and the number of iterations was 

50 for DE, ADE, and PSO algorithms. The iteration 

number was set at 2500 for the SA algorithm. FLANN [26], 

an approximate KD-Tree structure library, was used to 

reduce neighbor searching time. The names of algorithms 

were written as follows: 

• PSA-ICP and SA-ICP are abbreviations for point-

based and original combinations of SA and ICP,

respectively.

• PPSO-ICP and PSO-ICP are abbreviations for

point-based and original combinations of PSO and

ICP, respectively.

• PDE-ICP and DE-ICP are abbreviations for point-

based and original combinations of DE and ICP,

respectively.

• PADE-ICP and ADE-ICP are abbreviations for

point-based and original combinations of Adaptive

DE (ISADE) and ICP, respectively.

Parameters for each algorithm are in Table I. 

TABLE I. PARAMETERS FOR GLOBAL SEARCH ALGORITHMS 

SA DE ISADE PSO 

𝑇0=100 

𝛽= 0.003 

𝐹0= 0.8 

𝐶𝑟= 0.9 

𝐹𝑚𝑎𝑥= 1.6 

𝐹𝑚𝑖𝑛= 0.4 

𝑛𝑚𝑖𝑛= 0.2 

𝑛𝑚𝑎𝑥= 6.0 

𝑐1 = 2.1 

𝑐2 = 2.1 

K = 0.5 

B. Alignment Results with Different Objects and

Algorithms

At first, different algorithms were used to register

different objects. The currents and the references in all 

cases were at 100 percent of overlap with the arbitrary 

initial position, which means they were subsamples from 

the same scans. The box plot error of all results are shown 

in Fig. 7, Fig. 8. 

Figure 7. Results from Bunny, Dragon, and Armadillo scans on different algorithms. 
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Figure 8. Results from Happy Buddha, Gnome, and Angel scans on different algorithms. 

From Fig. 7 and Fig. 8, a similar result pattern of 

different algorithms on different scans can be observed. 

PDE-ICP, PADE-ICP, and ADE-ICP rank as the best 

algorithms; their error boxes are almost invisible in all 

figures of Fig. 7 and Fig. 8. 

Multiple agents search methods (PSO, DE, and ADE) 

performed significantly better than SA, a single agent 

method in almost all objects. 

For further comparison between the point-based 

approach and their counter parts, Fig. 9 and Fig. 10 show 

results in pairs of search algorithms. 

Figure 9. Comparison between PSA-ICP, PDE-ICP in red boxes and SA-ICP, DE-ICP in yellow boxes. 

Figure 10. Comparison between PADE-ICP, PPSO-ICP in red boxes and ADE-ICP, PSO-ICP in yellow boxes. 
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Of all figures in Fig. 9 and Fig. 10, point-based 

algorithms outperformed their parameter-based ones. Only 

the PPSO-ICP Angel scan had worse results than PSO-ICP. 

From Fig. 11, PADE-ICP and PDE-ICP both gained 

small final convergence results. PADE-ICP outperformed 

PDE-ICP with significantly smaller errors. 

From all comparisons, we came to the conclusion that 

our chosen combination, PADE-ICP was the best-so-far 

point-based algorithm.  

Fig. 12 shows the aligned results with different scans, 

mixed and matched color of currents in red and references 

in green dots are observed. 

Figure 11. PDE-ICP results in yellow and PADE-ICP results in red. 

Figure 12. Aligned results with different scans, mixed and matched color of currents in red and references in green dots are observed. 

C. Alignment Results with PADE-ICP at Different

Overlap Rate

The new algorithm was tested with different overlap 

rates for different objects. The rate percentages were 75, 

87, 83, and 87 for Bunny, Dragon, Armadillo, and Happy 

Buddha, respectively. Happy Buddha scans with smaller 

overlap rates of 73 and 60 were also investigated. The 

results are shown in Fig. 13. 

Figure 13. PADE-ICP on different objects and overlap rates. 

The success rate for different scans of Bunny, Dragon, 

Armadillo, and Happy Buddha were 100, 100, 100 and 

99.8 percent, respectively. The success convergence in the 

experiment means PADE-ICP achieved the smallest error. 

With the same scan data of Happy Buddha, the success 

rates were 99.8, 89, and 85.2 percent for 87, 73, and 60 

percent of overlap rate, respectively. The smaller success 

rate is expected as the percentage of overlap rate was 

reduced. 

Figure 14. Alignment results at 87, 73, and 60 overlap rates from left to 
right. The red oval shows the region aligned apparently incorrectly. 

Failed convergences were observed even with the 

smallest error. Fig. 14 shows the correct convergence for 

the Happy Buddha scan at 87 and 73 percent of overlap 

rate and an incorrect convergence at 60 percent of overlap 
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rate. To remove incorrect convergences, the stronger 

outlier rejection for error function should be investigated 

in the next stage of this research. Incorrect convergence 

could be a result of the center point selection of the 

reference when it does not appear in the current. A method 

to choose a stable center point should be applied in future 

work. 

D. Runtimes and Success Rate on Population Size and

Iteration Number

In this experiment, Happy Buddha scans with 73 percent 

overlap rate were used since it showed the lowest success 

rate (90.2%) but was correctly aligned. The results are 

shown in Table II and III. 

TABLE II. SUCCESS RATE OF PADE-ICP ON HAPPY BUDDHA SCAN 

WITH 73 PERCENT OVERLAP RATE AT 50 ITERATIONS 

Population size 30 40 50 60 70 

Success rate  83.4% 86.2% 89.0% 89.6% 86.4% 

Runtime(s) 0.71 0.95 1.19 1.45 1.66 

TABLE III. SUCCESS RATE OF PADE-ICP ON HAPPY BUDDHA SCAN 

WITH 73 PERCENT OVERLAP RATE AT 50 POPULATION SIZE 

Iteration 30 40 50 60 70 

Success rate  85.6% 87.2% 89.0% 90.2% 90.0% 

Runtime(s) 0.76 0.97 1.2 1.4 1.64 

From Table II and III, it is clear that an increasing 

number of iterations or populations does not always 

achieve better results. When they reach a certain number, 

60 for population and 60 for iteration number, the 

convergence rate almost stops improving. 

V. DISCUSSION AND CONCLUSION

The new method was proposed to solve a 3D point cloud 

data registration problem with a combination of a novel 

point-based approach and an adaptive differential 

evolution search method (ISADE). Results from various 

experiments on different scanned data showed 

improvements in the robustness and accuracy of the new 

approach over the conventional six-dimensional search. 

Moreover, using the ISADE algorithm, PADE-ICP 

achieved the best-so-far results. 

Currently, the center point of the reference is used as the 

based point for searching for the corresponding point on 

the current. This assumption limits the overlap rate to fifty 

percent. The mechanism of having not only one center 

point should be considered. The quality of center points 

need further investigation. In addition, normal vectors 

were estimated from a number of nearest points on the 

subsampled data by using the SVD method. By preserving 

normal vectors in the subsampling step, a more correct 

normal vector could bring better results.  

PADE-ICP worked well on low overlap rate cases and 

in scanned data with a high number of identical features. 

More investigation on the high overlap rate and low feature 

number registration should be carried out in the future 

work. 
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