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Abstract—Currently, Maximum Likelihood Expectation 

Maximization (MLEM) method and its accelerated version 

called Ordered-Subsets EM (OSEM) method have been used 

for image reconstruction in PET. It is known that the former 

has a drawback of slow convergence and the latter does not 

converge to a minimizer of cost function. Recently, image 

reconstruction methods using a new mathematical 

framework called proximal splitting have been actively 

studied. So far, most of the proximal splitting frameworks 

used for image reconstruction are based on splitting the cost 

function into two terms. With these conventional frameworks, 

it is impossible to obtain iterative methods that converge fast 

such as OSEM method and row-action-type iterative 

methods. To overcome this drawback, in this paper, we 

propose a unified approach to construct row-action-type 

iterative methods using three different types of multi 

proximal splitting frameworks. Results of simulation studies 

show that all the iterative methods obtained from the 

proposed approach can reduce the effect of statistical noise 

well and converge to a minimizer of the cost function with a 

high speed comparable to that of OSEM method. 

 

Index Terms—image reconstruction, PET, row-action-type 

acceleration 

 

I. INTRODUCTION 

Currently, statistical iterative methods have been 

commonly used for image reconstruction in PET and 

SPECT [1]. In addition, statistical methods are also used 

in X-ray CT to improve image quality with low-dose 

measured data. It has been pointed out that analytical 

reconstruction methods may be completely replaced by the 

statistical iterative methods. The statistical methods are 

based on minimizing a cost function constructed from 

physical model of each imaging modality by using an 

iterative method. They have the three major advantages 

over the analytical methods. First, they can correct for 

image degradation due to various physical effects by 

incorporating them into the cost function. Second, they can 

reconstruct images with less noise. Third, they can be 

applied to cases where projection data is incomplete or 

where no analytical inversion formulae exist. Among the 

statistical methods, the most commonly used method is 

based on Maximum Likelihood (ML) estimation. Many of 

the statistical iterative reconstruction methods used in PET 

and SPECT are based on MLEM method proposed in 1982 

[2]. The disadvantage of MLEM method is that it 

converges slowly leading to a requirement of a number of 

iterations to obtain a satisfactory image. To overcome this 

drawback, various speed-up methods have been studied. 

One of the popular acceleration methods is the block 

iterative method, which divides the projection data into a 

number of subsets and each image update is performed by 

using only the subset sequentially according to some 

specified access order. This method was first proposed in 

1994 and is called Ordered Subsets EM (OSEM) method 

[3]. In general, it is known that, by dividing the projection 

data into L subsets and using OSEM method, convergence 

can be accelerated by a factor of L. In addition, it is also 

known that the computational complexity of each iteration 

of OSEM method is almost the same as that of each 

iteration of MLEM method. However, OSEM method has 

a serious drawback that it does not converge to a minimizer 

of cost function when statistical noise is contained in the 

projection data. 

Recently, image reconstruction using a new framework 

called proximal splitting has been studied for various 

reasons. For example, it allows to use non-differentiable 

regularization term such as Total Variation and it allows to 

derive a new class of statistical iterative reconstruction 

methods which have not been found in the existing 

literature. So far, the proximal splitting frameworks used 

for image reconstruction are still limited to the proximal 

splitting which splits a cost function into two terms. For 

example, these include Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA) [4], Alternating 

Direction Method of Multipliers (ADMM) [5], 

Chambolle-Pock algorithm [6], and so on. With these 

frameworks, it is difficult to derive iterative methods 

having the block-iterative or row-action structure like 

OSEM method that converge very quickly. To overcome 

this drawback, we propose a unified approach to derive 

row-action-type iterative methods using three different 

multi proximal splitting approaches, which are Passty’s 

splitting, Dykstra-Boyle splitting, and Han’s splitting. This 

framework allows us to derive statistical iterative methods 

which converge to a strict minimizer of cost function very 

fast. Finally, according to our best knowledge, the use of 

multi proximal splitting has not been studied in image 

reconstruction fields yet except for earlier work [7], [8]. 
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II. METHODOLOGY 

A. Problem Definition 

The objective of image reconstruction in PET is to 

reconstruct an image from measured projection data. The 

relation between the image and the projection data is 

expressed by: 

 b⃗ = Poisson(𝐴𝑥 ) (1) 

where �⃗� = (𝑏1, 𝑏2, … , 𝑏𝐼)
𝑇  denotes the measured 

projection data, 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝐽)
𝑇
 denotes the image to 

be reconstructed, and 𝐴 = {𝑎𝑖𝑗} is the 𝐼 × 𝐽 system matrix. 

B. Multi Proximal Splitting 

First, we explain an important tool in this work called 

proximity operator. The definition of proximity operator is 

expressed as: 

   proxγ𝑓(𝑥 ) = argmi𝑛𝑧 ∈𝑅𝐽(𝑓(𝑧 ) +
1

2γ
‖𝑧 − 𝑥 ‖2) (2) 

where 𝑧 , 𝑥 ∈ 𝑅𝐽  and γ > 0  denotes the step-size 

parameter. We assume that 𝑓(𝑥 )  is a proper (non-

necessarily differentiable) convex function. From equation 

(2), the proximity operator returns 𝑧  minimizing the sum 

of a convex function 𝑓(𝑧 )  and the quadratic term 

‖𝑧 − 𝑥 ‖2/(2γ) for a given input 𝑥 . It is known that the 

proximity operator can be considered an extension of the 

classical gradient mapping ∇𝑓(𝑥 ), but it can be computed 

even in the case where 𝑓(𝑥 ) is non-differentiable. Next, 

we explain an alternative important concept called 

proximal splitting. Let us consider a convex minimization 

problem having the form expressed as: 

 min𝑥 ∈𝑅𝐽𝑓(𝑥 ) ≡ 𝑓1(𝑥 ) + ⋯+ 𝑓𝑛(𝑥 ) (3) 

where we assume that 𝑓1(𝑥 ), 𝑓2(𝑥 ),⋯ , 𝑓𝑛(𝑥 )  are (non-

necessarily) convex functions. The proximal splitting is an 

efficient framework used to solve the minimization 

problem of Equation (3), when it is difficult to compute the 

direct proximity operator to the original cost function 𝑓(𝑥 ) 

but it is easy to compute the proximity operator 

corresponding to the split sub-cost functions 

𝑓1(𝑥 ), 𝑓2(𝑥 ),⋯ , 𝑓𝑛(𝑥 ) . Most of the proximal splitting 

frameworks used in image reconstruction so far have been 

based on the case where the number of split n is 2. 

However, by applying the frameworks proposed by Passty 

[9], Boyle and Dykstra [10], and Han [11] to PET image 

reconstruction, it becomes possible to derive a variety of 

fast convergent row-action-type iterative methods having 

the similar structure to that of OSEM method. Such 

research direction has not been investigated in image 

reconstruction fields yet. This paper demonstrates how to 

construct a new class of row-action type iterative methods 

using the multi-splitting and demonstrates that they work 

very well in practice.  

We use three different frameworks of multi splitting to 

construct iterative formulae. Roughly, they have similar 

structures, but there is a small difference among the three. 

The first one called Passty’s framework requires a step-

size control which gradually diminishes the step-size γ(𝑘) 

to zero as the iteration proceeds. This is a major drawback 

of Passty’s framework. On the other hand, the second one 

called Boyle and Dykstra's framework does not require the 

step-size control, but it is necessary to add a perturbation 

term in the cost function, and the effect of perturbation 

term cannot be neglected in the solution. Finally, the third 

one called Han's framework does not have the above-

mentioned disadvantages, i.e. the effect of perturbation 

term is diminished as the iteration proceeds without using 

the step-size control. 

Hereafter, we assume that the cost function 𝑓(𝑥 ) used 

for image reconstruction is the negative log-likelihood in 

PET and the decomposition into the sub-cost function is 

performed as expressed as: 

 𝑓(𝑥 ) = ∑ [𝑎⃗⃗  ⃗𝑖
𝑇𝑥 − 𝑏𝑖 log(𝑎 𝑖

𝑇𝑥 )]  𝐼+1
𝑖=1   

 𝑓𝑖(𝑥 ) = 𝑎 𝑖
𝑇𝑥 − 𝑏𝑖 log(𝑎 𝑖

𝑇𝑥 ) (𝑖 = 1,2,⋯ , 𝐼)  

 𝑓𝐼+1(𝑥 ) = {0 𝑥 ≥ 0         
∞ otherwise

  (4) 

The iterative methods corresponding to each framework 

are summarized in Algorithm 1, 2, 3 without showing the 

detailed form of proximity operator prox(∙) . The 

algorithms in a implementable form can be constructed by 

calculating the proximity operator proxγ𝑓𝑖
(𝑥 ) 

corresponding to each sub-cost function 𝑓𝑖(𝑥 )  for 𝑖 =
1,2, … , 𝐼. Roughly, the processing procedure common to 

the three methods can be summarized as: 

{
𝑥 (𝑘,𝑖+1) = proxγ(𝑘)𝑓𝑖

(𝑥 (𝑘,𝑖)),   (𝑖 = 1,2, … , 𝐼)

𝑥 (𝑘+1,1) = 𝑥 (𝑘,𝐼+1)                                                
 (5) 

where 𝑘 denotes the main iteration number and i denotes 

the sub-iteration number processing i-th sub-cost function. 

We also remark that each update indexed by (𝑘, 𝑖) uses 

only single projection data 𝑏𝑖  so that the algorithm 

structure. The image reconstruction methods having such 

structure is generally called row-action-type iterative 

algorithm, which converges very fast. 

C. Deriving the Image Update Formula 

Next, we show the procedure to derive the concrete 

image update equation. From the summary of Algorithms 

1, 2, 3, to implement these methods, it is sufficient to 

calculate the detailed forms of proximity operators 

prox𝛾(𝑘)𝑓𝑖(𝑥 )
(∙)(𝑖 = 1,2,⋯ , 𝐼)  corresponding to the sub-

cost functions 𝑓𝑖(𝑥 )(𝑖 = 1,2,⋯ , 𝐼), which are common to 

Algorithms 1, 2, 3. Below, we describe the derivation only 

in the case of Passty’s proximal splitting. We begin by 

representing the proximity operator corresponding to 𝑓𝑖(𝑥) 

as in Equation (6) and introducing the slack variable 𝑧 =
𝑎 𝑖

𝑇𝑥  to move the 𝑎 𝑖
𝑇𝑥  part to outside of 𝑓𝑖(∙) as a constraint. 

Then, we have: 

 𝑥 (𝑘,𝑖+1) = prox𝛾(𝑘)𝑓𝑖
(𝑥 (𝑘,𝑖)) =  

 argmin
𝑥 

(𝑓𝑖(𝑧) − 𝑏𝑖 log 𝑧 +
1

2𝛾(𝑘) ‖𝑥 − 𝑥 (𝑘,𝑖)‖
2
) 

subject to 𝑧 = 𝑎 𝑖
𝑇𝑥               (6) 
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We can obtain the solution to the constrained 

minimization problem in Equation (6) by using the 

Lagrange function: 

𝐿(𝑥 , 𝑧, 𝜆) = 

1

2𝛾(𝑘) ‖𝑥 − 𝑥 (𝑘,𝑖)‖
2
+ 𝑓𝑖(𝑧) − 𝑏𝑖 log 𝑧 + 𝜆(𝑧 − 𝑎 𝑖

𝑇𝑥 )  (7) 

where λ represents the Lagrange multiplier. By solving the 

equations obtained from 
𝜕𝐿(𝑥 ,𝑧,λ)

𝜕λ
= 0,

𝜕𝐿(𝑥 ,𝑧,λ)

𝜕𝑧
= 0 , and 

𝜕𝐿(𝑥 ,𝑧,λ)

𝜕𝑥 
= 0, we obtain the image update equation as: 

 𝑥(𝑘,𝑖+1) = 𝑥(𝑘,𝑖) + 𝑡̅𝑎𝑖   

 𝑥 (𝑘,𝐼+2) = [𝑥 (𝑘,𝐼+1)]
+

  

 𝑡̅ = −
�̅�−√�̅�2+�̅�

2‖𝑎𝑖‖
2  , �̅� = 𝑎𝑖

𝑇𝑥(𝑘,𝑖) + 𝛾(𝑘)‖𝑎𝑖‖
2  

 �̅� = 4𝛾(𝑘)‖𝑎𝑖‖
2(𝑏𝑖 − 𝑎𝑖

𝑇𝑥(𝑘,𝑖))      (8) 

Algorithm 1: Passty’s Method 

Input: Measured projection data b⃗ , Initial image x⃗ (0) = �⃗⃗�  

Output: Reconstructed image x⃗ (𝑘) 

Cost function: min
𝑥 

𝑓(𝑥 ) ≡ ∑ 𝑓𝑖(𝑥 )
𝐼
𝑖=1  

 𝑘 ← 0 

While iterating 

 𝑘 ← 𝑘 + 1, 𝑥 (𝑘,1) = 𝑥 (𝑘) 

  For all projection data(𝑖 = 1,2,⋯ , 𝐼) 

  𝑥 (𝑘,𝑖+1) = prox𝛾(𝑘)𝑓𝑖(𝑥 )
(𝑥 (𝑘,𝑖)) ≡ 

  min
𝑥 

(
1

2𝛾(𝑘) ‖𝑥 − 𝑥 (𝑘,𝑖)‖
2
+ 𝑓𝑖(𝑥 )) 

 𝑥 (𝑘+1) = 𝑥 (𝑘,𝐼+1) 

𝛾(k) → 0(𝑘 → ∞)  

Algorithm 2: Boyle and Dykstra’s Method 

Input: Measured projection data b⃗ , Initial image x⃗ (0) = �⃗⃗�  

Output: Reconstructed image x⃗ (𝑘) 

Cost function: min
𝑥 

𝑓(𝑥 ) ≡
1

2𝛾
‖𝑥 − �⃗⃗� ‖2 + ∑ 𝑓𝑖(𝑥 )

𝐼
𝑖=1  

𝑘 ← 0, 𝑦 𝑖
(0)

= 0(𝑖 = 1,2, … , 𝐼) 

While iterating 

 𝑘 ← 𝑘 + 1 

 𝑥 (𝑘,1) = 𝑥 (𝑘) 

 For all projection data  𝑖 = 1,2,⋯ , 𝐼 

  𝑥 (𝑘,𝑖+1) = prox𝛾𝑓𝑖(𝑥 )
(𝑥 (𝑘,𝑖) + 𝑦𝑖⃗⃗⃗  

(𝑘)
) ≡ 

  min
𝑥 

(
1

2𝛾
‖𝑥 − (𝑥 (𝑘,𝑖) + 𝑦𝑖⃗⃗⃗  

(𝑘)
)‖

2
+ 𝑓𝑖(𝑥 )) 

  𝑦 𝑖
(𝑘+1)

= 𝑦 𝑖
(𝑘)

+ 𝑥 (𝑘,𝑖) − 𝑥 (𝑘,𝑖+1) 

 End for 

 𝑥 (𝑘+1) = 𝑥 (𝑘,𝐼+1) 

End while 

γ > 0 

Algorithm 3: Han’s Method 

Input: Measured projection data b⃗ , Initial image x⃗ (0) = �⃗⃗�  

Output: Reconstructed image x⃗ (𝑘) 

Cost function: min
𝑥 

𝑓(𝑥 ) ≡ ∑ 𝑓𝑖(𝑥 )
𝐼
𝑖=1  

𝑘 ← 0, 𝑦 𝑖
(0)

= 0(𝑖 = 1,2, … , 𝐼), 𝑧 (0) = 0 

While iterating 

 𝑘 ← 𝑘 + 1 

 𝑥 (𝑘,1) = 𝑥 (𝑘) + z (𝑘) 

 For all projection data  𝑖 = 1,2,⋯ , 𝐼 

  𝑥 (𝑘,𝑖+1) = prox𝛾𝑓𝑖(𝑥 )
(𝑥 (𝑘,𝑖) + 𝑦𝑖⃗⃗  

(𝑘)
) ≡ 

  min
𝑥 

(
1

2𝛾
‖𝑥 − (𝑥 (𝑘,𝑖) + 𝑦𝑖⃗⃗⃗  

(𝑘)
)‖

2
+ 𝑓𝑖(𝑥 ))

  𝑦 𝑖
(𝑘+1)

= 𝑦 𝑖
(𝑘)

+ 𝑥 (𝑘,𝑖) − 𝑥 (𝑘,𝑖+1) 

 End for 

 𝑥 (𝑘+1) = 𝑥 (𝑘,𝐼+1) 

 𝑧 (𝑘+1) = 𝑧 (𝑘) + 𝑥 (𝑘,𝐼+1) − 𝑥 (𝑘,1) 

End while 

γ > 0 

The final row-action-type PET image reconstruction 

method using Passty’s multi proximal splitting is 

summarized in Algorithm 4. Finally, we mention that the 

iterative methods corresponding to Boyle and Dykstra’s 

splitting and Han’s splitting can be obtained by following 

the same calculation steps as above. We omit the final 

algorithm summary to save the space. 

 

Algorithm 4: Row-action-type accelerated PET image 
reconstruction algorithm using Passty’s method 

Input: Measured projection data �⃗�  as an I -dimensional 

vector, Initial image 𝑥 (0) as an N × N-dimensional vector, 

step-size control parameters (γ(0), 𝜖) 

Output: Reconstructed image 𝑥 (𝑘)  as an N × N -

dimensional vector. 

 𝑘 ← 0 

While iterating 

 γ(k) =
𝛾(0)

1+𝜖𝑘
, 𝑥 (𝑘,𝑖) = 𝑥 (𝑘) 

 For all projection data(𝑖 = 1,2,⋯ , 𝐼) 

  �̅� = 𝑎 𝑖
𝑇𝑥 (𝑘,𝑖) + 𝛾(𝑘)‖𝑎 𝑖‖

2, 

  �̅� = 4𝛾(𝑘)‖𝑎 𝑖‖
2(𝑏𝑖 − 𝑎 𝑖

𝑇𝑥 (𝑘,𝑖)) 

  𝑡̅ = −
�̅�−√�̅�2+�̅�

2‖�⃗� 𝑖‖
2  

  𝑥 (𝑘,𝑖+1) = x⃗ (𝑘,𝑖) + 𝑡̅𝑎 𝑖  

 End for 

 𝑥 (𝑘,𝐼+2) = [𝑥 (𝑘,𝐼+1)]
+

 

 x⃗ (𝑘+1) = 𝑥 (𝑘,𝐼+2) 

 𝑘 ← 𝑘 + 1 

End while 

𝛾(k) → 0(𝑘 → ∞)  
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III. EXPERIMENTAL RESULTS 

A. Numerical Simulation 

We compared the four iterative reconstruction methods, 

i.e. OSEM method, Passty’s method (Proposed Method 1), 

Boyle and Dykstra’s method (Proposed Method 2), and 

Han’s method (Proposed Method 3) using Shepp-Logan 

numerical phantom. The phantom image consisted of 

256 × 256 (pixels) and the projection data were computed 

by the parallel-beam geometry with 256 (bins) and 256 

(views) over the 180° angular range. The statistical noise 

corresponding to the number of total photon counts 

5 × 105 was added to the projection data. In implementing 

the proposed three methods, the value of step size γ was 

set to 15, and the initial image in the iteration was set to an 

image having uniform intensity within the inscribed circle 

to the image matrix. The definition of used PET phantom 

was same as that described in Vardi [12]. With respect to 

the regularization, i.e. smoothing, we applied a post-

smoothing with a Gaussian filter having pre-defined a 

FWHM value after the iteration was stopped, which is the 

standard regularization method used in clinical PET 

scanners. The size of Gaussian kernel was 3 × 3 (pixels) 

and the value of FWHM was 2.35. The phantom consisted 

of eight ellipses and was chosen as a simplified imitation 

of brain’s metabolic activity, where the skull metabolizes 

at a low rate of 0.1 and the ventricles, tumors, and so on, 

metabolize at rates between 0.3 and 2.0. Reconstructed 

images are shown in Fig. 1. It is observed that the image 

by OSEM method suffers from non-acceptable 

amplification of statistical noise, mainly because it does 

not converge to a minimizer of cost function. It is well-

known that the noise property of OSEM method is much 

worse compared to the exactly convergent method such as 

MLEM method. However, the three proposed methods 

succeed in significantly reducing the effect of noise 

leading to nicer images. Next, to evaluate the results 

quantitatively, Table I shows the average values of 

Structural Similarity (SSIM) and Peak Signal-to-Noise 

Ratio (PSNR) after 100 image reconstructions when the 

number of iterations is 5. In addition, Table I shows the 

average computation times per iteration. 

B. Application to Real Data of Whole-Body PET 

We used 3D PET real data corresponding to whole-body 

FDG scan to evaluate the four methods. The reconstructed 

image size was 128 × 128 × 278  (voxels), and the 

projection data consisted of 128 (bins) × 128 (views) ×
278 (slices). In implementing the three proposed methods, 

the value of step size γ was set to 300. Similarly to the case 

of numerical phantom, OSEM method, Proposed Method 

1, Proposed Method 2, Proposed Method 3 were compared. 

We show vertical slices of the reconstructed images in Fig. 

2, which demonstrates that the noise performances of the 

proposed three methods are much better compared to 

OSEM method as in the case of numerical simulations. 

Furthermore, the speed of convergence were comparable 

in all the implemented methods because all the methods 

have a row-action structure. 

TABLE I.  AVERAGE VALUES OF SSIM AND PSNR AND 

COMPUTATION TIME WITH STATISTICAL NOISE 

 SSIM PSNR [dB] 
Average Time 

[sec] 

OSEM method 0.5316 17.15 6.817 

Proposed 

method1 
0.6458 25.69 8.329 

Proposed 

method 2 
0.6698 26.17 8.369 

Proposed 

method 3 
0.6695 26.16 8.385 

 

 

Figure 1. Reconstructed images by OSEM method, Method1 (Passty’s), Method2 (Boyle and Dykstra’s), and Method3 (Han’s). 
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Figure 2. Reconstructed image of 3D whole-body real data by OSEM method, Method1, Method2, and Method3. 

IV. CONCLUSION 

In this paper, we proposed a unified approach to derive 

a class of row-action-type PET iterative reconstruction 

methods using multi proximal splitting, which have not 

been used in tomographic image reconstruction fields yet. 

The simulation results as well as the real data experiments 

demonstrate that all the methods are able to produce better 

images than standard OSEM method with a comparable 

convergence speed. In this work, we derived iterative 

methods for PET image reconstruction, but we are 

planning to extend the proposed methods to other imaging 

modalities such as X-ray CT in future work. Furthermore, 

in the simulation study reported in this paper, we 

considered only a single case of total photon count and a 

single empirically determined step-size parameter. We 

need to perform further experiments to understand what 

kind of changes occur in the performances when these 

parameters are changed. 
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