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Abstract—In this paper, we investigated the possibility of 

using medical differential criteria to determine the level of 

radiation in X-ray images of the lungs. We developed a new 

method for automatic determination and calculation the 

number of visible vertebrae in the pulmonary X-ray images 

and proposed a system of automatic out-of-distribution 

detection that can be used together with deep learning-based 

systems of pulmonary X-ray image analysis, in particular 

with the task of tuberculosis detection. The proposed method 

and system were evaluated using three X-ray lung datasets 

(Montgomery County chest X-ray dataset, Shenzhen chest X-

ray dataset and Tuberculosis X-ray TBX11K dataset). We 

demonstrated that using the proposed system of out-of-

distribution detection allows to enhance the tuberculosis 

classification results up to 1.3% using the same classification 

model. We also showed that the proposed system allows to 

automatically train a composite model which considers X-ray 

radiation level of the image, which is more effective compared 

to the traditional one-part model. 

 

Index Terms—X-ray images, deep learning, quality 

assessment, out-of-distribution detection, detection of 

vertebrae 

 

I. INTRODUCTION 

Algorithms for automatic processing of medical data 

that utilize deep neural networks are growing in popularity 

not only among researchers but also among their end users 

in medical organizations. As for image data, these deep 

neural networks are represented mainly by convolution 

neural networks and are used to solve various image 

analysis tasks including classification, segmentation, 

object detection and anomaly detection. With the 

increasing availability of medical datasets, hardware 

development and the appearance of simple tools for 

implementing deep learning-based pipelines, these 

algorithms become easier to deploy and customize for any 

specific task. 

However, being extremely dependent on the training 

dataset, neural network-based algorithms demand the data 

to be representative and include examples close to all 

possible inputs at the same time having as few outliers 

(“bad”, “garbage” examples) as possible. Besides, 

complex, and therefore powerful, neural networks contain 

a lot of tunable parameters, which makes them prone to 

overfitting even to very rare abnormal examples in case of 

small training datasets. Thus, the task of image quality 

assessment remains open in various areas [1]-[4]. 

This paper is devoted to solving the task of automatic 

radiation level evaluation for the pulmonary chest X-ray 

images. These images are used to make a diagnosis in case 

of many diseases, for instance, Tuberculosis (TB) [5], [6] 

and estimation of lung damage for COVID-19 patients [7]-

[9]. 

The chest X-ray images in existing available training 

datasets, as well as the chest X-ray images obtained by 

medical experts in practice, may vary widely in contrast 

and number of details due to the difference of the X-ray 

hardness (radiation) level used during the image 

acquisition [10]. Moreover, public datasets often don't 

provide enough information to determine the image 

acquisition conditions of a certain image. This and also 

presence of outliers of various nature (inappropriate image 

obtained due to some exporting issues, an incorrect 

perspective angle, incorrect focus, too harsh or insufficient 

exposure etc.) in training datasets and real medical data 

complicates the correct inference for end-use applications 

of machine learning algorithms. Therefore, various 

algorithms for automatic elimination of outliers and 

distinction of hard and soft X-ray images are in much 

demand now since they can help to obtain more consistent 
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datasets, expand the scope of deep learning-based systems 

of image analysis and make them more robust. 

Such approaches of dataset cleaning have already been 

considered, for instance, in tasks of human face processing 

[11] and sensor fault detection [12]. 

In this paper we propose an algorithm for automatic out-

of-distribution detection for improving the deep learning 

classification of pulmonary X-ray images. The main idea 

is to thin the training dataset by removing outliers, which 

is then can be followed by the division of the dataset into 

two parts depending on the hardness of images, that are 

used to train two distinct neural networks to solve the end 

task for their own image domain, which may increase the 

inference quality. 

II. USED DATASETS 

In this work for training and evaluating all constructed 

X-ray classification models we used three different 

tuberculosis datasets. 

The first dataset is Montgomery County chest X-ray set 

(MC) [13]-[15]. It is collected through the cooperation 

with Department of Health and Human Services, 

Montgomery County, Maryland, USA. MC dataset 

consists of 138 grayscale X-ray images, 80 of which 

correspond to healthy cases and 58 correspond to cases 

with manifestations of TB. Images resolution is 

~4000×4900 pixels, the color depth is 8 bits per pixel. 

The second dataset is Shenzhen chest X-ray set 

(Shenzhen) [13]-[15]. It is collected through the 

cooperation with Shenzhen No.3 People’s Hospital, 

Guangdong Medical College, Shenzhen, China. Shenzhen 

dataset is composed of 326 norm cases and 336 cases with 

manifestations of TB, leading to 662 grayscale X-ray 

images in total. Images resolution is ~3000×2900, color 

depth is 8 bits per pixel. 

These two datasets have been made available by the US 

National Library of Medicine. 

The third dataset is the Tuberculosis X-ray (TBX11K) 

dataset [16]. TBX11K dataset contains 11200 X-ray 

grayscale images, including 5000 healthy cases, 5000 sick 

but non-TB cases, and 1200 cases with manifestations of 

TB with corresponding bounding box annotations for 

tuberculosis areas. TBX11K dataset is collected through 

the long-term cooperation with major hospitals in Nankai. 

All images are with a size of 512×512 and have color depth 

of 8 bits. 

III. PROPOSED METHOD 

In this paper, we proposed an automatic system for 

detection out-of-distribution pulmonary X-ray images 

based on radiologist’s experience of data annotation for 

improving application possibilities of deep learning 

models used for pulmonary X-ray image analysis. 

In order to cluster pulmonary X-ray images into groups 

corresponding to the radiation level radiologists usually 

count the number of visible vertebrae in the spinal curve. 

Fixing a threshold for the number of visible vertebrae they 

can split the images into “soft” and “hard” X-ray images. 

Here it should me mentioned that there is no one medical 

gold-standard rule or threshold to split the X-ray images 

into “soft” and “hard” classes and this terminology is more 

qualitative than quantitative emphasis. In this paper we use 

the splitting threshold which fits well to the obtained TB 

classification task according to the recommendations of 

medical experts.  

It is obvious that to create an effective learning-based 

model for pulmonary X-ray image analysis, the images 

that are used for training and evaluation of this model have 

to be from the same distribution. And one of the most 

accurate way of describing and clustering the distribution 

of encountered in practice X-ray images from the medical 

point of view is based on the calculation of the quantity of 

visible vertebrae in the image. Thus, in this paper we 

propose a new algorithm for automatic estimation of the 

number of visible vertebrae in X-ray images and 

demonstrate the possibility of its application for detecting 

out-of-distribution cases which has a positive effect on the 

use of neural network models for pulmonary X-ray image 

classification. 

In this paper we propose a new method for automatic 

determination of the X-ray radiation level based on the 

number of detected vertebrae, demonstrate the possibility 

of its’ application for detecting out-of-distribution X-ray 

images and describe several ways in which this method can 

be used to build more effective deep learning-based 

systems for TB classification task. The flowchart of the 

proposed automatic out-of-distribution detection system 

for pulmonary X-ray images is shown in Fig. 1. 

The proposed method of automatic determination of the 

X-ray radiation level based on the number of detected 

vertebrae includes four stages: image preprocessing, 

isolation of the spine region, detection of central and 

boundary spinal curve lines, vertebrae detection and 

counting. 

A. Preprocessing 

Firstly, all input images are resized to the 512×512 

resolution. Then we try to resolve the problem of X-ray 

images illumination spectrum distortion. There are three 

main possible methods of contrast enhancement: contrast 

stretching, classic histogram equalization and adaptive 

histogram equalization. 

Contrast stretching stretches the histogram of the image 

across the entire intensity scale. It works well when some 

part of the spectrum is completely absent. The standard 

histogram equalization method works well for images with 

very low overall contrast. However, histograms of 

pulmonary X-ray images cover the entire spectrum of 

intensity values, but low contrast is observed in local areas. 

The main advantage of Adaptive Histogram Equalization 

(AHE) is that it can provide better contrast in local areas 

compared to the traditional histogram equalization 

methods. Whereas traditional methods consider the entire 

image, AHE utilizes a local contextual region. The 

comparison of applying all three algorithms on a sample 

pulmonary X-ray image is shown in Fig. 2. In this work we 

use AHE as the most suitable for the current task of X-ray 

image processing. 
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Figure 1. Flowchart of the proposed system for automatic out-of-distribution detection. 

B. Spine Detection 

To isolate the spine region inside the X-ray image, we 

apply pretrained CNN ResNet-34 [17]. For each image we 

locate a bounding box region on spine area. We used MC 

and Shenzhen datasets described above for this task, since 

they contain the spine area annotation. The data was 

divided into two subsets for training and validation (test). 

The ratio of the number of TB X-rays for training and test 

is 4:1. We trained ResNet-34 for 10 epochs with the initial 

learning rate of 10-3 and L1 loss function. In addition, 

Intersection over Union (IoU) value is used for quality 

assessments after every epoch. Results of the metrics 

during training are shown in Table I. 

TABLE I.  L1-LOSS AND IOU VALUES WHILE TRAINING RESNET-34 

MODEL FOR SPINE AREA DETECTION 

Epoch 
L1-loss on 

training set 

L1-loss on 

test set 

IoU on 

training set 

IoU on 

test set 

2 0.534 0.257 0.001 0.012 

3 0.136 0.064 0.470 0.627 

5 0.053 0.053 0.741 0.676 

10 0.049 0.050 0.755 0.698 

C. Detection the Central and Boundary Lines of Spine 

After extracting the spine region, we further detect the 

locations of vertebrae. In general, the spine usually appears 

with a higher intensity in the cropped spine Region of 

Interest (ROI). Therefore, we can detect the edges of the 

spine by using the sums of the intensity and gradient. In 

order to correctly detect the vertebrae, we first detect the 

central and boundary lines of spine using two-steps 

algorithm:  

1) detection of the Central Line Segment (CLS), 

2) detection of the spine boundary. 

The first step is aimed to detect the central line segment 

(CLS) of the vertebrae. In this step, a number of rectangle 

windows with a size of 𝐻 ×𝑊 pixels are placed with one-

pixel increment along the top of the spine ROI from left to 

right with overlapping. The sums of intensity inside each 

rectangle window are calculated. If one rectangle window 

has the largest sum of intensity, the top middle point of this 

window is used as the first reference point for CLS: 

𝑠(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑗, 𝑦 + 𝑖)
𝑊/2
𝑗=−𝑊/2

𝐻
𝑖=0   (1) 

(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = a𝑟𝑔𝑚𝑎𝑥(𝑥,𝑦)(𝑠)   (2) 

Next, the current rectangle window with a maximum 

sum of intensity is moved down by p pixels, and then a 

search for the next reference point is initiated in the range 

of q pixels on both of its sides. This search is shifted by 1 

pixel at once and then records the intensity sum of the 

corresponding window. The window with the maximum 

sum of intensity value is then assigned to the current 

window and its top middle point is defined as the second 

reference point for CLS. This procedure is repeated until n 

reference points are detected, which are afterwards 

transformed into a CLS applying a polynomial fitting 

method (Fig. 2). 

   

(a)    (b) 

Figure 2. Detection the central and boundary lines of spine with the 

proposed algorithm: (a) detection of the points for Central Line Segment 
(CLS), (b) detection of the CLS and spine boundary. 

Next, in the second step, the boundary points of the 

spine along the normal direction of the detected central line 

segment are determined. This step utilizes two small 

sliding windows, each of 11×5 pixels. The pair of sliding 

windows moves at most by r pixels along both sides in 

normal directions of the corresponding CLS point. The top 

middle of the pair is chosen as the boundary point of the 

spine when their intensity difference is maximal. The 

boundary detection procedure continues until all points of 

the CLS are explored. The corresponding window of the 

final point for this CLS is reconstructed for sequential 

detection of the CLS until all boundaries of the spine are 

found. Finally, all spine boundary points in each side are 

dependently fitted by polynomial fitting with three degrees 

into the spine boundary. In the experiments, we set the 
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following parameters: 𝐻 =
𝐻𝐼

8
, 𝑊 =

𝑊𝐼

4
, 𝑝 =

𝐻

4
, 𝑞 =

𝑊

2
, 

𝑟 =
𝑊𝐼

2
, where 𝐻𝐼  is the image height and 𝑊𝐼 is the image 

width. 

D. Vertebrae Detection and Counting 

After detecting the central and boundary lines of spine 

we detect vertebrae inside the detected boundaries using 

the modified ridge map. The map is built through the 

following steps: 

1) Finding the second derivatives of the image. 

2) Creating matrix 𝑄 = (
𝐿𝑥𝑥 𝐿𝑥𝑦
𝐿𝑥𝑦 𝐿𝑦𝑦

), where L is the 

pixel intensity of the source image. 

3) Finding eigenvalues 𝜆1 and 𝜆2 of matrix Q where 

𝜆1 > 𝜆2. 

4) Building ridge maps I1 and I2 using 𝜆1  and 𝜆2 

values, where 𝐼𝑖(𝑥, 𝑦) =
𝜆𝑖(𝑥,𝑦)

max(𝜆𝑖)
∗ 255, 𝑖 = 1,2 

(see Fig. 3b, Fig. 3c). 

5) Maps binarization using thresholds 𝜃1 и 𝜃2. 

6) Intersection 𝐼𝑅 of 𝐼1𝜃 and 𝐼2𝜃  (see Fig. 3d).  

Then the number of independent connected areas along 

CLS is counted. The result is the number of vertebrae 

detected in the image. 

       
(a)             (b)                        (c)                        (d) 

Figure 3. The steps of the proposed vertebrae detection algorithm for the 

spine region of a sample pulmonary X-ray image: (a) source image, (b) 

ridge map 𝐼1, (c) ridge map 𝐼2, (d) maps intersection 𝐼𝑅. 

IV. APPLICATIONS OF THE PROPOSED METHOD 

This section is devoted to several possible applications 

of the proposed vertebrae detection method for automatic 

thinning of TB X-ray datasets, which can noticeably 

improve the TB classification accuracy. In particular, we 

consider several thresholds of vertebrae limit k for outlier 

detection and two strategies of splitting data into subsets. 

For each case we train the same TB classification model 

and compare the obtained results. 

In this paper we have chosen DenseNet architecture [18] 

for the considered TB classification task since it is still one 

of the state-of-the-art architectures for classification with 

limited amount of training data. We take a DenseNet 

model pretrained on the ImageNet dataset [19], replace the 

classification head with fully-connected layer with two 

outputs (since we consider binary classification: TB or 

healthy) and fine-tune the model on the pulmonary X-ray 

data for 20 epochs. In these experiments we use Stochastic 

Gradient Descent (SGD) optimizer with initial learning 

rate of 10-3 and momentum 0.9, the batch size was 8. We 

decay the learning rate by gamma 10-1 every 7 epochs. 

We performed 4 types of experiments according to the 

number of detected vertebrae used as a threshold for 

thinning the dataset: 

1) k≥0. No dataset thinning is performed, all images 

are used for training and validation. 

2) k>0. The number of detected vertebrae is more than 

0. Using this scheme, we expect to remove only 

“bad” images from datasets. For example, X-ray 

images with poor focus or composition.  

3) 3≤k≤8. Number of detected vertebrae is between 3 

and 8 inclusive. In this experiment we expect to 

leave only the most typical X-ray images that are 

received with correct hardware settings.  

4) 5≤k≤7. Number of detected vertebrae is between 5 

and 7 inclusive. Here we want to further narrow the 

range of appropriate X-ray images and see whether 

it can enhance the classification results compared 

to the second type of threshold. 

Besides that, for the first three types of thresholds 

mentioned above we consider 2 different dataset splitting 

strategies: 

1) “One-part model”. We use the whole thinned 

dataset as it is.  

2) “Two-part model”. We further split the thinned 

dataset into two subsets, corresponding to the “soft” 

and “hard” radiation level and train a separate 

DenseNet model for each of the subsets and then 

treat them as a single composite model, which 

analyzes the level of radiation and based on it 

performs prediction using one of the internal 

models. 

The training scheme for all the experiments was 

organized as follows: 

• MC, Shenzhen and TBX11K datasets were united 

into one single dataset. 

• The united dataset was divided into train and test 

sets with proportion of 4:1. 

• Train and test set were filtered using vertebrae 

counting method with selected threshold. 

• Pretrained model was fine-tuned on the obtained 

dataset for 20 epochs. 

A. k≥0. One-Part Model 

In this experiment we do not perform any thinning for 

the used dataset and used all 5386 images.  
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Figure 4. Confusion matrices for experiment with k≥0 (one-part model). 

The obtained confusion matrices for the best epoch by 

validation are shown in Fig. 4. Balanced accuracy of the 

trained model on the validation set was 0.975. 

B. k>0. One-Part Model 

In this experiment we only remove “bad” X-Ray images 

from the dataset. This includes partially broken images, 

images with incorrect focus, non-pulmonary images, that 

can accidentally be included in the dataset while 

downloading from the database and so on. In the source 

united dataset there were 5386 images, after thinning 5040 

images are left (94% of the source dataset). The obtained 

confusion matrices for best epoch by validation are shown 

in Fig. 5. Balanced accuracy of the trained model on the 

validation set was 0.984. 

 

 

Figure 5. Confusion matrices for experiment with k>0 (one-part model). 
94% of the source dataset is used. 

C. 3≤k≤8. One-Part Model 

In this experiment we leave only those images that 

contain 3 to 8 vertebrae, which tends to represent the most 

typical X-ray images that are received with correct 

hardware settings. In this case after thinning the united 

dataset there were 3925 images left (73% of the source 

dataset). The obtained confusion matrices for best epoch 

by validation are shown in Fig. 6. Balanced accuracy of the 

trained model on the validation set was 0.985. 

 

 

Figure 6. Confusion matrices for experiment with 3≤k≤8 (one-part 

model). 73% of the source dataset is used. 

D. 5≤k≤7. One-Part Model 

In this experiment we further narrow the boundaries of 

the used images and consider only those that have 5 to 7 

vertebrae. Here the amount of image left in the united 

dataset after thinning was 1934 (36% from the source 

dataset). The obtained confusion matrices for best epoch 

by validation are shown in Fig. 7. Balanced accuracy of the 

trained model on the validation set was 0.967. 

 

 
Figure 7. Confusion matrices for experiment with 5≤k≤7 (one-part 

model). 36% of the source dataset is used. 
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E. k≥0. Two-Part Model 

In this experiment we do not perform any thinning on 

the used dataset and used all 5386 images. The dataset is 

split into two sets according to the level of radiation. The 

first set contains images with k≤4 vertebrae, the second set 

contains images with k≥5 vertebrae. Two independent 

models are trained on these datasets. The balanced 

accuracy was calculated as for the “ordinary” single model 

and reached the value of 0.979. 

F. k>0. Two-Part Model 

In this experiment besides deleting “bad” images from 

the dataset we also split the dataset into two parts 

according to the level of radiation and process these two 

parts with separate models. In particular, the first model is 

trained only on images that have 1-4 vertebrae (0<k≤4) and 

the second model is trained on images that have more than 

4 vertebrae (k≥5). The obtained two models are treated as 

one composite model. The balanced accuracy was 

calculated as for the “ordinary” single model and reached 

the value of 0.987. 

G. 3≤k≤8. Two-Part Model 

In this experiment we select only those images that have 

the most typical level of radiation, that correspond to 3 to 

8 visible vertebrae (3≤k≤8) and further split them into 

classes (with “soft” and “hard” level of radiation). First 

model is trained only on images with up to 4 vertebrae 

(3≤k≤4), the second model is trained on images with 5 to 

8 vertebrae (5≤k≤8). The obtained two models are treated 

as one composite model. The balanced accuracy was 

calculated as for the “ordinary” single model and reached 

the value of 0.988. 

H. Comparison of Experimental Results 

The comparative results of all mentioned above 

experiments are shown below in Table II.  

TABLE II.  COMPARATIVE RESULTS OF THE CARIED OUT EXPERIMENTS 

ON DATASET THINNING USING THE PROPOSED AUTOMATIC METHOD OF 

VERTEBRAE DETECTION. THE PROBLEM OF BINARY CLASSIFICATION 

(TB, HEALTHY) FOR PULMONARY X-RAY IMAGES WAS CONSIDERED 

Model 

Type 

Dataset 

thinning 

Dataset size 

(%) 

Balanced 

accuracy 

One-part no (k ≥ 0) 5386 (100%) 0.975 

Two-part no (k ≥ 0) 5386 (100%) 0.979 

One-part k > 0 5040 (94%) 0.984 

Two-part k > 0 5040 (94%) 0.987 

One-part 3 ≤ k ≤  8 3925 (73%) 0.985 

Two-part 3 ≤ k ≤  8 3925 (73%) 0.988 

One-part 5 ≤ k ≤ 7 1934 (36%) 0.966 

 

As it can be seen from the table, dataset thinning using 

the proposed automatic out-of-distribution detection 

method can noticeably enhance the results of the CNN-

based classification in the TB diagnostics using pulmonary 

X-ray images. The best results are obtained when only 

images with 3≤k≤8 range of visible vertebrae are left in 

dataset and two models are used, each trained for its own 

level of radiation. 

It also should be mentioned that the experiment with 

two-part model on 5≤k≤7  vertebrae range was not 

performed due to the too small amount of data which 

would be used for training each of the models. The choice 

of splitting data in the experiment with 3≤k≤8 and two-part 

model into sets with k={3, 4}  and k={5, 6, 7, 8}  rather 

than k={3, 4, 5} and k={6, 7, 8} is also explained by the 

distribution of the used X-ray images. In the second way 

of splitting the ratio of images used to train two models 

would be too unbalanced. 

V. IMPLEMENTATION DETAILS 

The experiments were performed on a PC with Intel 

Core i7-9750H 2.60 GHz CPU, 16 GB memory, and 

NVIDIA GeForce RTX 2060 6 GB GPU. The networks 

for classification and spine area detection were 

implemented based on pytorch 1.8.1 framework in Python 

3. Pillow 8.2.0 was used for image processing tasks. We 

also used matplotlib and scipy 1.6.3. To create data 

annotation for spine area detection Amazon SageMaker 

Ground Truth service was used. 

The time of processing of one typical pulmonary X-Ray 

image for vertebrae detection and counting is 2-3 seconds. 

Despite the fact that the proposed algorithm will take a lot 

of time to process a large dataset, the operation on the 

whole dataset should be performed only once and it still 

takes much less time than training the model. For all newly 

received images, the achieved processing time of 2-3 

seconds per image is more than satisfactory for medical 

examinations and screening. 

VI. CONCLUSION 

In this paper, we demonstrated the importance of using 

medical differential criteria to determine the level of 

radiation in X-ray images of the lungs and showed its 

applicability for the task of tuberculosis detection with 

deep neural networks. We developed a new method for 

automatic determination and calculation the number of 

visible vertebrae in the pulmonary X-ray images and 

proposed a system of automatic out-of-distribution 

detection for pulmonary X-ray image analysis. 

Using the proposed system of out-of-distribution 

detection allows to enhance the tuberculosis classification 

results up to 1.3% within the same classification model. 

Here we calculate the growth of the obtained balanced 

accuracy with the proposed dataset thinning technique and 

using two-part model compared to the balanced accuracy 

obtained for classification with one-part model without 

dataset thinning. The proposed system allows to reduce the 

share of incorrect classifications by 2 times: from 2.5% to 

1.2%. It also allows to automatically train a composite 

model considering X-ray radiation level, which is more 

effective compared to the traditional CNN models. 
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