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Abstract—The purpose of this paper is two-fold. First, we 

extend the Blind Image Deconvolution (BID) and blind 

Super Resolution (SR) methods developed in our previous 

work to multispectral images. Second, we introduce a new 

regularization technique called Patch-Based regularization 

in the BID and SR problems. This technique uses a low-rank 

property of image patches obtained by dividing each 

channel image as well as correlations in image intensity 

among different channels. We demonstrate performances of 

the proposed methods by simulation studies using images of 

a multispectral camera. 1  

Index Terms—super-resolution, blind image deconvolution, 

low-rank matrix recovery 

I. INTRODUCTION

Techniques aiming at recovering an original image 

from single or multispectral images without knowing the 

Point Spread Function (p.s.f.) are called Blind Image 

Deconvolution (BID), and techniques aiming at 

recovering a high-resolution (HR) image from a Low-

Resolution (LR) image without knowing the p.s.f. is 

called Super-Resolution (SR). The major difficulties in 

these problems are summarized as follows. 

1) Non-convex Nature: When the p.s.f. is unknown,

these problems lead to an optimization of a non-

convex cost function, which is difficult to solve

[1].

2) Ill-posed Nature: When the p.s.f. is unknown,

these problems are inherently under-determined,

because the number of unknown variables to be

estimated is larger than the number of

measurements [2].

Therefore, various methods have been proposed to 

solve these problems. In the BID problem, the major 

classical methods are Ayers-Dainty algorithm [3] and 

NAS-RIF algorithm [4]. However, it is known that the 

performance of these methods is not enough mainly 

because these methods do not overcome the two above 

mentioned difficulties in a successful way. In 2014, 

Ahmed et al. proposed a new method that converts the 

BID problem into a convex optimization, thereby leading 

to overcoming the issue of non-convex nature [1]. In the 
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SR problem, there exist two major approaches. The first 

one is the single-frame SR, and the other is the multi-

frame SR. For example, an interpolation-based method [5] 

and a machine-learning based method [6] belong to the 

category of single-frame SR. On the other hand, the 

multi-frame SR includes the method using multi-frame 

images of video sequences [7] and the motion-less SR 

method using multiple defocused images [8]. However, it 

is fair to say that most existing SR methods are assuming 

that the p.s.f. of camera is known. 

Very recently, we have developed an improved version 

of Ahmed’s BID method by introducing regularization 

terms and newest optimization techniques [9], [10]. 

Furthermore, we have demonstrated that this method can 

be applied to the problem of generating all-in-focus 

images as well as the blind motion-less SR problem [9], 

[10]. According to our knowledge, these methods work in 

a rather stable way compared to the classical BID 

techniques. However, the investigations in [9], [10] are 

limited to the case of single-channel image. The purpose 

of this paper is two-fold. First, we extend the BID and 

blind SR methods developed in [9], [10] to multispectral 

images, which are of increasing attention according to 

wide-spread use of multispectral cameras in a number of 

applications. Second, we introduce a new regularization 

technique called Patch-Based regularization. This 

technique uses a low-rank property of image patches 

obtained by dividing each channel image as well as 

correlations in image intensity among different channels. 

We mention that the Patch-Based regularization has been 

already used in several problems in image processing 

such as denoising and deblurring [11], [12]. We also 

mention that SR methods using BID have been studied by 

other researchers [13], [14]. However, these papers treat 

only the case of single-channel image. 

II. IMAGE DEGRADATION MODEL

There exist various factors that degrade the measured 

image by using a sensor. Among them, in this paper, we 

consider the blurring and under sampling (down 

sampling), i.e. loss in image resolution. Such image 

degradation can be expressed as: 

𝑠 = 𝐵(𝑓), 𝑔⃗ = 𝐷(𝑠) (1) 
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where 𝑓 , 𝑠  and 𝑔⃗  are vectors representing the original 

image F, the degraded image S and the LR image G, 

respectively. The symbol 𝐵 is a matrix representing the 

degradation by blurring, and 𝐷 is a matrix representing 

the down sampling that generates the LR image from the 

degraded image. We consider the model given by left of 

Eq. (1) for the BID problem, and the model given by right 

of Eq. (1) for the SR problem. In Fig. 1, we show the 

schematic diagram of the image degradations expressed 

by Eq. (1). 

 

Figure 1.  Image degradation models in the BID and SR problems. 

III. AHMED’S BLIND IMAGE DECONVOLUTION AND 

SUPER-RESOLUTION METHODS 

In this section, we review the principle of Ahmed’s 

BID method. First, we explain fundamental mathematical 

knowledge used in Ahmed’s BID method. The outer 

product 𝑚⃗⃗⃗ ⊗ 𝑛⃗⃗ formed by 𝑚⃗⃗⃗ and 𝑛⃗⃗, denoted by 𝑚⃗⃗⃗𝑛⃗⃗𝑇, can 

be expressed as: 

 𝑚⃗⃗⃗ = (𝑚1, 𝑚2, ⋯ , 𝑚𝐼)𝑇 , 𝑛⃗⃗ = (𝑛1, 𝑛2, ⋯ , 𝑛𝐽)
𝑇
  

        𝑚⃗⃗⃗ ⊗ 𝑛⃗⃗ = 𝑚⃗⃗⃗𝑛⃗⃗𝑇 = (

𝑚1𝑛1 𝑚1𝑛2

𝑚2𝑛1 𝑚2𝑛2

⋯ 𝑚1𝑛𝐽

⋯ 𝑚2𝑛𝐽

⋮ ⋮
𝑚𝐼𝑛1 𝑚𝐼𝑛2

⋱ ⋮
⋯ 𝑚𝐼𝑛𝐽

) (2) 

If neither 𝑚⃗⃗⃗ nor 𝑛⃗⃗ are zero vectors, the rank of matrix 

𝑚⃗⃗⃗𝑛⃗⃗𝑇 is always 1. This property is used in Ahmed’s BID 

method. Next, we describe the convolution of the image. 

The degradation of original image 𝐹(𝑥, 𝑦)  due to the 

blurring is expressed by using 2-D convolution as: 

𝑆(𝑥, 𝑦) = ∑ ∑ 𝐻(𝑥′, 𝑦′)𝐹(𝑥 + 𝑥′, 𝑦 + 𝑦′)
𝐾𝑥−1

2

𝑥′=
1−𝐾𝑥

2

𝐾𝑦−1

2

𝑦′=
1−𝐾𝑦

2

  

(3) 

where 𝑆(𝑥, 𝑦) is the degraded image and 𝐻(𝑥, 𝑦) is the 

p.s.f. of blurring. We assume that the size of both the 

original and blurred images is  𝑀𝑥 × 𝑀𝑦 (pixels), and the 

size of p.s.f. is 𝐾𝑥 × 𝐾𝑦 (pixels). The purpose of BID is to 

simultaneously recover 𝐹(𝑥, 𝑦)  and 𝐻(𝑥, 𝑦)  from only 

𝑆(𝑥, 𝑦). 

Hereafter, we explain Ahmed’s BID method in its 

original form. Since Eq. (3) contains the product of 

𝐹(𝑥, 𝑦) and 𝐻(𝑥, 𝑦), it is difficult to recover 𝐹(𝑥, 𝑦) and 

𝐻(𝑥, 𝑦) under the condition that both 𝐹(𝑥, 𝑦) and 𝐻(𝑥, 𝑦) 

are unknown. This is the main reason why solving the 

BID problem is so difficult. 

To solve the BID problem in an elegant way, Ahmed et 

al. used the following facts. First, we define the outer 

product matrix 𝑋 formed by 𝑓 and ℎ⃗⃗ as: 

 𝑋 = 𝑓 ⊗ ℎ⃗⃗ = 𝑓ℎ⃗⃗𝑇 (4) 

where 𝑓 is the original image vector in which all elements 

of 𝐹(𝑥, 𝑦) are arranged according to the raster-scan order, 

and ℎ⃗⃗ is the p.s.f. vector in which all elements of 𝐻(𝑥, 𝑦) 

are arranged according to the raster-scan order. Since the 

matrix 𝑋 contains products of an 𝑖-th element of 𝑓 and an 

𝑗-th element of ℎ⃗⃗ for all combinations of (𝑖, 𝑗), Eq. (3) 

can be rewritten as: 

𝑆(𝑥, 𝑦) = 

∑ ∑ 𝑋((𝑦 + 𝑦′) 𝑀𝑥 + 𝑥 + 𝑥′, 𝑦′𝐾𝑥 + 𝑥′)
𝐾𝑥−1

2

𝑥′=
1−𝐾𝑥

2

𝐾𝑦−1

2

𝑦′=
1−𝐾𝑦

2

  

(5) 

Therefore, using the vector 𝑠 defined by arranging all 

elements of  𝑆(𝑥, 𝑦) according to the raster-scan order, 

Eq. (5) can be expressed as: 

 𝑠 = 𝒜(𝑋) (6) 

where 𝒜  is a linear operator that represents the image 

degradation due to the blurring. Here, since the matrix 𝑋 

is an outer product and its rank is clearly 1, Eq. (6) can be 

formulated as a rank minimization problem expressed as: 

 min
𝑋

rank(𝑋)  subject to 𝑠 = 𝒜(𝑋) (7) 

However, it is well-known that the rank minimization 

problem is non-convex and its complexity is NP-hard. To 

overcome this drawback, Ahmed et al. replaced the rank 

minimization problem by the nuclear norm minimization 

as: 

 min
𝑋

‖𝑋‖∗  subject to 𝑠 = 𝒜(𝑋) (8) 

where ‖𝑋‖∗ denotes the nuclear norm of 𝑋. Furthermore, 

the same technique can be used for the SR problem, 

leading to: 

 min
𝑋

‖𝑋‖∗  subject to 𝑔⃗ = 𝐷(𝒜(𝑋)) (9) 

Next, we extend these formulations, i.e. Eq. (8) and (9), 

to multispectral images. During the extension, we 

introduce a new regularization technique by using a low-

rank structure of the multi-spectral images, which is the 

major original contribution of this paper. We note that the 

use of regularization has not been described in Ahmed’s 

original paper [1]. 

IV. PROPOSED METHOD 

A. Formulation with Patch-Based Regularization for 

Multispectral Images 

In this section, we first extend Eq. (8) and (9) of 

Ahmed’s method to multispectral images. We define an 

outer product matrix corresponding to the n-th channel 

image by: 
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 𝑋𝑛 = 𝑓𝑛
⃗⃗⃗⃗ ⊗ ℎ𝑛

⃗⃗ ⃗⃗⃗ = 𝑓𝑛
⃗⃗⃗⃗ ℎ𝑛

⃗⃗ ⃗⃗⃗
𝑇

 (𝑛 = 1,2, ⋯ , 𝑁) (10) 

where 𝑓𝑛
⃗⃗⃗⃗  and ℎ𝑛

⃗⃗ ⃗⃗⃗ are the 𝑛-th channel image vector and 

the 𝑛 -th channel p.s.f vector, and 𝑁  is the number of 

channels. Furthermore, we define image patches 

generated by dividing each channel image as: 

            𝑌𝑚 = 𝑝𝑚⃗⃗ ⃗⃗⃗⃗ ⊗ ℎ𝑚
⃗⃗ ⃗⃗ ⃗⃗ = 𝑝𝑚⃗⃗ ⃗⃗⃗⃗ ℎ𝑚

⃗⃗ ⃗⃗ ⃗⃗
𝑇

(𝑚 = 1,2, ⋯ , 𝑀) (11) 

where 𝑝𝑚⃗⃗ ⃗⃗⃗⃗  and ℎ𝑚
⃗⃗ ⃗⃗ ⃗⃗  are the 𝑚-th image patch vector and 

the p.s.f. vector, and 𝑀 is the number of patches. We also 

define a set of all patches contained in all the channels as: 

𝑌𝑖 = 𝑌〈𝑚〉𝑛 = 𝑝〈𝑚〉𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ ⊗ ℎ〈𝑚〉𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = 𝑝〈𝑚〉𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ℎ〈𝑚〉𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑇
 

(𝑛 = 1,2, ⋯ , 𝑁, 𝑚 = 1,2, ⋯ , 𝑀, 𝑖 = 1,2, ⋯ , 𝑁𝑀)  (12) 

We can arrange these matrices to construct a 3-rd order 

tensor 𝒴. The i-th frontal slice 𝑌∷𝑖 of 𝒴 are defined by: 

 𝑌∷𝑖 = 𝑌𝑖  (𝑖 = 1,2, ⋯ , 𝑁𝑀) (13) 

With respect to the i-th frontal slice 𝑌∷𝑖, Eq. (8) and (9) 

can be rewritten as follows, respectively. 

 min
𝑌∷𝑖

‖𝑌∷𝑖‖∗  subject to 𝑠𝑖⃗⃗⃗ = 𝒜(𝑌∷𝑖) (14) 

 min
𝑌∷𝑖

‖𝑌∷𝑖‖∗  subject to 𝑔𝑖⃗⃗⃗⃗ = 𝐷(𝒜(𝑌∷𝑖)) (15) 

 (𝑖 = 1,2, ⋯ , 𝑁𝑀)  

where 𝑠𝑖⃗⃗⃗ is the i-th degraded image vector and 𝑔𝑖⃗⃗⃗⃗  is the i-

th LR image vector. The formulations by Eq. (14) and (15) 

are simple extensions of Ahmed’s BID method, where we 

apply Ahmed’s method to each frontal slice of tensor  𝑌∷𝑖 

separately. Finally, the method of generating a tensor 𝒴 

from a multispectral image can be summarized as shown 

in Fig. 2. However, solving Eq. (14) and (15) does not 

provide accurate and stable solutions, because the number 

of unknowns to be estimated, i.e. the number of variables 

in the multi-channel image plus total number of variables 

in the p.s.f. ℎ𝑚
⃗⃗ ⃗⃗ ⃗⃗  (m= 1,2, ⋯ , 𝑀), are much larger than the 

number of measured data so that the problem is 

underdetermined. 

 

Figure 2.  Illustration of how to construct a tensor. 

To overcome the above difficulty, we introduce a 

regularization based on the low-rank property of patched 

multi-channel image as follows. To explain the method of 

regularization, we introduce the symbol “⊗𝐻 ” that is 

defined as follows. For the tensor 𝒲 ∈ ℝ𝑋×𝑌×𝑍 and the 

matrices 𝐴 ∈ ℝ𝑋×𝑍  and 𝐵 ∈ ℝ𝑌×𝑍 , 𝒲 = 𝐴 ⊗𝐻 𝐵  is 

defined as: 

 𝑊∷𝑘 = 𝑎𝑘⃗⃗⃗⃗⃗ ⊗ 𝑏𝑘
⃗⃗⃗⃗⃗ = 𝑎𝑘⃗⃗⃗⃗⃗𝑏𝑘

⃗⃗⃗⃗⃗
𝑇

 (𝑘 = 1,2, ⋯ , 𝑍) (16) 

Using the notation of Eq. (16) with the patch matrix 

𝑃 ∈ ℝ(𝑃𝑥𝑃𝑦)×(𝑁∙𝑀)  and the degradation process matrix 

𝐻 ∈ ℝ(𝐾𝑥𝐾𝑦)×(𝑁∙𝑀), the tensor 𝒴 can be decomposed as: 

 𝒴 = 𝑃 ⊗𝐻 𝐻 (17) 

where the matrices P and H are defined by: 

            𝑃 = [𝑝1⃗⃗ ⃗⃗ , 𝑝2⃗⃗⃗⃗⃗, ⋯ , 𝑝𝑁𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ], 𝐻 = [ℎ1
⃗⃗⃗⃗⃗, ℎ2

⃗⃗⃗⃗⃗, ⋯ , ℎ𝑁𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗] (18) 

We note that P can be interpreted as the patched multi-

channel image matrix, and H can be interpreted as the 

collection of all p.s.f. defined for each channel n and each 

image patch m. 

Next, we introduce regularization terms for the 

matrices P and H using characteristics of multi-channel 

images. In this work, we use the following three 

constraints. 

1) Similarity among Channels and Similarity among 

Patches: In the multispectral images 𝑓𝑛
⃗⃗⃗⃗ , different 

channels have similarities in image intensity. 

Furthermore, a set of image patch vectors 𝑝𝑖⃗⃗⃗ ⃗ =
𝑝〈𝑚〉𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  generated by dividing each single channel 

image  𝑓𝑛
⃗⃗⃗⃗  into small patches 𝑝〈𝑚〉𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is of low-rank. 

Therefore, the matrix 𝑃 in Eq. (18) is of low-rank. 

2) Low-rank Property of Image Matrix: When 

considering a two-dimensional image as a matrix 

𝐹𝑛, this matrix is of low-rank. 

3) Independence of p.s.f. on Channels and Patches: 

The p.s.f. ℎ𝑖
⃗⃗⃗⃗ = ℎ〈𝑚〉𝑛

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  are same for all the channels 

𝑛 = 1,2, ⋯ , 𝑁 and all the patches 𝑚 = 1,2, ⋯ , 𝑀. 

We use Constraint 1 and Constraint 2 for the patched 

image matrix 𝑃 and Constraint 3 for the p.s.f. matrix 𝐻. 

We introduce three operators 𝑄1(𝑃), 𝑄2(𝑃), and 𝑅(𝐻) to 

perform the regularization as follows. Since the matrix 𝑃 

is of low-rank (Constraint 1), the corresponding operator 

𝑄1(𝑃)  is the soft-thresholding applied to 𝑃 , which is 

expressed as: 

 𝑃′ = 𝑄1(𝑃) = 𝑆δ(𝑃)  

         𝑆δ(𝑃) = 𝑈Diag(max{σ − δ, 0})𝑉𝑇, 𝑈Σ𝑉𝑇 = 𝑃 (19) 

Next, since the matrix 𝑃 contains all the pixel values of 

the original image, 𝑁  image matrix 𝐹𝑛 (𝑛 = 1,2, ⋯ , 𝑁) 

can be created from this matrix. Therefore, the operator 

𝑄2(𝑃) corresponding to Constraint 2 can be constructed 

by the soft-thresholding acting on each 𝐹𝑛 , which is 

expressed as: 

 𝑃′′ = 𝑄2(𝑃); 𝑃 → 𝐹1, 𝐹2, ⋯ , 𝐹𝑁  

 𝐹𝑛
′ = 𝑆γ(𝐹𝑛) = 𝑈Diag(max{σ − γ, 0})𝑉𝑇 (20) 

 𝑈Σ𝑉𝑇 = 𝐹𝑛, 𝑃′′ ← 𝐹1
′, 𝐹2

′, ⋯ , 𝐹𝑁
′   

Finally, the operator 𝑅(𝐻) corresponding to Constraint 

3 becomes an averaging operator which replaces all rows 

of the matrix 𝐻 by their averages, i.e. taking the average 

of ℎ1
⃗⃗⃗⃗⃗, ℎ2

⃗⃗⃗⃗⃗, ⋯ , ℎ𝑁𝑀
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ followed by replacing all rows by the 

average. This operator is expressed as: 
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  𝐻′ = 𝑅(𝐻); ℎ𝑘
′⃗⃗⃗⃗⃗ = (ℎ1

⃗⃗⃗⃗⃗ + ℎ2
⃗⃗⃗⃗⃗ + ⋯ ℎ𝑁𝑀

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) (𝑁𝑀)⁄   

 (𝑘 = 1,2, ⋯ , 𝑁𝑀) (21) 

where ℎ𝑘
⃗⃗⃗⃗⃗  and ℎ𝑘

′⃗⃗⃗⃗⃗  correspond to the matrices 𝐻  and 𝐻′ , 

respectively, as in Eq. (18).  

Incorporating these regularization operators into the 

formulations of Eq. (14) and (15), the proposed method 

finds a solution 𝒴 = 𝑃 ⊗𝐻 𝐻  to the regularized 

counterparts of Eqs. (14) and (15) by using an iterative 

algorithm based on the Proximal Gradient (PG) method 

similar to those used in our earlier work [9], [10]. When 

applied to the current multi-channel and patched 

problems, it consists of four steps summarized below. 

(Loop to end of iterations) 

[Step 1] (Update along the gradient of data fidelity term) 

 𝑌∷𝑖
′ = 𝑌∷𝑖 − (τ)−1𝒜∗(𝒜(𝑌∷𝑖) − 𝑠𝑖⃗⃗⃗) (22) 

[Step 2] (Calculation of  𝑃′, 𝐻′ from 𝒴′ using SVD) 

 𝑈Σ𝑉𝑇 = 𝑌∷𝑖
′ , 𝑝𝑖⃗⃗⃗ ⃗

′
= λ𝑢1⃗⃗⃗⃗⃗, ℎ𝑖

⃗⃗⃗⃗
′

= σ1𝑣1⃗⃗⃗⃗⃗/λ (23) 

[Step 3] (Applying the constraint operators 𝑄1, 𝑄2, and 𝑅) 

 𝑃 = 𝑄1(𝑄2(𝑃′)), 𝐻 = 𝑅(𝐻′) (24) 

[Step 4] (Calculation of 𝒴 from 𝑃, 𝐻) 

 𝒴 = 𝑃 ⊗𝐻 𝐻 (25) 

(Go to Step 1) 

In Fig. 3, we illustrate the structure of this iterative 

algorithm. For clarity, its more detailed form will be 

described in the next section. 

 

Figure 3.  Structure of the proposed PG algorithm to find a solution. 

B. Summary of Proposed Methods 

This section describes a summary of the iterative 

algorithm to solve the BID problem, and the iterative 

algorithm to solve the SR problem. The both methods are 

based on the PG method. In Algorithm 1, we summarize 

the iterative algorithm to solve the regularized version of 

Eq. (14) based on the PG method. 

Algorithm 1: Proposed BID Method 

Input : 𝑓𝑛[𝐼𝑁]
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑛[𝐼𝑁]

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑛 = 1,2, ⋯ , 𝑁) 

Output : 𝑓𝑛[𝑂𝑈𝑇]
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑛[𝑂𝑈𝑇]

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ (𝑛 = 1,2, ⋯ , 𝑁) 

1 Calculate 𝑃0, 𝐻0 from 𝑓𝑛[𝐼𝑁]
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, ℎ𝑛[𝐼𝑁]

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

   While iterating 

     𝑘 ← 𝑘 + 1 

2   𝒴𝑘 = 𝑃𝑘 ⊗𝐻 𝐻𝑘  

     For all patches and channels (𝑖 = 1,2, ⋯ , 𝑁𝑀) 

3     𝑌∷𝑖
𝑘′

= 𝑌∷𝑖
𝑘 − (τ𝑘)−1𝒜∗(𝒜(𝑌∷𝑖

𝑘 ) − 𝑠𝑖⃗⃗⃗) 

4     𝑈Σ𝑉𝑇 = 𝑌∷𝑖
𝑘′, 𝑝𝑖

𝑘⃗⃗ ⃗⃗⃗
′

= λ𝑢1⃗⃗⃗⃗⃗, ℎ𝑖
𝑘⃗⃗⃗⃗⃗

′
= σ1𝑣1⃗⃗⃗⃗⃗/λ 

(subject to sum (ℎ𝑖
𝑘⃗⃗⃗⃗⃗

′
) = 1) 

     End for 

5   𝑃𝑘+1 = 𝑄1(𝑄2(𝑃𝑘′)), 𝐻𝑘+1 = 𝑅(𝐻𝑘′) 

   End while 

6 Calculate𝑓𝑛[𝑂𝑈𝑇]
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , ℎ𝑛[𝑂𝑈𝑇]

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ from 𝑃𝑘+1, 𝐻𝑘+1 

 

In Algorithm 1, the symbol “sum” means the sum of 

all elements of vector. With respect to Algorithm 1, we 

have the following remark. Normally, the PG method for 

nuclear norm minimization as in Eq. (14) uses the 

singular value thresholding operator 𝑆𝜏(𝑋) corresponding 

to the so-called soft-thresholding defined by Eq. (19). 

However, it has been reported in [9] that, under the 

current situation where the matrix X is of rank 1, the 

algorithm works much better by picking up only the 

maximum singular value and discarding the others. This 

modification significantly improves stability and 

convergence speed. In addition, computational cost per 

iteration is reduced because we need to compute only a 

largest singular value. In particular, in Algorithm 1, since 

it is necessary to obtain 𝑝𝑖⃗⃗⃗ ⃗ and ℎ𝑖
⃗⃗⃗⃗  from 𝑌∷𝑖  in each slice, 

we use only the singular vectors (𝑢1⃗⃗⃗⃗⃗, 𝑣1⃗⃗⃗⃗⃗) corresponding to 

the maximum singular value σ1  as in Step 4 in 

Algorithm 1. 

The iterative algorithm to solve the SR problem, i.e. 

regularized version of Eq. (15), is very similar to 

Algorithm 1. The only necessary change is that Step 3 in 

Algorithm 1 needs to be modified as: 

𝑌∷𝑖
𝑘′

= 𝑌∷𝑖
𝑘 − (τ𝑘)−1 (𝐷∗𝒜∗ (𝐷 (𝒜(𝑌∷𝑖

𝑘 )) − 𝑔𝑖⃗⃗⃗⃗ ))  (26) 

where 𝐷∗  is the adjoint matrix of 𝐷 , and 𝑔𝑖⃗⃗⃗⃗  is the i-th 

patch corresponding to the measured LR image. 

V. EXPERIMENTAL RESULTS 

We performed experiments on the proposed BID and 

SR methods. The both experiments use test multispectral 

images distributed on Columbia University website [15]. 

The used multispectral images have 31 channels (bands) 

measured with wavelengths between 400nm and 700nm 

in intervals of 10nm. In implementation, we set the size 

of image patches to 16 (4 × 4) in both the experiments. 

A. Simulation of Blind Image Deconvolution 

First, we performed a simulation of the proposed BID 

method. A degraded image was generated with three 

different p.s.f, i.e. PSF1, PSF2, and PSF3. The size of all 

the p.s.f. are 5 × 5 (pixels). PSF1 is a diagonal matrix in 

which values of the diagonal elements are one, PSF2 is an 

anti-diagonal matrix in which values of the anti-diagonal 

elements are one, and PSF3 is a Gaussian filter where the 

blurring parameter was set to σ = 2.0 . In Fig. 4, we 

illustrate the three p.s.f. 
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Figure 4.  p.s.f. used in the simulation of BID. PSF1 (left), PSF2 
(middle), and PSF3 (right). 

In this experiment, values of the parameters were set to 

γ = 1.0 and δ = 5.0 in all the p.s.f. cases. The number of 

iterations was 3,000. The simulation was performed by 

assuming that the size of p.s.f. is 7 × 7  (pixels). To 

evaluate restoration accuracy, we used the Peak-Signal-

to-Noise Ratio (PSNR) and the Structural Similarity 

(SSIM) [16]. The value of PSNR was calculated by: 

 PSNR = 20 ∙ log10 (
MAX

√MSE
) (27) 

 MSE =
1

𝑋𝑌
∑ (𝑓(𝑖) − 𝑓′⃗⃗ ⃗⃗ (𝑖))

2
𝑋𝑌
𝑖=0  (28) 

where MAX denotes the maximum pixel value, 𝑓 ,  𝑓′⃗⃗⃗ ⃗ 

denote the original image and the recovered image, and Y, 

X denote the vertical and horizontal sizes of image. We 

show restored images in Fig. 5, and values of PSNR and 

SSIM in Table I. In Fig. 5, to save the page length, we 

show only the images corresponding to 21st channel. For 

comparison, we also show the result without 

regularization (γ = 0.0 and δ = 0.0) and the result by the 

Ayers-Dainty algorithm [3] with Total-Variation (TV) 

[17] regularization. At the same time, we also show RGB 

images constructed by assigning 31st channel to R, 16th 

channel to G, and 6th channel to B, but we note that they 

are different from conventional color images taken by an 

RGB camera. With respect to both PSNR and SSIM, the 

proposed method yields the best result demonstrating that 

it is effective. We observe that severe artifacts appear 

when we use no constraints, but accurate restoration is 

possible when using the constraints. In addition, the 

Ayers-Dainty algorithm [3] with TV [17] yields relatively 

good results with a single image, but they cause severe 

artifacts in the RGB images. However, the proposed 

method yields good restoration results even with the RGB 

images by taking the channel correlation into account. 

B. Simulation of Super-Resolution 

Second, we performed a simulation of the proposed SR 

method. In this experiment, we used a set of LR 

multispectral images, which were generated by blurring 

HR images with p.s.f. followed by down sampling. The 

down sampling was done by averaging 2 × 2 pixel values. 

The parameter of Gaussian filter was set to σ = 1.0, and 

the size of p.s.f. was 3 × 3 (pixels) in PSF4 and 5 × 5 

(pixels) in PSF5. In this experiment, values of the 

parameters were set to γ = 1.0 and δ = 5.0 in all the p.s.f. 

cases, and the number of iterations was 5,000. The 

simulation was performed by assuming that the size of 

p.s.f. is 5 × 5  (pixels) for PSF4 and 7 × 7  (pixels) for 

PSF5, i.e. larger than the true support. We show restored 

HR images in Fig. 6, and values of PSNR and SSIM in 

Table II. With respect to both PSNR and SSIM, the 

proposed method yields the best result. 

TABLE I.  SUMMARY OF PSNR AND SSIM VALUES IN THE 

SIMULATION STUDY OF BID CASE 

 Channel 
Restored 

Image 

Without 

Constraints 

Ayers-

Dainty 

[3]+TV 

Degraded 

Image 

P
S

F
1

 1st 
PSNR 30.21 25.07 12.23 29.02 

SSIM 0.873 0.700 0.104 0.818 

21st 
PSNR 22.07 17.21 14.83 20.91 

SSIM 0.734 0.519 0.293 0.589 

P
S

F
2

 1st 
PSNR 30.71 25.41 13.73 29.15 

SSIM 0.879 0.713 0.169 0.829 

21st 
PSNR 22.12 17.29 12.40 21.68 

SSIM 0.742 0.528 0.210 0.648 

P
S

F
3

 1st 
PSNR 33.43 26.28 25.21 30.50 

SSIM 0.928 0.754 0.741 0.863 

21st 
PSNR 23.57 18.23 17.75 21.95 

SSIM 0.765 0.515 0.431 0.652 

TABLE II.  SUMMARY OF PSNR AND SSIM VALUES IN THE 

SIMULATION STUDY OF SR CASE 

 Channel 
Restored 

Image 

Without 

Constraints 
Bicubic 

Degraded 

Image 

P
S

F
4

 1st 
PSNR 33.40 23.44 32.95 30.79 

SSIM 0.940 0.666 0.920 0.877 

21st 
PSNR 24.64 12.26 23.81 23.10 

SSIM 0.839 0.325 0.777 0.748 

P
S

F
5

 1st 
PSNR 32.23 20.92 31.81 30.22 

SSIM 0.926 0.541 0.898 0.860 

21st 
PSNR 24.73 14.56 23.02 22.48 

SSIM 0.837 0.413 0.730 0.705 

 

 

     

         (a) Degraded image               (b) Proposed method             (c) Without constraints      (d) Ayers-Dainty [3]+TV [17]        (e) Original image 

(a)-(e) Restored images for PSF1 (21st channel) 
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         (f) Degraded image                (g) Proposed method              (h) Without constraints       (i) Ayers-Dainty [3]+TV [17]           (j) Original image 

(f)-(j) PSF1 (Enlarged image of 21st channel)  

 

     

         (k) Degraded image                (l) Proposed method            (m) Without constraints     (n) Ayers-Dainty [3]+TV [17]          (o) Original image 

(k)-(o) RGB images (Merge channels 6th, 16th, and 31st channels) 

Figure 5.  Restored images in the simulation of BID methods.  

     

              (a) LR image                   (b) Restored HR image           (c) Without constraints                    (d) Bicubic                        (e) Original image 

(a)-(e) Restored images for PSF1 (21st channel) 

 

     

              (f) LR image                   (g) Restored HR image           (h) Without constraints                    (i) Bicubic                        (j) Original image  

(f)-(j) PSF1 (Enlarged image of 21st channel) 

Figure 6.  Restored images in the simulation of SR methods. 

VI. CONCLUSION 

In this paper, we proposed new BID and SR methods 

by extending Ahmed’s BID method to multispectral 

images and introducing Patch-Based regularization. The 

regularization was performed by using the channel 

correlation of multispectral images as well as the low-

rank property of image patches in each channel image. In 

the experiments, we demonstrated that the proposed 

methods work well for both the BID and SR problems. 
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