
3D Bounding Box Detection in Volumetric 

Medical Image Data: A Systematic Literature 

Review 
 

Daria Kern and Andre Mastmeyer 
Faculty of Optics & Mechatronic, Aalen University, Aalen, Germany 

Email: {daria.kern, andre.mastmeyer}@hs-aalen.de  

 

 

 
Abstract—We analyzed recently published literature from 

the last five years to identify methods for 3D bounding box 

detection in volumetric medical image data. A tabular 

comparison presents the relevant papers and their findings. 

Various approaches, falling under four identified main 

categories are described and illustrated. Object detection by 

means of a 3D bounding box can often be implemented in 

both 2D and 3D. The advantages and disadvantages of both 

implementations are discussed. The overview of methods 

and implementations helps researchers in selecting the most 

promising approach for their given circumstances. The 

results show that current research is focused on Deep 

Learning methods e.g., Convolutional Neural Networks.   

 

Index Terms—literature review, medical imaging, 3D 

bounding box, object detection, volumetric image data 

 

I. INTRODUCTION 

Processing volumetric image data is computationally 

expensive. In particular, computer-aided diagnosis often 

requires the processing of volumetric images. The 

prediction of a 3D Bounding Box (BB) and the extraction 

of the enclosed Volume of Interest (VOI) is therefore an 

important preprocessing step for many tasks. E.g., for the 

classification of malignant tumors or for organ 

segmentation. Especially, the semantic segmentation of 

small organs or structures benefits from a prior 

localization through a 3D BB. Isolated further processing 

of the VOI facilitates efficiency as irrelevant image areas 

are excluded and the focus is only on a small, limited 

image area. Ensuring that only relevant areas need to be 

processed consequently reduces computing and memory 

effort. In intervention training and planning, 4D virtual 

reality simulations are sometimes performed to ensure 

adequate preparation for medical procedures [1], [2]. The 

simulations require realistic 3D organ models that need to 

be reconstructed from patient data. Such data is generated 

by imaging procedures like Computerized Tomography 

(CT), Magnetic Resonance Imaging (MRI), Positron 

Emission Tomography (PET), Ultrasound (US), or High-

Frequency Ultrasound (HFU), just to name a few. 3D 

organ models can be automatically generated through 

semantic segmentation of the volumetric image data. 
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Here, too, the preceding extraction of the target organ is 

advantageous. Adjacent organs are mostly excluded, 

making the segmentation of the target easier and more 

efficient. Fig. 1 illustrates the described procedure using a 

3D CT scan of the human torso. Displayed are the 

coronal, sagittal, and axial view with the detected 3D BB 

around the target organ, which in this case is the liver. In 

a preceding step, the VOI containing the liver is extracted. 

In the following steps, the VOI is further processed to 

retrieve a 3D segmentation of the liver.  

 

Figure 1. 3D model of the liver inside a bounding box (right). Coronal, 

sagittal, and axial view of a CT scan with bounding box and extracted 
volume of interest (left). 

In the past, traditional machine learning approaches 

were often used for predicting a BB around a target. In 

2010, Criminisi et al. [3] proposed Random Regression 

Forests (RRFs) to localize target structures in 3D 

Volumes. Handcrafted features were still required for 

these approaches. Unlike traditional approaches, modern 

Deep Learning methods like Convolutional Neural 

Networks (CNN) do not have to rely on manual feature 

engineering. CNNs have become immensely popular and 

have proven to be highly successful in object detection. 

In 2017, Bob de Vos et al. [4] compared CNN based 

methods to localize anatomical structures in CT scans.  

We systematically review papers dealing with 3D BB 

detection in volumetric medical image data. To capture 

current trends and developments, the focus is only on 

recently published papers of the last five years. We 

distinguish between 2D and 3D implementations and 

identify four main approaches to predict 3D BBs in 

volumetric data. The advantages and disadvantages of the 

implementation options are explained. A tabular 

presentation of the results provides an overview of our 

findings.  
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II. METHODOLOGY 

In order to find relevant papers, an online search was 

performed using five well known digital sources. The 

sources searched were: IEEE Xplore1, ACM2, Springer3, 

Google Scholar4 and WoS5. The papers of interest deal 

with methods to predict 3D BBs around targets in 

volumetric medical image data. The search term was 

chosen such that papers with point-cloud based data or 

papers dealing with autonomous driving were excluded. 

Furthermore, the words “medical” and “localization” had 

to be included as well as “3D Bounding Box”. Thus, the 

search term was >>“3D Bounding Box” AND 

“localization” AND medical -vehicle - “point cloud”<< 

or similar, according to the respective syntax. The search 

was always limited to publications from 2015 to 2020 to 

capture recent trends and developments. The search 

yielded a total of 176 papers, 150 from Google Scholar, 

13 from Springer, 7 from IEEE Xplore, and 3 each from 

WoS and ACM. By abstract screening, a total of 31 

papers was selected for the final review. All selected 

papers are written in English and have been published 

internationally.  

III. BOUNDING BOX REPRESENTATIONS  

A 3D BB describes a cuboid object in 3D space that 

ideally fully encloses a target object or structure. In 

medical image data, this can be an organ or bones, for 

instance. In contrast to BBs in only two dimensions, an 

additional dimension, the depth, has to be considered. 

The area contained in the 3D BB is the VOI. The VOI 

defines the immediate area in which the target is located. 

Since we are dealing with 3D data instead of 2D data, it is 

referred to as volume. 3D BBs can be represented in 

several ways. Two common ways are the centroid and the 

two-corner representation, as shown in Fig. 2. In the 

former, the BB is described by a center point, height, 

width, and length. The second representation defines two 

opposite corners. These can be, for example, the 

minimum and maximum coordinate points. 

 

Figure 2. Two different possible BB representations in 3D space. The 

centroid representation (left) defines a center point and the BB width, 

height, and depth. The two-corner representation (right) defines the 

opposite minimum and maximum corners. 

 
1 ieeexplore.ieee.org  
2 dl.acm.org 
3 link.springer.com  
4 scholar.google.de 
5 webofknowledge.com 

IV. 2D VS. 3D IMPLEMENTATION 

For object detection in 3D data, a distinction must be 

made between two different implementation approaches. 

Meaning, solutions for finding 3D BBs around targets in 

volumetric medical image data can be implemented in a 

3D manner as well as in a 2D manner. A 3D 

implementation approach simply takes the whole 3D input 

volume into account. This approach is able to process 3D 

data. A 2D implementation cannot process 3D data. To 

still be able to predict a 3D BB around the target, the third 

dimension first has to be removed. Thus, the 3D volume is 

split into a stack of multiple, sequential 2D image slices. 

A distinction is made between different directions in 

which the 3D volume can be sliced. Slicing usually takes 

place along one of the three orthogonal image planes 

(coronal, sagittal, and axial) shown in Fig. 3. in blue, red, 

and green. 

 

Figure 3. CT scan of the human torso as seen from different viewing 

directions. The coronal, sagittal, and axial image planes of the 3D 
volume are indicated as blue, red, and green squares around the CT scan. 

Fig. 4 illustrates the 2D image stacks resulting from 

slicing the volume along the three orthogonal image 

planes. For better comprehension, the stacks are placed on 

a 3D model of the human torso. The slicing direction is 

indicated by the arrows. Along the coronal plane (blue 

arrow), the torso is sliced from anterior to posterior. Along 

the sagittal plane (red arrow), from right to left, and along 

the axial plane (green arrow), from superior to inferior. 

The resulting stacks of 2D images can be easily processed 

by 2D implementations. 2D BB detection can take place 

on the individual 2D image slices. However, after 

processing is done, any detected 2D BBs in the individual 

slices would have to be reassembled to form a 3D BB for 

the volumetric image. 

 

Figure 4. Orthogonal image plane stacks of 2D images resulting from 
slicing the 3D volume in different directions. Image planes from left to 

right: coronal, sagittal, axial. 

A. Fully 3D Implementation 

A 3D implementation approach has the ability to 

process 3D data and therefore takes the whole image 
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volume into account. The image volume is composed of 

many, small volumetric data points, called voxels. Voxels 

can be seen as the 3D equivalent of pixels as they have 

one additional dimension along the z-axis, the depth. 

Recent work has made extensive use of 3D CNNs [5]-

[12] for 3D BB detection. 3D versions of Deep Learning 

architectures like VGGNet ([13]) [14], Faster R-CNN 

([15]) [16], [17] and V-Net ([18]) [19], [20] find great 

appeal in the research community. A 3D CNN uses a 3D 

filter kernel instead of a 2D filter kernel. The 3D kernel 

has to convolve over three axes, the x-axis, the y-axis, 

and the z-axis. Thus, capturing context information 

between slices, but also requiring far more resources than 

its 2D counterpart. Although many approaches today rely 

on CNNs, more traditional approaches are still present. Y. 

Zhang et al. (2017) [21] extract Haar-like features for 

every voxel and train a Random Forest to determine a 

rough 3D BB. R. Gauriau et al. (2015) [22] use a cascade 

of two RRFs. 

An advantage of a 3D implementation is, that 

subsequent reassembly of individual slices is not 

necessary, reducing the number of work steps required. 

Although comparisons have shown that 3D approaches 

generally deliver better results [23]-[25], they still come 

at a cost. The processing in a 3D manner requires far 

more computational resources. The advantage of 

capturing spatial information in all dimensions goes hand 

in hand with higher memory demand and required 

computing power. Furthermore, 3D training data is often 

not available to the same extent as 2D training data. 

Especially in medical imaging due to patient privacy 

protection or costly generation, for instance. Thus, 3D 

approaches often do not have the amount of training data 

at their disposal that would in fact be needed for optimal 

training. 

B. 2D/2.5D Implementation 

A 2D implementation approach does not have the 

ability to process 3D data as a whole. To solve this 

problem, the 3D task is transformed into a 2D task. 

Therefore, the volumetric data is first cut and then 

examined slice-wise in one of the three orthogonal image 

planes (i.e., sagittal, coronal, and axial). The 3D image is 

thus treated as a stack of multiple 2D images and BB 

detection can be done in 2D. A common approach is to 

use a single 2D CNN for slice-wise BB detection in either 

one or all three orthogonal viewing plane directions. A 

combination of several (usually three) 2D CNNs for all 

three slicing directions is also possible.  

A single 2D CNN to analyze exactly one of the three 

image plane stacks is implemented in the works of [26]-

[30]. 2.5D implementations use adjacent slices as 

additional channels [31] or dimensions [32] to facilitate 

the capturing of contextual information, which is usually 

lost when processing 2D data. The works of [33]-[35], [4] 

employ a single 2D CNN to analyze all three image plane 

stacks. Three separate 2D CNNs, one per image plane 

stack, are implemented in the works of [36]-[40]. G. 

Humpire-Mamani et al. (2018) [41] use a combination of 

adjacent slices and three separate CNNs. After the data 

has been processed by either a single 2D model or three 

2D models, the results still have to be combined to create 

a 3D BB. For instance, this can be done by means of a 

majority voting as implemented by [35]. They first slice 

the 3D input image in all three viewing plane directions 

and then a single 2D model processes the input for each 

direction separately. The output is many different 2D BBs 

for the target structure in all three directions. The 

coordinates of the BBs are evaluated together and a 

majority vote determines the final 3D BB. 

A disadvantage of 2D implementation approaches is 

possibly occurring spatial discontinuity. In 2D BB 

detection, the 3D image is broken down into individual 

2D images and therefore BBs are determined individually 

for each image. An additional step is required to 

reassemble the predicted 2D BBs to form a 3D cuboid 

BB. In doing so, 2D BBs of different shapes and sizes can 

further complicate the matter. Additionally, spatial 

discontinuity can occur as seen in Fig. 5. Displayed is a 

sequence of coronal CT scan slices containing the target 

organ, the liver. Predicted BBs are displayed as red 

squares. While the liver was detected in most slices of the 

sequence, detection failed in one of the middle slices. As 

the slices are reassembled and a combined 3D BB is to be 

created, the slice in the middle where no BB was 

predicted, causes a break in the final 3D BB. Resulting in 

two separate 3D BB pieces. This problem is irrelevant in 

a 3D implementation, where the image volume is viewed 

as a whole and not split. The resulting 3D BB therefore 

seamlessly encloses the target structure without any 

breaks. Context information, which a 3D implementation 

can capture as processing takes place along all three 

dimensions, is usually also lost in a 2D implementation. 

However, this problem can be partially solved by 

considering a couple of adjacent slices as additional 

channels or dimensions. Big advantages of a 2D approach 

compared to a 3D approach, are the lower memory 

consumption and the larger amount of training data. 2D 

implementation approaches are able to get around the 

problem of insufficient training data by slicing the few 

available 3D images into stacks of multiple slices, serving 

as 2D training data.  

 

Figure 5. Sequence of coronal slices containing the target (i - i+4) with 

BBs around the target (red squares in slices i, i + 1, i + 2, and i + 4) and 
no predicted BB in one of the middle slices (i + 3). Reassembling 

(bottom left) results in a spatially discontinued 3D BB (bottom right). 
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V. IDENTIFIED APPROACHES 

The identified approaches for 3D BB detection 

approaches in volumetric medical image data are 

organized into four main categories. The categories are 

Slice-wise Presence Detection (5 approaches), Coarse 

Segmentation (9 approaches) and Probability Maps (3 

approaches), Anchor-based Approaches (7 approaches), 

and Deep Reinforcement Learning (3 approaches). 

Amongst the investigated papers were also approaches 

that could not be assigned to any of the four main 

categories. These approaches are listed under the 

category Other Approaches (4 approaches). Coarse 

Segmentation and Probability Maps is the most common 

category with a total of 12 approaches assigned to it. 2D 

and 2.5D implementations (13 and 3 approaches 

respectively) are equally as common as 3D 

implementations (15 approaches). Slice-wise Presence 

Detection approaches require a pure 2D implementation, 

whereas approaches of the remaining three main 

categories can be implemented in both dimensionalities. 

All approaches of the main categories use CNNs, except 

two, which fall under the category Coarse Segmentation 

and Probability Maps and use RRFs or Random Forests 

instead. 

A. Slice-Wise Presence Detection 

The approaches of this category are simple but 

effective. They detect the presence of the target in 2D 

image slices. Usually in the form of a probability output 

generated by a CNN. The prediction results of all 

orthogonal image plane stacks are eventually combined to 

produce a 3D BB volume. The final 3D BB is therefore 

the area -or more specifically the volume- where high 

probability slices from all three stacks overlap. 

Approaches falling under the slice-wise Presence 

Detection category work regardless of whether the 

predictions are done by a single 2D CNN or a 

combination of three 2D CNNs. However, detecting the 

presence of an object in each slice requires a 2D 

implementation. Fig. 6 illustrates a Slice-wise Presence 

Detection approach with the heart as the target organ. In 

the first step, the 3D image is cut along each orthogonal 

image plane to receive three stacks of sequential 2D 

images. The coronal image plane stack is displayed in 

blue, the axial stack in green, and the sagittal stack in red. 

In a second step, each stack is examined slice-wise to 

determine the slices most probably containing the heart. 

Only these slices are kept. In the last step, the final 3D 

BB around the heart is created by considering only the 

overlapping parts and forming a volume as a result. B. de 

Vos et al. (2016) [36] introduced such an approach using 

a combination of three CNNs One for each stack. The 

approach was then adopted by [37], [38]. A combination 

of three 2.5D CNNs, also considering adjacent slices in 

addition to the current slice, is successfully used for 

Slice-wise Presence Detection by [41]. B. de Vos et al. 

(2017) [4] implement a single CNN for all three 

orthogonal image plane stacks instead and compare the 

results to those of several other CNN architectures.  

 

Figure 6. Slice-wise presence detection steps  for predicting a BB 

around the heart. Sequential slices along all three orthogonal image 
planes are examined and only slices containing the heart are kept. The 

combined volume yields the final 3D BB. 

B. Coarse Segmentation / Probability Maps 

The Coarse Segmentation of a target is often an 

intermediate step for a subsequent, refined segmentation. 

This means the entire image or volume is processed for 

segmentation to roughly locate a target. The resulting 

sub-optimal segmentation is then utilized to place a BB 

around the area or volume of interest. Fig. 7 illustrates the 

process step by step, where a Coarse Segmentation (red 

area) targeting the liver is done on an axial 2D CT scan 

image. Coarse Segmentation Approaches are 

implemented by [5], [19], [20], [28], [31]-[35], [40].  

 

Figure 7. Simplified 2D coarse segmentation procedure, followed by 

the extraction of the BB area (area in red square) for a possible 
subsequent segmentation. 

Similar to a Coarse Segmentation approach, [39] 

implement three 2D CNNs for pixel-wise probability 

detection. The CNNs are applied on the three image plane 

stacks to obtain confidence heatmaps, which are then 

used to generate a 3D BB. By applying a threshold 

against the pixel probabilities, the largest connected 

component is found and a BB is simply put around it. R. 

Gauriau et al. (2015) [22] calculate voxel probabilities to 

obtain confidence maps in a 3D manner. They utilize 

RRFs and divide the localization of several target organs 

into 2 steps. A first RRF performs a rough localization of 

all organs at once by creating a global probability map. A 

second, organ-specific RRF focuses on the individual 

organs respectively for BB regression. In a similar 

fashion [21] first take advantage of the knowledge about 

the relative positions of the target structures and their 

voxel intensity by using Haar-like features to narrow 

down the target area. A RRF is then trained on spatial and 

Journal of Image and Graphics, Vol. 10, No. 1, March 2022

©2022 Journal of Image and Graphics 20



intensity features to predict a voxel-wise probability map 

within the target area. Using a threshold, a BB is placed 

around the target structure. Coarse Segmentation and 

Probability Maps implementations are dimension 

independent. 

C. Anchor-Based Approaches 

Anchor-based approaches are often used amongst the 

reviewed works. These approaches have in common that 

they utilize anchor boxes, which are predefined BB 

guesses of certain scales and aspect ratios. 2D and 3D 

anchor boxes are possible. For instance, [29] and [9] 

follow an Anchor-based approach. Latter combines a 3D 

CNN and an additional 2D feature extractor for the axial 

slicing direction to handle various scales and shapes of 

the target structure. Fig. 8 illustrates three sets of 3D 

anchor boxes with their anchors (red dots). The anchor 

boxes are positioned along the x, y, and z-axis of the 

image volume using their anchors. This is done to 

propose regions possibly containing the target, which in 

this case is the liver. 

Very popular anchor-based approaches are Faster R-

CNN [15] and YOLO [42]. S. Afshari et al. (2018) [26] 

use a modified 2D YOLO to analyze the coronal image 

plane stack. Whereas YOLO is a one-stage detector, the 

Faster R-CNN workflow consists of two stages. The 

backbone network extracts features, which are, together 

with the anchor boxes, used by a Region Proposal 

Network (RPN) to generate BB candidates. Instead of 

positioning the anchors on every single voxel or pixel of 

the image, anchors are usually positioned in 

correspondence to voxels or pixels of the encoded feature 

map. A Fast R-CNN [43] classifier and regressor are then 

used to determine the class of the object and refine the 

BBs. K. Chaitanya et al. (2020) [17] and [27] use a 3D 

and 2D Faster R-CNN architecture respectively to detect 

BBs. X. Xu et al. (2019b) [16] modify the 3D Faster R-

CNN architecture by removing the classifier and using 

the Region Proposal Network to propose organ-specific 

BBs. Relying on the fact that there is at most one instance 

of an organ, BBs with the same label are merged into one. 

L. Liu et al. (2019) [30] first identify target regions with a 

Conditional Gaussian Model (CGM) and further localize 

target structures using a 2D Faster R-CNN.  

 

Figure 8. Three 3D sets of anchor boxes (left) propose regions possibly 
containing the liver in the 3D image volume (right). 

D. Deep Reinforcement Learning 

Deep Reinforcement Learning (DRL) combines 

Reinforcement Learning and Deep Learning. In 

Reinforcement Learning, a so-called agent takes a 

sequence of actions in order to achieve a certain goal. In 

doing so, it receives feedback in the form of rewards and 

penalties. The actions are usually predefined and limited 

and thereby a final set of elements which the agent 

chooses from. Through trial and error, the agent tries to 

maximize the accumulated reward and learns which 

actions to take. DRL incorporates Deep Neural Networks 

into this task. The Deep Neural Network analyzes the 

current state and decides which action to take. The 

implementation of DRL approaches is dimension 

independent.  

In the work of [10], a 3D CNN receives the current BB 

voxel values and those of the last four states as input for 

performing the task of finding the final BB. The actions 

consider the moving direction, translation, and scaling of 

the 3D BB. S. Iyer et al. (2018, 2020) [7], [12] employ 

two 3D CNNs for predicting a 3D BB. One CNN for 

learning the navigation in the coordinate directions and 

the other to predict the size of the BB dimensions. 

Starting from a specified point, navigation is allowed to 

cover 1, 10, or 25 voxels in one direction. DRL is used 

for this task, replacing random search with guided search 

using imitation learning. Instead of associating each state 

with actions that were learned over multiple iterations, 

imitation learning associates the states with actions that 

were selected by an expert. Expert decisions are imitated 

after analyzing the current state. Hence the name 

imitation learning. Similar to [7], [12], Fig. 9 shows in a 

simplified way how two 2D Deep Neural Networks 

(DNNs) can be used to predict a BB. The prediction is 

performed on a 2D axial CT scan and the target organ is 

the liver. The first DNN learns how to navigate to the 

liver and the second DNN learns to determine the size of 

the BB. Both using a limited set of possible actions, e.g., 

moving left, right, up or down, increasing or decreasing 

the BB size. 

 

Figure 9. Two Deep Neural Networks (DNNs), in particular CNNs are 

used for predicting a BB. A first DNN (left) learns how to navigate to 

the target. A second DNN learns how to determine the size of the BB. 

E. Other Approaches 

Not all identified approaches did fit into the four main 

categories. In particular, these were [6], [8], [11], [14]. 

The approaches are elaborated in the following. S. Han et 

al. (2020) [11] use a 3D modified pre-activation ResNet 
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[44] for regression on the BB coordinates. Meaning the 

network outputs 6 coordinates representing start- and 

endpoints of the 3D BB on each axis. Since the target is 

framed rather tightly or even partially cut off, they 

expand the BB symmetrically in each direction to obtain 

a large enough fixed size BB. R. Janssens et al. (2018) [6] 

also use regression to predict two relative displacement 

vectors between the two diagonal corners of a BB and a 

reference voxel. Z. Qiu et al. (2018) [14] scan the whole 

volume using a 3D sliding window, that is large enough 

to fully contain the target structure. A 10-layer VGGNet 

[13] serves as the classifier. The sliding window glides 

through the image and the classifier determines whether it 

contains the target. In order to train the classifier, 

examples containing less than 80% of the target are 

considered as negative and those containing at least 99% 

as positive. X. Xu et al. (2019a) [8] propose a triple-

branch fully convolutional network implemented in a 3D 

manner (see Fig. 10). The input is extended from a 

single-channel to a three-channel input composed of CT 

image, enhanced density map, and gradient map. A 

backbone network produces a feature map which is then 

used by the branch network to predict the presence of an 

organ along the axial, coronal, and sagittal direction. The 

resulting probability curves are then binarized by 

applying a threshold. The 3D BBs are composed of the 

largest 1D nonzero component in these three binary 

curves. At first glance, this approach seems to be similar 

to the Slice-wise Presence Detection approach. However, 

in contrast to a 2D implementation, the 3D 

implementation allows to fully consider spatial context 

information. Thus, the image is continuously processed as 

a whole instead of being cut into distinct slices. Through 

this trick spatial discontinuity could be avoided. 

VI. RESULTS 

Table I gives an overview of all 31 papers that were 

considered for the review and finally evaluated. Included 

are the authors of the paper (Author column) and the 

imaging procedure by which the volumetric medical 

image data was produced (Data column). The 

implementation dimensionality is given (Dim column) as 

well as the category for 3D BB detection under which the 

approach falls (Category column). A short description of 

the procedure gives an insight into the individual work 

end the employed model architectures (Description 

column). The target organs or target structures in the 

body are listed under the Target(s) column. Additionally, 

a brief summary of the evaluation results of the work is 

given in the Results column. Metrics used for 

measurement where mostly Intersection over Union (IoU), 

Dice Similarity Coefficient (Dice), Average Precision 

(AP), and Wall Distance (WD). The “Results” column in 

Table I is non-exhaustive. B. de Vos et al. (2017) [4], for 

instance, did extensive testing and a more detailed 

evaluation can be found in their paper. Some results are 

also left blank since no evaluation was performed as 

localization was a less important intermediate step in the 

respective works.  

 

Figure 10. Triple-branch fully convolutional network as proposed by [8].  The 3D input is extended from a single-channel to a three-channel input and 

fed to the backbone network which extracts the 3D feature map. Three subsequent branch networks synchronously process the extracted 3D feature 
map and output organ probability curves. On the basis of these curves, the 3D BBs are composed. 
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TABLE I.  LITERATURE FOR 3D BB DETECTION 

Author Data Dim Category Description Target(s) Results 

R. Gauriau et al. 
(2015) [22] 

CT 3D Probability Map Two cascaded RRF. 1st RRF for 
global probability map and 2nd 
organ specific RRF for local BB 
improvement 

6 abdominal 
organs 

Mean WD 10.7±4 mm, 
5.5±4 mm, 5.6±3 mm, 
7.9±4 mm, 9.5±4 mm, 
13.2±5 mm 

B.  de Vos et al. 
(2016) [36] 

CT 2D Slice-wise 
Presence 
Detection 

Combination of three 2D CNNs 
(AlexNet [45]), each analyzing one 
orthogonal image plane stack 

Heart, aortic 
arch, d. aorta 

Median Dice: 89%, 70%, 
85% 

M. Zreik et al. 
(2016) [38] 

CT 2D Slice-wise 
Presence 
Detection 

See Bob D. de Vos et al. (2016) 
[36] 

Left ventricle Complete left ventricle 
was contained within the 
BB in all test scans 

J. Wolterink et al. 
(2016) [37] 

CT 2D Slice-wise 
Presence 
Detection 

See Bob D. de Vos et al. (2016) 
[36] 

Heart In all cases the BB 
contained the whole heart 

B. de Vos et al. 
(2017) [4] 

CT 2D Slice-wise 
Presence 
Detection 

Single 2D CNN (comparing 
BoBNet [4], VGGNet-16 [13], 
ResNet-34 [44] and AlexNet [45]) 
analyzes all three orthogonal image 
plane stacks 

Liver, heart, a. 
aorta, aortic 
arch, d. aorta 

Dice (comparing CNNs) 
96.7%, 96,3%, 96.0%, 
95.9%, WD (BoB-Net for 
liver & heart) 8.87±15.00 
mm, 3.11±3.43 mm 

Y.  Zhang et al. 
(2017) [21] 

CT 3D Probability Map Combination of 3D Haar-like 
feature [46] extraction for every 
voxel and a RF 

L. & r. lung, 
heart 

/ 

H. Roth et al. 
(2018) [39] 

CT 2D Probability Map Combination of three 2D CNNs 
(HNN [47]), each analyzing one 
orthogonal image plane stack 

Pancreas BBs completely surround 
the pancreases with nearly 
100% recall 

V. Valindria et al. 
(2018) [5] 

MRI 3D Coarse 
Segmentation 

Weighted 3D CNN, using larger 
weights for smaller organs 

11 abdominal 
organs, 7 
bones 

/ 

M. Tang et al. 
(2018) [29] 

US 2D Anchor Based 
Approach 

Single 2D CNN (VGGNet-16 [13]) 
analyzes one orthogonal image 
plane stack 

Femoral head / 

R. Huang et al. 
(2018) [40] 

US 2D Coarse 
Segmentation 

Combination of three 2D CNNs 
(View-based Projection Networks 
(VP-Nets)), each analyzing one 
orthogonal image plane stack in 
real-time 

5 key brain 
structures 

Center deviation 1.8±1.4 
mm, size difference 
1.9±1.5 mm, 3D IoU 
63.2±14.7% 

S. Afshari et al. 
(2018) [26] 

PET 2D Anchor Based 
Approach 

Single 2D CNN (modified YOLO 
[42]) analyzes coronal image plane 
stack 

Brain, heart, 
bladder, r. & 
l. kidney 

Avg. precision 75-98%, 
recall 94-100%, centroid 
distance < 14 mm, WD < 
24 mm 

Z. Qiu et al. (2018) 
[14] 

HFU 3D Other Approach Sliding window with 3D CNN (10-
layer VGGNet [13]) for 
classification 

Brain verticle 
of embryonic 
mice 

BB containing entire brain 
verticle 93.7% (single 
classifier), 96.4% 
(ensemble of 3 classifiers) 

G. Humpire-
Mamani et al. 
(2018) [41] 

CT 2.5D Slice-wise 
Presence 
Detection 

Combination of three 2.5D 
(adjacent slices) CNNs, each 
analyzing one orthogonal image 
plane stack 

11 thorax-
abdomen 
organs 

Avg. WD of 3.20±7.33 
mm, 2nd human observer 
achieved 1.23±3.39 mm 

R. Janssens et al. 
(2018) [6] 

CT 3D Other Approach 3D CNN for regression, predicting 
two relative displacement vectors 
between the two diagonal corners 
of a BB and a reference voxel 

Lumbar 
vertebrae 

/ 

S. Iyer et al. (2018) 
[7] 

CT 3D Deep 
Reinforcement 
Learning 

Combination of two 3D CNN for 
DRL and Imitation Learning 

Thoracic & 
lumbar 
vertebrae 

IoU 67.52%, Dice 80.23% 

M. Ebner et al. 
(2018) [34] and 
(2020) [33] 

MRI 2D Coarse 
Segmentation 

Single 2D CNN (P-Net [48]) 
analyzes all three orthogonal image 
plane stacks 

Fetal brain IoU 86.54% (normal), 
84.74% (presurgical), 
83.67 (postsurgical) 

X. Wang et al. 
(2019) [28] 

US 2D Coarse 
Segmentation 

Single 2D CNN (U-Net [49]) 
analyzes one orthogonal image 
plane stack 

Fetal femur IoU 78.1% 

X. Xu et al. (2019a) 
[8] 

CT 3D Other Approach Single triple-branch 3D CNN with 
a branch for every orthogonal 
image plane stack. Additionally, 
creating a three-channel image as 
input 

11 body 
organs 

IoU 76.44, mean   WD 
4.36±7.98 mm, mean 
centroid distance 
6.91±9.66 mm 

L. Liu et al. (2019) 
[30] 

PET 
/CT 

2D Anchor Based 
Approach 

Combination of a conditional 
Gaussian model (CGM) and a 2D 
CNN (Faster R-CNN [15]) for 
refinement, analyzing one 
orthogonal image plane stack 

Heart, liver, 
spleen, l. & r. 
kidney 

Center position error    
thorax: 7.00±2.87 mm 
(CT), 4.47±2.50 mm 
(PET) Abdomen: 
4.72±2.23 mm (CT), 
4.41±2.02 mm (PET) 

X. Xu et al. (2019b) 
[16] 

CT 3D Anchor Based 
Approach 

3D CNN (modified Faster R-CNN 
[15]) 

11 body 
organs, 12 
head organs 

Body: precision 97.91%, 
recall 98.71%, AP 98.24%, 
head: 91.11% 91.11%, 
84.78% 
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Y. Wie et al. (2019) 
[9] 

CT 3D Anchor Based 
Approach 

Hybrid multi-atrous and multi-scale 
network (HMMNet) with multi-
atrous3D CNN (MA3DNet) 
backbone 

Liver lesions Dice 54.8% and 34.2% 
with IoU of 0.5 and 0.75 
respectively 

H. Jiang et al. 
(2019) [32] 

CT 2.5D Coarse 
Segmentation 

Single 2.5D (5 adjacent slices, 3D 
Conv-Kernel) Attention Hybrid 
Connection Network (AHCNet) 
analyzes one orthogonal image 
plane stack. 

Liver / 

X. Zhou et al. 
(2019) [35] 

CT 2D Coarse 
Segmentation 

Single 2D CNN analyzes all three 
orthogonal image plane stacks 

17 torso 
organs 

Successfully localized 

84.3% (IoU≥0.5), mean 

IoU 70.2% 

X. Yang et al. 
(2019) [27] 

MRI 2D Anchor Based 
Approach 

Single 2D CNN (Faster R-CNN 
[15]) analyzes one orthogonal 
image plane stack 

Left atrium 
region 

100% accuracy 

J. Lou et al. (2019) 
[31] 

MRI 2.5D Coarse 
Segmentation 

Single 2.5D (adjacent slices as 
additional channels) CNN (DS U-
Net [50]) analyzes one orthogonal 
image plane stack 

Fetal brain IoU 91.31±0.08%, 
centroid distance 
2.90±3.53 mm 

F. Navarro et al. 
(2020) [10] 

CT 3D Deep 
Reinforcement 
Learning 

3D CNN (similar to DQN-based 
network architecture [51]) for DRL 

7 abdominal 
organs 

IoU 0.63, abs. median WD 
2.25 mm, median distance 
between centroids 3.65 
mm 

K. Chaitanya et al. 
(2020) [17] 

CT 3D Anchor Based 
Approach 

3D CNN (Faster R-CNN [15]) Lung nodules Sensitivity 93% (nodules > 
5 mm), 91% (nodules > 3 
mm) 

S. Han et al. (2020) 
[11] 

MRI 3D Other Approach 3D CNN (modified pre-activation 
ResNet [52]) for regression on the 
BB coordinates 

Cerebellum / 

T. Xu et al. (2020) 
[19] 

HFU 3D Coarse 
Segmentation 

3D CNN (similar to V-Net [18])  Embryonic 
mice   brain 
ventricle 
&body 

Dice 81.8%, 91.8% 

S. Iyer et al. (2020) 
[12] 

CT 3D Deep 
Reinforcement 
Learning 

See S. Iyer et al. (2018) [7] Thoracic & 
lumbar 
vertebrae 

IoU 74/85% (chest), Dice 
77/86% (abdomen) 

H. Zheng et al. 
(2020) [20] 

CT 3D Coarse 
Segmentation 

Two cascaded 3D CNN (V-Net 
[18]). 1st CNN for rough 
localization & 2nd CNN for even 
more accurate localization  

Pancreas 1st & 2nd V-Net   Dice 
81.38±6.48%, 
81.79±7.10%, sensitivity 
80.55±9.36%, 
81.51±7.22% 

 

VII. CONCLUSION  

We provide a synopsis of the recent works dealing with 

3D BB detection in volumetric medical image data. For 

this purpose, 31 papers of the last 5 years were evaluated. 

The overview of options presented shall help in selecting a 

promising approach that also reflects the state of the art in 

research. The results of the review can also be applied 

beyond medical imaging as BB detection in 3D data can 

be applied to other disciplines, too. BB detection helps to 

save computational cost and to train models for the 

subsequent semantic segmentation of body areas more 

specifically, with better results in the end. Some of the 

presented techniques are also applicable to 2D imagery 

e.g., detecting, learning and discerning face appearances 

in photographs [53]. 

The review differentiates between 3D and 2D 

implementations, processing the 3D input as a whole or 

splitting it into several 2D image inputs (slices).  The 

slicing direction is usually along with all or one of the 

three orthogonal image planes, meaning axial, sagittal or 

coronal. 2D approaches use either results for a single 

direction or combine the results of all three directions. It 

was found 2D implementations are just as common as 3D 

implementations. 2D approaches have the advantage of 

generating more training data through slicing. 

Unfortunately, in contrast to the 3D implementations, they 

cannot fully capture the spatial context. Among the four 

identified main categories, Coarse Segmentation and 

Probability Maps are the most commonly used. Also 

popular are Anchor-based approaches like Faster R-CNN 

and YOLO. Furthermore, Deep Reinforcement Learning 

approaches were identified, as well as Slice-wise 

Presence Detection of a target structure and finally rather 

unique approaches e.g., a 3D triple-branch fully 

convolutional network that simultaneously predicts the 

presence of an organ in axial, sagittal and coronal 

direction. It was also found that modern Deep Learning 

methods, especially with CNNs among them, have largely 

replaced traditional methods such as RRFs. The most 

promising and increasingly successful methods seem to be 

CNNs. 

VIII. FUTURE WORK 

We plan studies in our lab to thoroughly assess the 

quality and relevance of 3D BB detection for patient 

modelling in Virtual Reality simulators [54]. We will 

examine the influence of different imaging modalities 

[55]-[59] and BB detection quality by Virtual Reality 

visualization and interaction with detected BBs using 

haptic force feedback [60]-[63] for quality assurance. In 

the future, we will also address the accurate and precise 

BB detection and content segmentation [64] using n-

Dimensional image data from various imaging sources. 

Additionally, the quality of human organ models in the 
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time-dynamic simulation of 4D medical needle [65], [66] 

interventions [67], [68] shall profit from the hierarchical 

and more specific approach. 
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