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Abstract—2D to 3D image registration has a vital role in 

medical imaging and remains a significant challenge. It 

primarily relates to the use and analysis of multimodal data. 

We address the issue by developing a multimodal machine 

learning algorithm that predicts the position of a 2D slice in 

a 3D biomedical atlas dataset based on textual annotation and 

image data. Our algorithm first separately analyses images 

and textual information using base models and then 

combines the outputs of the base models using a Meta-learner 

model. To evaluate learning models, we have built a custom 

accuracy function. We tested different variants of 

Convolutional Neural Network architectures and different 

transfer learning techniques to build an optimal image base 

model for image analysis. To analyze textual information, we 

used tree-based ensemble models, namely, Random Forest 

and XGBoost algorithms. We applied the grid search to find 

optimal hyperparameters for tree-based methods. We have 

found that the XGBoost model showed the best performance 

in combining predictions from different base models. Testing 

the developed method showed 99.55% accuracy in predicting 

2D slice position in a 3D atlas model. 

 

Index Terms—image registration, multimodal data, EMAP 

atlas. CNN, deep learning 

 

I. INTRODUCTION 

Imaging plays an essential role in modern biomedical 

sciences and forms the basis for much of current research 

and clinical diagnostic work. Accumulation of imaging 

data leads to the need for the integration of data collected 

from different sources. To meet this demand, a number of 

atlases of biomedical imaging were developed [1]-[4], 

which can not only provide detailed anatomical and 

histological information about the studied object but also 

provide a framework into which molecular information, 

such as gene and protein expression, can be mapped [5]. 

This paper suggests an algorithm that combines the 

advantages of different machine learning methods using 

stack generalization techniques. This algorithm utilizes 

different data modalities and machine learning models and 

integrates their predictions into a single pipeline. We show 

that the resulting algorithm performs better than each 

machine learning algorithm used on its own. Adding and 

extracting information from atlases of biomedical imaging 

leads to 2D/3D image registration tasks. Image registration 

is the process of relating features between images by 

aligning them. For example, the task of integrating new 

data into a biomedical atlas is a typical 2D to the 3D image 

registration problem. Images created in experiments are 

mostly 2D images, while modern biomedical atlases are 

mostly 3D models. To transfer the data related to the 2D 

image (e.g., spatial transcriptomics data) to the 3D atlas, 

the position of the new image in the 3D model must be 

determined, i.e., the matching cut (section) through the 3D 

model identified. Such mapping involves the analysis of 

multi-modal data, including image and textual anatomical 

information. 

To address the above-described tasks, a variety of 

methods were developed [6], [7], such as image 

processing-based matching [8], ontology-based matching 

[6], deep learning [9], and others [10]. Some of these 

methods are based on analysis of image data, e.g., image 

processing-based matching methods, while others are 

focused on the analysis of textual description, such as 

ontology-based matching. Deep learning methods based 

on Convolutional Neural Networks (CNNs) are universal 

prediction tools working with different types of data 

modalities. However, deep learning methods require large 

amounts of data to achieve good prediction accuracy, 

which is often a serious limitation. Although deep learning 

models and decision trees appear to be theoretically 

equivalent tools [11], in practice, tree-based methods, such 

as XGBoost [12] or Random Forests [13], offer a good 

compromise between the size of the learning dataset and 

prediction accuracy [14]. Thus, different methods might be 

optimal depending on the available amount and number of 

data modalities [15]. 

The proposed solution explains that stack generalization 

combining deep learning and tree-based methods is a 

powerful image registration tool for medium-sized 

datasets. 

II. EXPERIMENT AND METHODS 

In our current work, we focus on the image registration 

of the data stored in the EMOUSE atlas (EMAP) [16], [5]. 

EMAP is a digital atlas of mouse embryo development that 

represents 3D models of embryos at various stages of 

development and gives spatial context to in-situ gene 

expression data experimentally obtained for mouse 

embryos (www.emouseatlas.org). 

A. Source and Generation of Dataset 

The EMAP 3D model [16], [5] was used to source data 

in our work. We extracted multiple 2D images (slices) 
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from the EMAP 3D model and, along with the image data, 

also used the EMAP model to obtain a large textual dataset 

containing anatomical descriptions. Each slice in the 

EMAP 3D atlas is described using four values: the pitch, 

the yaw, the roll angles, and the distance of the sectioning 

plane (Fig. 1). To simplify the task, we only considered 

pitch and distance parameters in the 3D atlas in the present 

work. The pitch refers to the angle shown in Fig. 1. The 

value of the pitch parameter changes from 0 to 180 degrees. 

The distance is the vertical position of the slice, which 

ranges between -258 and 257. The values of yaw and roll 

parameters were set to zero. 

 

Figure 1. Parameters describing the position of the 2D slice in the 3D 

EMAP mode. 

Considering that increments for both distance and pitch 

values are 1, we can obtain (257 − (−258)) ∗ 180 = 92700 

2D slices. Before applying machine learning algorithms, 

we have pre-processed these data. These pre-processed 

data comprised our initial image dataset, where each image 

can be represented by the pair of distance (𝑑) and pitch (𝑝) 

values. Our dataset had the two following limitations. 

Firstly, there are only 20 anatomical structures for the 

current image data set, e.g., brain, heart, etc. This posed 

limitations for the textual description of the details of 

mouse anatomy. Secondly, we had only one image for a 

unique set of distance and pitch values. Although we used 

different data augmentation techniques, we were still 

strongly lacking the data to use all the potential of machine 

learning techniques. 

B. Pre-processing Data 

We have applied the following pre-processing steps to 

normalize the images, simplify the learning process and 

perform data augmentation. 

1) Preprocessing the image data 

● Conversion of the images to grayscale to avoid the 

obstacles of computational complexity, capacity, 

and memory storage.  

● Normalization of the images such that the pixel 

values lie within the range of 0 to 1 for a unified 

representation.  

● Removal of unwanted details from the images by 

cropping and resizing them to 128 *128 pixels. This 

resulted in a much smaller model with no 

compromise in performance. 

● Since this is a supervised machine learning problem 

(where the dataset is labelled with output values), 

each image was labelled with its corresponding 

distance and pitch (d, p) values. 

● The data consisted of only one image for each set 

of (d, p) values. So, data augmentation techniques 

were applied to increase the size of our dataset [17]. 

The set of procedures performed was as follows: 
i). Image rotation to 36 different angles. 

ii). Skewing to add noise to the image (skewness 

is a feature that computes the measure or lack 

of Symmetry in the image). After applying the 

skewing step, the images were left, right, top, 

and bottom-justified or skewed. 

iii). Slightly shifting to add some variation between 

images of the same class. 

The purpose behind the augmentation of the images was 

to expand the dataset (training set) by creating new 

samples [18]. 

2) An example of image data 

The image in Fig. 2 is a sample taken from the dataset 

to elaborate the image part of our dataset and how it was 

preprocessed for a better understanding. The labels for this 

image are (241,1) (distance, pitch), respectively. 

Combining the anatomical labels, this image contains 

these anatomical structures ‘1st branchial arch, 2nd 

branchial arch, olfactory pit, ear, neural tube, and 

hindbrain’.  

Further, this image is augmented to create almost a 

hundred other samples with a little variation using the steps 

mentioned above. 

 

Figure 2. Sample image from EMOUSE atlas image data. 

3) Preprocessing the text data 

● Removing all empty lists: Some of the slices had no 

labelled anatomical structure to avoid performance 

compromise. 

● Excluding: Mislabeled data is primarily misleading 

and causes deviation in training the model. 

Therefore it was removed from the dataset. 

● Bag of Words: A binary vector of length 20 

representing a list of unique anatomical names was 

generated. This binary vector represented any 

anatomical description for a given image. ‘1’ was 

assigned where the anatomical description 

contained the feature word and ‘0’ if the word did 

not appear in the document. 

4) Example of the anatomical data as a binary vector 

There are 20 unique anatomical labels observed in the 

textual dataset; a binary vector was created with all 20 of 

them represented as dictionary vectors as follows: 

[‘1st branchial arch’, ‘1st branchial arch maxillary 

component’, ‘2nd branchial arch’, ‘diencephalon’, 
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‘diencephalon floorplate’, ‘ear’, ‘eye’, ‘forelimb bud’, 

‘forelimb bud apical ectodermal ridge’, ‘heart’, 

‘hindbrain’, ‘liver’, ‘midbrain’, ‘neural tube’, ‘olfactory 

pit’, ‘rathke’, ‘somite’, ‘spouch’, ‘tail’, ‘telencephalon’] 

The vectors for individual records of the textual data are 

formed as binary (ones and zeros) vectors of 20 

components, where 1 represents the presence of an 

anatomical label and zero represents its absence. For better 

understanding, consider the list of anatomical labels 

discussed in section 3.2.1.1. The binary vector for the 

example would look something like this: 

[1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0] 

C. Accuracy Metric 

We found that the most popular metrics commonly used 

to evaluate the accuracy of regression models, the Mean 

Square Error (MSE) and Root Mean Square Error (RMSE), 

do not allow for an accepted error threshold for our task. 

Due to the similarity between our dataset’s classes, it was 

difficult to predict the exact distance correctly for a given 

image. The problem is illustrated in Fig. 3. It can be seen 

from this figure that the similarity between 2 images which 

differ by 10 distance units, is about 82%. We, therefore, 

developed a custom accuracy function, which counts any 

prediction within 10 distance units from its true value as a 

true prediction. Placing the new 2D image correctly into 

the 3D model within such a narrow distance allowance 

leaves the final registration adjustment to the biologist as 

a fairly easy task. 

 

Figure 3. The change in similarity (defined by SSIM) with a change in 
the distance. 

D. Using CNN with Feature Level Fusion 

First, we analyzed the multimodal data most 

straightforwardly by using a CNN with two inputs, one for 

the image data and the other for the anatomical textual data, 

and merging these different types of data as shown in Fig. 

4. The model consisted of another CNN called sub-CNN 

for the preprocessing of the image dataset, which was used 

to extract the dominant and relevant features that were later 

concatenated with the textual dataset. This model had 

moderate performance, the prediction accuracy was 

83.20%, and the MAE was 8.7133. 

 

Figure 4. Illustration of CNN with a fusion of different features 
together. 

E. Stack Generalization Ensemble for Locating the 

Image 

To improve the accuracy of prediction, we used a stack 

generalization algorithm to deploy different machine 

learning methods for different data modalities. 

1) The overall structure of the algorithm 

The developed stack generalization algorithm consists 

of two conceptual parts, called Base models and a Meta 

learner model. The main aim of the Base models is an 

analysis of one specific type of data, i.e., either image data 

or textual data. Then, outputs of different Base models are 

combined by the Meta-learner model to generate the final 

prediction. We tested different Base models to optimize 

analysis for each data modality separately and then 

conducted experiments to find the best Meta-learner model. 

Fig. 5 presents the schematic of the overall architecture of 

the algorithm. The accuracy function used to calculate 

prediction accuracy is described in the experimental setup 

section. 

 

Figure 5. The overall scheme of the algorithm. 

2) The base model for the image data 

To build a predictive image-based model, we used 

different popular deep learning architectures, such as 

VGG16 [19], VGG19 [19], InceptionV3 [20], [21], and 

DenseNet, as well as a smaller custom CNN model. We 

initialized VGG16, VGG19, InceptionV3, and DenseNet 

with weights trained using the ImageNet dataset [22]. To 

make these models work for our data, we froze the first 

few layers of these models and re-trained the rest of the 

layers. We assumed that the first layers of these models 

have weights trained on large datasets to extract basic 

features efficiently. Thus, re-training only the last layers 

adjusted analysis of basic features to our specific dataset 

and speeded up the training process. Table I compares the 

performance of the CNN models during training and 

validation. Our custom CNN model and VGG16 had the 

lowest validation loss, while InceptionV3 and DenseNet 

had the highest validation loss. These results indicate that 

smaller models perform much better for our dataset than 

bigger and much more complicated models. 
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TABLE I.  COMPARISON OF THE PERFORMANCE OF DIFFERENT CNN 

IMAGE-BASED MODELS 

Models Training loss Validation loss 

VGG16 11.5 11 

VGG19 16 15.3 

InceptionV3 22 21.7 

DenseNet 22.5 21.5 

Custom CNN 7.9 7.6 

 

We also calculated the accuracy for the best-performing 

CNN architecture and obtained an accuracy of 97.2% 

based on the accuracy function described before. Fig. 6 

shows some of the CNN model prediction results. 

 

Figure 6. The pictures on the left are the query images for the CNN 
image model results, and the right is the matched images. 

3) Base model for textual data 

For analysis of textual data, we tested the CNN and the 

two-following tree-based machine learning methods: 

XGBoost [12] and Random Forest (RF) [13]. The 

performance of the CNN model, in this case, was 

unsatisfactory, and we mainly focused on the tree-based 

methods. The XGBoost model was trained as a regressor 

with 10-fold cross-validation and two stopping criteria to 

prevent over-fitting, such as maximum tree depth and a 

maximum number of gradient boosted trees. We 

conducted a grid search for various parameter 

configurations to achieve the optimum combination of the 

method hyperparameters. The best performing 

hyperparameter set for the XGBoost model is presented in 

Table II. The performance for this set of values gave an 

MSE = 417. 

TABLE II.  OPTIMAL HYPERPARAMETERS FOR THE XGBOOST MODEL 

Parameter value 

Maximum tree depth for base learners 

(max_depth) 
8 

Number of gradients boosted trees 

(n_estimators) 
1000 

The minimum sum of instance weight 

needed in a child (min_child_weight) 
1 

Subsample ratio of the training instance 

(subsample) 
1 

Subsample ratio of columns when 

constructing each tree (colsample_bytree) 
0.4 

 

Also, to find optimal hyperparameters for the Random- 

forest regressor, we used grid search. Table III represents 

the optimal set of hyperparameters that provided an 

MSE=436. Table IV shows the accuracy of the XGBoost 

and the Random Forest models.  

TABLE III.  OPTIMAL HYPERPARAMETERS FOR THE XGBOOST MODEL 

Parameter value 

Number of trees 400 

Max tree depth 15 

Number of features Sklearn (python) ‘auto.’ 

TABLE IV.  COMPARISON OF THE ACCURACY OF XGBOOST AND 

RANDOM FOREST METHODS FOR THE ANALYSIS OF THE TEXTUAL DATA 

Models Testing accuracy 

Random Forest 49.5% 

XGboost 47% 

 

4) Meta learner model 

The main aim of the Meta learner model is to combine 

predictions from the two Base learner models and generate 

a final prediction (Fig. 3). To find the best model for the 

Meta learner, we tested Random Forest, XGBoost, and 

CNN models trying to find the optimal set of 

hyperparameters for each model. The XGBoost model 

with the same set of hyperparameters as the Base model 

analyzing textual data (see Table II) gave the best 

performance. Fig. 7 and Fig. 8 represent the dependence of 

training and testing accuracy on the number of iterations 

for XGBoost and Random Forest meta learner models. 

Table V shows the comparison of model performances for 

different learner models. It can be clearly seen from Table 

V that using stack generalization ensemble for analysis of 

multimodal data with tree-based Meta learner models 

outperforms both CNN with a fusion of different features 

and the individual models for each data modality. 

TABLE V.  COMPARISON OF PERFORMANCE OF DIFFERENT MODELS 

FOR THE PROBLEM 

Meta Learner Models 
Training 

MAE 

Testing 

MAE 

Testing 

Accuracy 

Random Forest (meta 

learner) 
2.19 2.24 99.37% 

XGboost (meta learner) 1.60 1.84 99.55% 

CNN Image only 6.41 6.38 97.2% 

CNN feature Fusion 8.7133 8.7133 83.20% 

 

 

Figure 7. The training and testing accuracy depend on the XGBoost 
base model for textual information on the number of iterations. 
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Figure 8. The dependence of training and testing accuracy for Random 
Forest-based model for textual information on the number of iterations. 

Here are some examples (Fig. 9-Fig. 14) of the queries 

and their location prediction made by the Multimodal 

designed for predicting the image location([distance, 

pitch]): 

 

Figure 9. Image [392, 7] predicted as [395, 10]. 

 

Figure 10. Image [382, 72] predicted as [390, 74]. 

 

Figure 11. Image [378, 73] predicted as [390, 76]. 

 

Figure 12. Image [132, 50] predicted as [135, 49]. 

 

Figure 13. Image [204, 44] predicted as [203, 43]. 

 

Figure 14. Image [308, 48] predicted as [304, 48]. 

III. RESULT AND DISCUSSION 

The recent developments in deep learning, specifically 

Convolutional Neural Networks (CNN), have 

considerably increased the performance of machine 

learning methods in various computer vision tasks, Such 

as the analysis of medical imaging information. However, 

the task of 2D to 3D image registration is still a challenge 

for CNN methods. In our case, the complexity of the task 

is even higher because of the structural similarity between 

consecutive 2D slices of a 3D model in EMOUSE Atlas 

and the limited amount of data. Thus, it is not surprising at 

all that the straightforward application of CNNs to the 

multimodal data resulted in moderate accuracy. We 

proposed a novel image and text-based multimodal 

approach to address the problem, which utilizes a stack 

generalization approach to combine the best features of 

different machine learning methods into a single pipeline. 

The main idea of this method is to find the best algorithms 

for each data modality separately and then combine the 

predictions using a novel Meta learner model. We 

analyzed 2D image slices from the EMAP dataset using 

CNN models and textual anatomical information using 

tree-based models. We used 5 variations of CNN models 

for image analysis and 2 different tree-based models for 

textual analysis to find the best base model for each 

particular task. For analysis of 2D image slices obtained 

from the EMAP dataset, we tested 5 different CNN models. 

The loss during training and validation phases of the CNN 

models is reported in Table I. We found that more complex 

CNN models performed worse than simpler ones. The 

lowest training and test losses were observed for our 

custom CNN model and for the VGG16 model. We 

suggest that the bad performance of complex CNN models 

in our case is explained by the small size of the dataset 

used. 

For the analysis of textual data, we used 2 different tree-

based models, Random Forest and XGBoost. We also 

tested a CNN model for this data modality. However, 

although the CNN model performed well for image data, 

the accuracy of the CNN for the analysis of textual data 

was significantly lower than for tree-based methods. We 

found optimal hyperparameters for each tree-based model 

using grid search. Comparison of model performances 

showed that the Random Forest performed slightly better 

than XGBoost. We tested different models to combine the 

results of the image and textual model together and 

generate the final prediction.  

IV. CONCLUSION  

Our tests showed that the resulting stack generalization 

algorithm outperforms both CNN, which combines all data 
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modalities and individual models for each data modality 

when tree-based models are used as a Meta learner model. 

It is worth noting that although the accuracy of the image 

Base model (97%) was much higher than the accuracy of 

the textual Base model (49.5%). In summary, we have 

shown that combining CNNs with tree-based methods 

using stack generalization results in a powerful prediction 

tool for the image registration tasks when the size of the 

dataset is limited. 
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