Blind Image Restoration and Super-Resolution for Multispectral Images Using Sparse Optimization

Yoshitaka Izumi, Dan Suto, Sota Kawakami, and Hiroyuki Kudo
University of Tsukuba, Tsukuba, Japan
Email: {izumi, kawakami}@imagelab.cs.tsukuba.ac.jp, kudo@cs.tsukuba.ac.jp

Abstract—The purpose of this paper is two-fold. First, we extend the Blind Image Deconvolution (BID) and blind Super Resolution (SR) methods developed in our previous work to multispectral images. Second, we introduce a new regularization technique called Patch-Based regularization in the BID and SR problems. This technique uses a low-rank property of image patches obtained by dividing each channel image as well as correlations in image intensity among different channels. We demonstrate performances of the proposed methods by simulation studies using images of a multispectral camera.

Index Terms—super-resolution, blind image deconvolution, low-rank matrix recovery

I. INTRODUCTION

Techniques aiming at recovering an original image from single or multispectral images without knowing the Point Spread Function (p.s.f.) are called Blind Image Deconvolution (BID), and techniques aiming at recovering a high-resolution (HR) image from a Low-Resolution (LR) image without knowing the p.s.f. is called Super-Resolution (SR). The major difficulties in these problems are summarized as follows.

1) Non-convex Nature: When the p.s.f. is unknown, these problems lead to an optimization of a non-convex cost function, which is difficult to solve [1].

2) Ill-posed Nature: When the p.s.f. is unknown, these problems are inherently under-determined, because the number of unknown variables to be estimated is larger than the number of measurements [2].

Therefore, various methods have been proposed to solve these problems. In the BID problem, the major classical methods are Ayers-Dainty algorithm [3] and NAS-RIF algorithm [4]. However, it is known that the performance of these methods is not enough mainly because these methods do not overcome the two above mentioned difficulties in a successful way. In 2014, Ahmed et al. proposed a new method that converts the BID problem into a convex optimization, thereby leading to overcoming the issue of non-convex nature [1]. In the SR problem, there exist two major approaches. The first one is the single-frame SR, and the other is the multi-frame SR. For example, an interpolation-based method [5] and a machine-learning based method [6] belong to the category of single-frame SR. On the other hand, the multi-frame SR includes the method using multi-frame images of video sequences [7] and the motion-less SR method using multiple defocused images [8]. However, it is fair to say that most existing SR methods are assuming that the p.s.f. of camera is known.

Very recently, we have developed an improved version of Ahmed’s BID method by introducing regularization terms and newest optimization techniques [9], [10]. Furthermore, we have demonstrated that this method can be applied to the problem of generating all-in-focus images as well as the blind motion-less SR problem [9], [10]. According to our knowledge, these methods work in a rather stable way compared to the classical BID techniques. However, the investigations in [9], [10] are limited to the case of single-channel image. The purpose of this paper is two-fold. First, we extend the BID and blind SR methods developed in [9], [10] to multispectral images, which are of increasing attention according to wide-spread use of multispectral cameras in a number of applications. Second, we introduce a new regularization technique called Patch-Based regularization. This technique uses a low-rank property of image patches obtained by dividing each channel image as well as correlations in image intensity among different channels. We mention that the Patch-Based regularization has been already used in several problems in image processing such as denoising and deblurring [11], [12]. We also mention that SR methods using BID have been studied by other researchers [13], [14]. However, these papers treat only the case of single-channel image.

II. IMAGE DEGRADATION MODEL

There exist various factors that degrade the measured image by using a sensor. Among them, in this paper, we consider the blurring and under sampling (down sampling), i.e. loss in image resolution. Such image degradation can be expressed as:

$$\hat{s} = B(\hat{f}), \hat{g} = D(\hat{s}) \quad (1)$$
where \(\mathbf{f} \), \(\mathbf{s} \) and \(\mathbf{g} \) are vectors representing the original image \(F \), the degraded image \(S \) and the LR image \(G \), respectively. The symbol \(B \) is a matrix representing the degradation by blurring, and \(D \) is a matrix representing the down sampling that generates the LR image from the degraded image. We consider the model given by left of Eq. (1) for the BID problem, and the model given by right of Eq. (1) for the SR problem. In Fig. 1, we show the schematic diagram of the image degradations expressed by Eq. (1).

![Image degradation models in the BID and SR problems.](image)

Figure 1. Image degradation models in the BID and SR problems.

III. AHMED’S BLIND IMAGE DECONVOLUTION AND SUPER-RESOLUTION METHODS

In this section, we review the principle of Ahmed’s BID method. First, we explain fundamental mathematical knowledge used in Ahmed’s BID method. The outer product \(\mathbf{m} \otimes \mathbf{n} \) formed by \(\mathbf{m} \) and \(\mathbf{n} \), denoted by \(\mathbf{m}\mathbf{n}^T \), can be expressed as:

\[
\mathbf{m} \otimes \mathbf{n} = \mathbf{m}\mathbf{n}^T = \begin{pmatrix}
m_1 n_1 & m_1 n_2 & \cdots & m_1 n_f \\
m_2 n_1 & m_2 n_2 & \cdots & m_2 n_f \\
\vdots & \vdots & \ddots & \vdots \\
m_f n_1 & m_f n_2 & \cdots & m_f n_f
\end{pmatrix}
\tag{2}
\]

If neither \(\mathbf{m} \) nor \(\mathbf{n} \) are zero vectors, the rank of matrix \(\mathbf{m}\mathbf{n}^T \) is always 1. This property is used in Ahmed’s BID method. Next, we describe the convolution of the image. The degradation of original image \(F(x, y) \) due to the blurring is expressed by using 2-D convolution as:

\[
S(x, y) = \sum_{y' = -\infty}^{\infty} \sum_{x' = -\infty}^{\infty} H(x', y') F(x + x', y + y')
\tag{3}
\]

where \(S(x, y) \) is the degraded image and \(H(x, y) \) is the p.s.f. of blurring. We assume that the size of both the original and blurred images is \(M_x \times M_y \) (pixels), and the size of p.s.f. is \(K_x \times K_y \) (pixels). The purpose of BID is to simultaneously recover \(F(x, y) \) and \(H(x, y) \) from only \(S(x, y) \).

Hereafter, we explain Ahmed’s BID method in its original form. Since Eq. (3) contains the product of \(F(x, y) \) and \(H(x, y) \), it is difficult to recover \(F(x, y) \) and \(H(x, y) \) under the condition that both \(F(x, y) \) and \(H(x, y) \) are unknown. This is the main reason why solving the BID problem is so difficult.

To solve the BID problem in an elegant way, Ahmed et al. used the following facts. First, we define the outer product matrix \(\mathbf{X} \) formed by \(\mathbf{f} \) and \(\mathbf{h} \) as:

\[
\mathbf{X} = \mathbf{f} \otimes \mathbf{h} = \mathbf{f}\mathbf{h}^T
\tag{4}
\]

where \(\mathbf{f} \) is the original image vector in which all elements of \(F(x, y) \) are arranged according to the raster-scan order, and \(\mathbf{h} \) is the p.s.f. vector in which all elements of \(H(x, y) \) are arranged according to the raster-scan order. Since the matrix \(\mathbf{X} \) contains products of an \(i \)-th element of \(\mathbf{f} \) and an \(j \)-th element of \(\mathbf{h} \) for all combinations of \((i, j)\), Eq. (3) can be rewritten as:

\[
S(x, y) = \sum_{y' = -\infty}^{\infty} \sum_{x' = -\infty}^{\infty} X(y + y', x + x') (y + y') M_x + x + x' y' K_x + x'
\tag{5}
\]

Therefore, using the vector \(\mathbf{s} \) defined by arranging all elements of \(S(x, y) \) according to the raster-scan order, Eq. (5) can be expressed as:

\[
\mathbf{s} = \mathbf{A}(\mathbf{X})
\tag{6}
\]

where \(\mathbf{A} \) is a linear operator that represents the image degradation due to the blurring. Here, since the matrix \(\mathbf{X} \) is an outer product and its rank is clearly 1, Eq. (6) can be formulated as a rank minimization problem expressed as:

\[
\min_{\mathbf{X}} \text{rank}(\mathbf{X}) \text{ subject to } \mathbf{s} = \mathbf{A}(\mathbf{X})
\tag{7}
\]

However, it is well-known that the rank minimization problem is non-convex and its complexity is NP-hard. To overcome this drawback, Ahmed et al. replaced the rank minimization problem by the nuclear norm minimization as:

\[
\min_{\mathbf{X}} \|\mathbf{X}\|_\ast \text{ subject to } \mathbf{s} = \mathbf{A}(\mathbf{X})
\tag{8}
\]

where \(\|\mathbf{X}\|_\ast \) denotes the nuclear norm of \(\mathbf{X} \). Furthermore, the same technique can be used for the SR problem, leading to:

\[
\min_{\mathbf{X}} \|\mathbf{X}\|_\ast \text{ subject to } \mathbf{g} = \mathbf{D}(\mathbf{A}(\mathbf{X}))
\tag{9}
\]

Next, we extend these formulations, i.e. Eq. (8) and (9), to multispectral images. During the extension, we introduce a new regularization technique by using a low-rank structure of the multi-spectral images, which is the major original contribution of this paper. We note that the use of regularization has not been described in Ahmed’s original paper [1].

IV. PROPOSED METHOD

A. Formulation with Patch-Based Regularization for Multispectral Images

In this section, we first extend Eq. (8) and (9) of Ahmed’s method to multispectral images. We define an outer product matrix corresponding to the \(n \)-th channel image by:
\[X_n = f_n \otimes h_n = f_n h_n^T \quad (n = 1, 2, \ldots, N) \] (10)
where \(f_n \) and \(h_n \) are the \(n \)-th channel image vector and the \(n \)-th channel p.s.f. vector, and \(N \) is the number of channels. Furthermore, we define image patches generated by dividing each channel image as:
\[Y_m = p_m \otimes h_m = p_m h_m^T \quad (m = 1, 2, \ldots, M) \] (11)
where \(p_m \) and \(h_m \) are the \(m \)-th image patch vector and the p.s.f. vector, and \(M \) is the number of patches. We also define a set of all patches contained in all the channels as:
\[Y_i = Y_{(m)n} = p_{(m)n} \otimes h_{(m)n} = p_{(m)n} h_{(m)n}^T \]
\[(n = 1, 2, \ldots, N, m = 1, 2, \ldots, M, i = 1, 2, \ldots, NM) \] (12)

We can arrange these matrices to construct a 3rd order tensor \(\mathcal{Y} \). The \(i \)-th frontal slice \(Y_{;i} \) of \(\mathcal{Y} \) are defined by:
\[Y_{;i} = Y_i (i = 1, 2, \ldots, NM) \] (13)

With respect to the \(i \)-th frontal slice \(Y_{;i} \): Eq. (8) and (9) can be rewritten as follows, respectively.
\[\min ||Y_{;i}|| \quad \text{subject to} \quad \bar{s}_i = A(Y_{;i}) \] (14)
\[\min ||Y_{;i}|| \quad \text{subject to} \quad \bar{g}_i = D(A(Y_{;i})) \] (15)

where \(\bar{s}_i \) is the \(i \)-th degraded image vector and \(\bar{g}_i \) is the \(i \)-th LR image vector. The formulations by Eq. (14) and (15) are simple extensions of Ahmed’s BID method, where we apply Ahmed’s method to each frontal slice of tensor \(Y_{;i} \) separately. Finally, the method of generating a tensor \(\mathcal{Y} \) from a multispectral image can be summarized as shown in Fig. 2. However, solving Eq. (14) and (15) does not provide accurate and stable solutions, because the number of unknowns to be estimated, i.e., the number of variables in the multi-channel image plus total number of variables in the p.s.f. \(\bar{h}_{(m)n} \) (\(m = 1, 2, \ldots, M \)), are much larger than the number of measured data so that the problem is underdetermined.

Using the notation of Eq. (16) with the patch matrix \(\mathcal{P} \in \mathbb{R}^{(N \times M)} \) and the degradation process matrix \(H \in \mathbb{R}^{(K \times N \times M)} \), the tensor \(\mathcal{Y} \) can be decomposed as:
\[\mathcal{Y} = \mathcal{P} \otimes H \quad \text{where the matrices} \quad \mathcal{P} \quad \text{and} \quad H \quad \text{are defined by:} \]
\[\mathcal{P} = [\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_{NM}] \quad \text{and} \quad H = [\mathcal{h}_1, \mathcal{h}_2, \ldots, \mathcal{h}_{NM}] \] (18)

We note that \(\mathcal{P} \) can be interpreted as the patched multi-channel image matrix, and \(H \) can be interpreted as the collection of all p.s.f. defined for each channel \(n \) and each image patch \(m \).

Next, we introduce regularization terms for the matrices \(\mathcal{P} \) and \(H \) using characteristics of multi-channel images. In this work, we use the following three constraints.

1) Similarity among Channels and Similarity among Patches: In the multispectral images \(f_n \), different channels have similarities in image intensity. Furthermore, a set of image patch vectors \(\mathcal{P}_i \) generated by dividing each single channel image \(f_n \) into small patches \(\bar{p}_{(m)n} \) is of low-rank.

2) Low-rank Property of Image Matrix: When considering a two-dimensional image as a matrix \(F_n \), this matrix is of low-rank.

3) Independence of p.s.f. on Channels and Patches: The p.s.f. \(\bar{h}_{(m)n} \) are same for all the channels \(n = 1, 2, \ldots, N \) and all the patches \(m = 1, 2, \ldots, M \).

We use Constraint 1 and Constraint 2 for the patched image matrix \(P \) and Constraint 3 for the p.s.f. matrix \(H \). We introduce three operators \(Q_1(P), Q_2(P), \) and \(R(H) \) to perform the regularization as follows. Since the matrix \(P \) is of low-rank (Constraint 1), the corresponding operator \(Q_1(P) \) is the soft-thresholding applied to \(P \), which is expressed as:
\[P' = Q_1(P) = S_{\delta}(P) \]
\[S_{\delta}(P) = U \text{Diag} \left(\max(\sigma - \delta, 0) \right) V^T, U \Sigma V^T = P \] (19)

Next, since the matrix \(P \) contains all the pixel values of the original image, \(N \) image matrix \(F_n \) \((n = 1, 2, \ldots, N) \) can be created from this matrix. Therefore, the operator \(Q_2(P) \) corresponding to Constraint 2 can be constructed by the soft-thresholding acting on each \(F_n \), which is expressed as:
\[P'' = Q_2(P); P \rightarrow F_1, F_2, \ldots, F_N \]
\[F_n = S_{\delta}(F_n) = U \text{Diag} \left(\max(\sigma - \gamma, 0) \right) V^T \] (20)

Finally, the operator \(R(H) \) corresponding to Constraint 3 becomes an averaging operator which replaces all rows of the matrix \(H \) by their averages, i.e., taking the average of \(\bar{h}_1, \bar{h}_2, \ldots, \bar{h}_{NM} \) followed by replacing all rows by the average. This operator is expressed as:
where \overline{h}_i and \overline{h}_k correspond to the matrices H and H', respectively, as in Eq. (18).

Incorporating these regularization operators into the formulations of Eqs. (14) and (15), the proposed method finds a solution $Y_i = P \otimes H$ to the regularized counterparts of Eqs. (14) and (15) by using an iterative algorithm based on the Proximal Gradient (PG) method similar to those used in our earlier work [9], [10]. When applied to the current multi-channel and patched problems, it consists of four steps summarized below.

(Loop to end of iterations)
[Step 1] (Update along the gradient of data fidelity term)

$$Y_{i}' = Y_{i} - (\tau)^{-1} A^*(A(Y_{i}) - s_i)$$ \hspace{1cm} (22)

[Step 2] (Calculation of P, H' from Y_i' using SVD)

$$U \Sigma V^T = Y_{i}' = \lambda \overline{u}_i \overline{v}_i = \sigma \overline{v}_i / \lambda$$ \hspace{1cm} (23)

[Step 3] (Applying the constraint operators $Q_1, Q_2, and R$)

$$P = Q_1(Q_2(P')), H = R(H')$$ \hspace{1cm} (24)

[Step 4] (Calculation of Y_i' from P, H)

$$Y_i = P \otimes H$$ \hspace{1cm} (25)

(End while)

In Algorithm 1, the symbol “sum” means the sum of all elements of vector. With respect to Algorithm 1, we have the following remark. Normally, the PG method for nuclear norm minimization as in Eq. (14) uses the singular value thresholding operator $S_\sigma(X)$ corresponding to the so-called soft-thresholding defined by Eq. (19). However, it has been reported in [9] that, under the current situation where the matrix X is of rank 1, the algorithm works much better by picking up only the maximum singular value and discarding the others. This modification significantly improves stability and convergence speed. In addition, computational cost per iteration is reduced because we need to compute only a largest singular value. In particular, in Algorithm 1, since it is necessary to obtain \overline{v}_i and \overline{h}_i from Y_{i}' in each slice, we use only the singular vectors (\overline{u}_i, \overline{v}_i) corresponding to the maximum singular value σ_1 as in Step 4 in Algorithm 1.

The iterative algorithm to solve the SR problem, i.e. regularized version of Eq. (15), is very similar to Algorithm 1. The only necessary change is that Step 3 in Algorithm 1 needs to be modified as:

$$Y_{i}' = Y_{i} - (\tau)^{-1} A^*(D^* A^* (D (A(Y_{i}'')) - \overline{g}_i))$$ \hspace{1cm} (26)

where D^* is the adjoint matrix of D, and \overline{g}_i is the i-th patch corresponding to the measured LR image.

V. EXPERIMENTAL RESULTS

We performed experiments on the proposed BID and SR methods. The both experiments use test multispectral images distributed on Columbia University website [15]. The used multispectral images have 31 channels (bands) measured with wavelengths between 400nm and 700nm in intervals of 10nm. In implementation, we set the size of image patches to 16 (4×4) in both the experiments.

A. Simulation of Blind Image Deconvolution

First, we performed a simulation of the proposed BID method. A degraded image was generated with three different p.s.f, i.e. PSF1, PSF2, and PSF3. The size of all the p.s.f are 5×5 (pixels). PSF1 is a diagonal matrix in which values of the diagonal elements are one, PSF2 is an anti-diagonal matrix in which values of the anti-diagonal elements are one, and PSF3 is a Gaussian filter where the blurring parameter was set to $\sigma = 2.0$. In Fig. 4, we illustrate the three p.s.f.
In this experiment, values of the parameters were set to $\gamma = 1.0$ and $\delta = 5.0$ in all the p.s.f. cases. The number of iterations was 3,000. The simulation was performed by assuming that the size of p.s.f. is 7×7 (pixels). To evaluate restoration accuracy, we used the Peak-Signal-to-Noise Ratio (PSNR) and the Structural Similarity (SSIM) [16]. The value of PSNR was calculated by:

$$\text{PSNR} = 20 \cdot \log_{10} \left(\frac{\text{MAX}}{\sqrt{\text{MSE}}} \right)$$

where MAX denotes the maximum pixel value, \bar{X} denote the original image and the recovered image, and Y, X denote the vertical and horizontal sizes of image. We show restored images in Fig. 5, and values of PSNR and SSIM in Table I. In Fig. 5, to save the page length, we show only the images corresponding to 21st channel. For comparison, we also show the result without regularization ($\gamma = 0.0$ and $\delta = 0.0$) and the result by the Ayers-Dainty algorithm [3] with Total-Variation (TV) [17] regularization. At the same time, we also show RGB images constructed by assigning 31st channel to R, 16th channel to G, and 6th channel to B, but we note that they are different from conventional color images taken by an RGB camera. With respect to both PSNR and SSIM, the proposed method yields the best result demonstrating that it is effective. We observe that severe artifacts appear when we use no constraints, but accurate restoration is possible when using the constraints. In addition, the Ayers-Dainty algorithm [3] with TV [17] yields relatively good results with a single image, but they cause severe artifacts in the RGB images. However, the proposed method yields good restoration results even with the RGB images by taking the channel correlation into account.

B. Simulation of Super-Resolution

Second, we performed a simulation of the proposed SR method. In this experiment, we used a set of LR multispectral images, which were generated by blurring HR images with p.s.f. followed by down sampling. The down sampling was done by averaging 2×2 pixel values. The parameter of Gaussian filter was set to $\sigma = 1.0$, and the size of p.s.f. was 3×3 (pixels) in PSF4 and 5×5 (pixels) in PSF5. In this experiment, values of the parameters were set to $\gamma = 1.0$ and $\delta = 5.0$ in all the p.s.f. cases, and the number of iterations was 5,000. The simulation was performed by assuming that the size of p.s.f. is 5×5 (pixels) for PSF4 and 7×7 (pixels) for PSF5, i.e. larger than the true support. We show restored HR images in Fig. 6, and values of PSNR and SSIM in Table II. With respect to both PSNR and SSIM, the proposed method yields the best result.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Restored Image</th>
<th>Without Constraints</th>
<th>Ayers-Dainty [3]+TV</th>
<th>Degraded Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF4</td>
<td>PSNR 30.21</td>
<td>25.07</td>
<td>12.23</td>
<td>29.02</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.873</td>
<td>0.700</td>
<td>0.104</td>
<td>0.818</td>
</tr>
<tr>
<td>PSF5</td>
<td>PSNR 22.07</td>
<td>17.21</td>
<td>14.83</td>
<td>20.91</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.734</td>
<td>0.519</td>
<td>0.293</td>
<td>0.589</td>
</tr>
<tr>
<td>PSF6</td>
<td>PSNR 30.71</td>
<td>25.41</td>
<td>13.73</td>
<td>29.15</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.879</td>
<td>0.713</td>
<td>0.169</td>
<td>0.829</td>
</tr>
<tr>
<td>PSF7</td>
<td>PSNR 22.12</td>
<td>17.29</td>
<td>12.40</td>
<td>21.68</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.742</td>
<td>0.528</td>
<td>0.210</td>
<td>0.648</td>
</tr>
<tr>
<td>PSF8</td>
<td>PSNR 33.43</td>
<td>26.28</td>
<td>25.21</td>
<td>30.50</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.928</td>
<td>0.754</td>
<td>0.741</td>
<td>0.863</td>
</tr>
<tr>
<td>PSF9</td>
<td>PSNR 23.57</td>
<td>18.23</td>
<td>17.75</td>
<td>21.95</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.765</td>
<td>0.515</td>
<td>0.431</td>
<td>0.652</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Channel</th>
<th>Restored Image</th>
<th>Without Constraints</th>
<th>Bicubic</th>
<th>Degraded Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF4</td>
<td>PSNR 33.40</td>
<td>23.44</td>
<td>32.95</td>
<td>30.79</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.940</td>
<td>0.666</td>
<td>0.920</td>
<td>0.877</td>
</tr>
<tr>
<td>PSF5</td>
<td>PSNR 24.64</td>
<td>12.26</td>
<td>23.81</td>
<td>23.10</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.839</td>
<td>0.325</td>
<td>0.777</td>
<td>0.748</td>
</tr>
<tr>
<td>PSF6</td>
<td>PSNR 32.23</td>
<td>20.92</td>
<td>31.81</td>
<td>30.22</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.926</td>
<td>0.541</td>
<td>0.898</td>
<td>0.860</td>
</tr>
<tr>
<td>PSF7</td>
<td>PSNR 24.73</td>
<td>14.56</td>
<td>23.02</td>
<td>22.48</td>
</tr>
<tr>
<td></td>
<td>SSIM 0.837</td>
<td>0.413</td>
<td>0.730</td>
<td>0.705</td>
</tr>
</tbody>
</table>
VI. CONCLUSION

In this paper, we proposed new BID and SR methods by extending Ahmed’s BID method to multispectral images and introducing Patch-Based regularization. The regularization was performed by using the channel correlation of multispectral images as well as the low-rank property of image patches in each channel image. In the experiments, we demonstrated that the proposed methods work well for both the BID and SR problems.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All the authors contributed to the algorithm developments. Yoshitaka Izumi, Dan Suto, and Sota Kawakami performed the implementation studies. Yoshitaka Izumi and Hiroyuki Kudo wrote the paper. All the authors approved the final version.
ACKNOWLEDGMENT

This work was partially supported by JST-CREST Project (Grant Number JPMJCR1765).

REFERENCES

©2022 Journal of Image and Graphics